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Abstract. Deep learning method for solving elliptic hemivariational inequalities is con-

structed. Using a variational formulation of the corresponding inequality, we reduce it to

an unconstrained expectation minimization problem and solve the last one by a stochas-

tic optimization algorithm. The method is applied to a frictional bilateral contact prob-

lem and to a frictionless normal compliance contact problem. Numerical experiments

show that for fine meshes, the method approximates the solution with accuracy similar

to the virtual element method. Besides, the use of local adaptive activation functions

improves accuracy and has almost the same computational cost.

AMS subject classifications: 65K15, 68T07, 68U99

Key words: Deep learning, elliptic hemivariational inequality, contact problem, mesh-free method.

1. Introduction

With the advance of deep learning technique originated in computer science, consider-

able efforts are made to use this approach in other areas, including numerical methods for

partial differential equations (PDEs). Neural network-based numerical methods appeared

in 1990s [29] and have been significantly improved recently [7, 8, 10, 25, 40, 43, 44, 47].

In those methods, deep neural networks (DNNs) are used in order to parameterize the

PDE solution by the parameters defined by an optimization problem related to the PDE

under consideration. The key to the success of neural networks-based methods lies in the

universal approximation property [2, 9, 18, 20, 42]. It is well known that deep neural net-

work is a powerful tool for solving high-dimensional PDEs — cf. [12, 13, 26, 36]. We are

sure that this is also a valuable strategy to attack low-dimensional complicated problems

in science and engineering, which are expensive to solve by traditional numerical meth-

ods. Following these ideas, Huang et al. [21] proposed deep learning-based methods for

variational inequalities. This approach was supported by other authors [30, 41]. How-
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ever, to the best of our knowledge, there are no similar works on hemivariational inequal-

ities (HVIs). We recall that HVIs, introduced in 1983 by Panagiotopoulos [38] in connec-

tion with engineering applications, have been rigorously studied [14,37,39] and are now

widely used in contact mechanics. In practice, the solutions to elliptic HVIs are only avail-

able numerically. There are various numerical methods to approximate the solutions of

elliptic HVIs — cf. [11, 15, 17, 46]. However, the discretization often leads to non-convex

and non-smooth optimization problems, the solution of which is challenging. The itera-

tive convexification [35, 45] is a popular method for solving the non-convex optimization

problems mentioned. It consists in construction and solution of a number of convex prob-

lems approaching the original non-convex problem. Many HVIs related contact problems

such as the frictional bilateral contact problem, the frictionless normal compliance contact

problem and the frictionless unilateral contact problem have been solved by the method

mentioned [16].

In addition to the iterative convexification approach, one can use the proximal bundle

method [34], the bundle Newton method [33], and the primal-dual active-set algorithm

[28]. Recently, Feng et al. [11] used the double bundle method [24] to solve discrete non-

convex and non-smooth problems arising in the discretization of HVIs. Nevertheless, the

numerical methods mentioned are rather difficult to implement or they are computationally

expensive when applied to the corresponding discrete problems.

Here, we consider a deep learning method for an elliptic HVI. The method is based

on an equivalent variational formulation of the problem [14]. In particular, the solution

space of the HVI is parameterized by DNNs and an approximation is found by minimizing

an unconstrained expectation minimization problem. The latter can be solved by stochas-

tic gradient descent methods [3]. The unconstrained expectation minimization problem

is reformulated by using the variational principle for HVIs. Therefore, the resulting deep

learning optimization problem has a clear physical meaning. As applications, we employ

the deep learning method to a frictional bilateral contact problem and a frictionless con-

tact problem with normal compliance. In addition, we use a fixed activation function and

a local adaptive activation function [23] to solve HVIs in numerical simulation. Numerical

experiments also show that the deep learning method has the same accuracy as traditional

numerical methods on fine grids. Besides, the use of local adaptive activation functions

gives a better accuracy than fixed activation functions, under comparable computational

cost. Finally, it is worth noting that the method is suitable for engineering applications and

can be easily programmed in Python.

The rest of this paper is organized as follows. In Section 2, an elliptic HVI and its

applications in contact mechanics are introduced. Section 3 provides a detailed description

of the deep learning method for HVIs. In Section 4, two numerical examples demonstrate

the efficiency of the deep learning methods. Finally, we summarize our work with a short

conclusion in Section 5.

2. Elliptic Hemivariational Inequality and Applications

Let X be a real Banach space with norm ‖ · ‖X and X ∗ the dual of X with norm ‖ · ‖X ∗ .
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The notation 〈·, ·〉 stands for the dual pairing between X ∗ and X . This naturally applies

to a Hilbert space H. We denote by L (X , Y ) the space of all continuous linear operators

from a normed linear space X to a normed linear space Y and use the standard notation for

Sobolev spaces, norms or seminorms [1]. For any locally Lipschitz continuous functional j

on a Banach space X , let j0(u; w) refer to the generalized (Clarke) directional derivative of

j at u in the direction w, i.e.

j0(u; w) := lim
v→u

sup
t↓0

j(v + tw)− j(v)

t
, u ∈ X , w ∈ X ,

cf. [5,6]. The generalized subdifferential of j at u ∈ X is defined by

∂ j(u) :=
�

ζ ∈ X ∗ | j0(u; w) ≥ 〈ζ, w〉, ∀w ∈ X
	

.

2.1. Elliptic hemivariational inequality and equivalent minimization problem

Consider an elliptic HVI on a spatial domain Ω in a finite-dimensional Euclidean space.

For simplicity, we denote the boundary or part of the boundary of the domain as Γ . Let H

be a Hilbert space. The elliptic HVI can be described as follows.

Problem 2.1. Find u ∈ H such that

〈Au, v〉+
∫

Γ

j0(γ ju;γ j v)ds ≥ 〈 f , v〉, v ∈ H, (2.1)

where γ j ∈ L (H, L2(Γ ;Rm)), j : Γ ×Rm → R is a locally Lipschitz continuous functional for

a positive integer m and j(x , ·) is locally Lipschitz on Rm for a.e. x ∈ Γ .

To simplify the notation j(x , z), which may depend on the spatial variable x , we will

usually write j(z)with the understanding that it is allowed to depend on the spatial variable.

In the study of Problem 2.1, we need the following assumptions — cf. [14].

(A1) A : H → H∗ is Lipschitz continuous and strongly monotone — i.e. there is a constant

mA > 0 such that for any v1, v2 ∈ H the following inequality holds:

〈Av1 − Av2, v1 − v2〉 ≥ mA‖v1 − v2‖2H .

(A2) j(·, z) is measurable on Γ , z ∈ Rm. There are non-negative constants c0, c1, α j and

a function z0 ∈ L2(Γ ;Rm) such that j(·, z0(·)) ∈ L1(Γ ) and

‖∂ j(z)‖Rm ≤ c0 + c1‖z‖Rm , z ∈ Rm,

j0(z1; z2 − z1) + j0(z2; z1 − z2) ≤ α j‖z1 − z2‖2Rm , z1, z2 ∈ Rm.

(A3) f ∈ H∗.
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(A4) Denote by cΓ an upper bound of the norm of the operator γ j. There holds

‖γ j v‖L2(Γ ;Rm) ≤ cΓ ‖v‖H , v ∈ H.

Theorem 2.1 (cf. Han et al. [16]). If α jc
2
Γ
< mA and the conditions (A1)-(A4) hold, then

Problem 2.1 has a unique solution for any f ∈ H∗.

Now we assume that A∈ L (H, H∗) is symmetric — i.e.

〈Av1, v2〉= 〈Av2, v1〉, v1, v2 ∈ H

and consider the following minimization problem.

Problem 2.2. Find u ∈ H such that

u = arg min
v∈H

E(v), (2.2)

where

E(v) =
1

2
〈Av, v〉+
∫

Γ

j(γ j v)ds− 〈 f , v〉, v ∈ H.

Theorem 2.2 (cf. Han [14]). If A ∈ L (H, H∗) is a symmetric matrix, α jc
2
Γ
< mA, and

conditions (A1)-(A4) hold, then Problem 2.2 is equivalent to Problem 2.1.

Note that the functional E(v) in (2.2) is reformulated from (2.1) based on the varia-

tional principle. Hence, it has clear physical meaning in mechanics.

2.2. Applications in contact mechanics

Let Ω ⊂ R2 be the reference configuration of a linear elastic body. We assume that

Ω is an open bounded connected domain with Lipschitz continuous boundary Γ = ∂Ω.

The boundary consists of three disjoint measurable parts — viz. ΓD, ΓT , and ΓC such that

meas(ΓD)> 0 and meas(ΓC )> 0. Let · and | · | be, respectively, the canonical inner product

and the induced norm. For a vector field v on Γ , we use vn = v ·n for its normal component

and vτ = v−vnn for its tangential component, where n is the unit outward normal vector to

Γ . The linearized strain tensor associated with a displacement field u : Ω→ R2 is denoted

by ǫ(u) and the stress field is denoted by σ : Ω→ S2, where S2 is the space of second order

symmetric tensors. In addition, we assume a volume force of density f 0 ∈ L2(Ω,R2) acting

in Ω. Besides, the body is assumed to be fixed on ΓD, is subject to an action of the surface

traction of density f 2 ∈ L2(ΓT ,R2) on ΓT , and is in contact on ΓC . The spatial variable x is

usually dropped when it causes no confusion.

Consider the space

V :=
�

v ∈ H1
�

Ω;R2
�

| v = 0 a.e. on ΓD
	

,
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with the inner product

(u , v)V =

∫

Ω

ǫ(u) · ǫ(v)dx , u, v ∈ V,

and the associated norm ‖v‖V =
p

(v , v)V . It is known that V is a Hilbert space [4]. We

also consider the Hilbert space Q = L2(Ω;S2) with the inner product

(σ,τ)Q =

∫

Ω

σi j(x )τi j(x )dx .

Here and in what follows we use the Einstein summation convention — i.e. summation

implied on repeated indices.

Let us now introduce an HVI for the frictional bilateral contact problem — cf. [11,16].

Set

V1 :=
�

v ∈ V | v n = 0 on ΓC
	

,

and define

〈Au, v〉 =
�

F (ǫ(u)),ǫ(v)
�

Q
.

Besides, we consider mappings γ jτ
: V1→ L2(ΓC ;R2) such that γ jτ

(v) = vτ and

∫

Γ

j0(γ ju;γ j v)ds =

∫

ΓC

j0τ(γ jτ
u;γ jτ

v)ds,

〈 f , v〉 =
∫

Ω

f 0 · v dx +

∫

ΓT

f 2 · v ds, v ∈ V.

We note that F = (Fi jkl)1≤i, j,k,l≤2 : Ω × S2 → S2 is a symmetric bounded linear elasticity

operator, which satisfies the following inequality:

F (σ) ·σ ≥ mF |σ|2, mF > 0, σ ∈ S2, (2.3)

cf. [14]. Moreover, jτ : ΓC ×R2 → R is locally Lipschitz on R2 for a.e. x ∈ ΓC and satisfies

the assumption (A2) with constants c0, c1 and α jτ
[11,16].

The frictional bilateral contact problem can be written in the following HVI form:

�

F (ǫ(u)),ǫ(v)
�

Q
+

∫

ΓC

j0τ(uτ; vτ)ds ≥ 〈 f , v〉, v ∈ V1. (2.4)

Let u ∈ V1 and λ1 be the smallest positive eigenvalue of the eigenvalue problem

∫

Ω

ǫ(u) · ǫ(v)dx = λ1

∫

ΓC

uτ · vτ ds, v ∈ V1.

Then the condition (A4) is satisfied if cΓ ≥
p

1/λ1.
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The assumption (A1) is satisfied with mA = mF . If α jτ
< λ1mF , then Theorems 2.1

and 2.2 yield that (2.4) has a unique solution and is equivalent to the optimization problem

u = arg min
v∈V1

E(v), (2.5)

where

E(v) =
1

2

�

F (ǫ(v)),ǫ(v)
�

Q
+

∫

ΓC

jτ(vτ)ds − 〈 f , v〉.

Next, we introduce an HVI to describe the frictionless normal compliance contact prob-

lem — cf. [11, 16]. The frictionless normal compliance contact problem is defined similar

to the above considerations, where vτ is replaced by v n and γ jτ
: V1 → L2(ΓC ;R2) by

γ jn
: V → L2(ΓC), respectively. Therefore, the frictionless normal compliance contact prob-

lem reads
�

F (ǫ(u)),ǫ(v)
�

Q
+

∫

ΓC

j0
n
(un; v n)ds ≥ 〈 f , v〉, v ∈ V. (2.6)

Similarly, following Theorems 2.1 and 2.2, the problem (2.6) has a unique solution and is

equivalent to the following optimization problem:

u = arg min
v∈V

E(v), (2.7)

where

E(v) =
1

2

�

F (ǫ(v)),ǫ(v)
�

Q
+

∫

ΓC

jn(v n)ds− 〈 f , v〉.

3. Deep Learning Method for HVIs

3.1. The deep learning method

The main idea of deep learning-based HVIs solvers is to treat DNNs as an efficient

parametrization of the solution space of an HVI. The HVI solution is identified via seeking

a DNNφ(x ,θ )with input x and a parameter θ that minimizes the variational minimization

problem related to the HVI. From the discussion in Section 2, we know that Problem 2.1 is

equivalent to Problem 2.2. This motivates the following problem.

Problem 3.1. Find θ ∗ such that

θ ∗ = arg min
θ

E
�

φ(x ;θ )
�

, (3.1)

where

E
�

φ(x ;θ )
�

=
1

2




Aφ(x ;θ ),φ(x ;θ )
�

+

∫

Γ

j
�

γ jφ(x ;θ )
�

ds−



f ,φ(x ;θ )
�

. (3.2)
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In contact mechanics, the first and the third terms on the right-hand side of (3.2) usually

can be formulated as integrals. Then the objective function in (3.2) can be viewed as a sum

of expectations of several random variables, which can be solved by stochastic gradient

descent methods (cf. [3]) or its variants. We refer to Subsection 3.2 for details along this

line.

In this paper, we use the residual neural network (ResNet) proposed in [19] to approx-

imate the solution of the HVI introduced in Section 2. Mathematically, the ResNet can be

formulated as follows:

h0 = Vx , g ℓ = σ(W ℓhℓ−1 + bℓ),

hℓ = hℓ−1 +Uℓg ℓ, ℓ= 1,2, . . . , L,

φ(x ;θ ) = aT hL,

where V ∈ RN0×d , W ℓ ∈ RNℓ×N0 , Uℓ ∈ RN0×Nℓ, bℓ ∈ RNℓ for ℓ = 1, . . . , L, a ∈ RN0×m. σ(x)

is a non-linear activation function. For the purpose of simplicity, we consider N0 = Nℓ = N

and Uℓ is set as the identity matrix. Here, L is the depth of the ResNet, and N is the width

of the network, and θ = {V , a, W ℓ, bℓ : 1 ≤ ℓ ≤ L} denotes the set of all parameters in φ,

which uniquely determines the neural network.

We also use locally adaptive activation functions [23] to accelerate the training. In this

framework, the neural network can be described as:

h0 = Vx , g ℓ = σ
�

naℓ ∗ (W ℓhℓ−1 + bℓ)
�

,

hℓ = hℓ−1 + g ℓ, ℓ = 1,2, . . . , L, φ(x ;θ ) = aT hL,

where n and aℓ ∈ RN for ℓ = 1, . . . , L are the parameters for adaptive activation function,

which change the slope of activation functions, and “∗” stands for the Hadamard product.

Notice that the factor n is fixed, so the set of all parameters is θ = {V, a, W ℓ, bℓ, aℓ : 1 ≤
ℓ≤ L}.

In order to update the parameters of the networks, we use the following training algo-

rithm.

Algorithm 3.1 Training Algorithm.

Require: The desired HVI.

Ensure: The parameter set θ in the solution ResNet φ(x ;θ ).

Set Epoch as the total iteration number, and assign N , NΓ as the sample sizes in the

domain Ω, the boundary Γ , respectively, the accelerate factor n if we need.

Initialize φ(x ;θ ) following the default random initialization of PyTorch.

for k = 1, . . . , Epoch do

Generate uniformly distributed samples {x i}Ni=1
⊂ Ω, {x i}NΓi=1

⊂ Γ .
Evaluate the loss function (3.2) at the generated samples.

Use suitable optimizer to update the parameters θ .

end for
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3.2. The algorithm description of deep learning methods for contact problems

Considerations in Section 2 show that the frictional bilateral contact problem (2.4) and

the frictionless normal compliance contact problem (2.6) are equivalent to optimization

problems (2.5) and (2.7), respectively. In order to numerically solve these problems by

deep learning method, we first have to parameterize the solution space of HVIs according

to the approach of Section 3.1. Note that the frictional bilateral contact problem (2.5) has

the solution space V1 and the frictionless normal compliance contact problem (2.7) has

the solution space V . In order to handle the constraints in the admissible spaces V1 or

V , one can employ a penalty method which penalizes the loss function with extra terms

to enforce these constraints. However, the tuning of the penalty method parameters can

be very inefficient in practice. Another strategy is to construct neural network functions

satisfying essential boundary conditions — e.g.

φ(x ;θ ) = b(x ) ∗ψ(x ;θ ),

where ∗ refers to the Hadamard product, b(x ) is a known smooth vector-valued func-

tion such that φ = 0 on the Dirichlet boundary ΓD and φn = 0 on the contact bound-

ary ΓC for the frictional bilateral contact problem, or φ = 0 on the Dirichlet boundary ΓD
for the frictionless normal compliance contact problem; ψ(x ;θ ) is an arbitrary DNN in

{ψ(x ;θ )}θ ≈ H1(Ω;R2). Such a method is not always feasible for general problems in

complex (non-regular) domains, and here we only consider contact problems in a cube.

In this case, we can determine the function b(x ). For more details about deep learning

methods for variational problems with essential boundary conditions the reader can con-

sult [22,31] and references therein.

Constructing neural network functions which exactly satisfy the essential boundary con-

ditions, we write (3.1) as follows:

θ ∗ = arg min
θ

E
�

b(x ) ∗ψ(x ;θ )
�

, (3.3)

and uDL(x ;θ ∗) = b(x ) ∗ψ(x ;θ ∗) is the approximate solution to the targeted HVI.

Next, we consider specific functions E(b ∗ψ) in (3.3) for the frictional bilateral contact

problem (2.5) and the frictionless normal compliance contact problem (2.7). In particular,

for the frictional bilateral contact problem (2.5) we set

E
�

b(x ) ∗ψ(x ;θ )
�

=
1

2

�

F

�

ǫ
�

b(x ) ∗ψ(x ;θ )
��

,ǫ
�

b(x ) ∗ψ(x ;θ )
�

�

Q

+

∫

ΓC

jτ
�

(b ∗ψ)τ(x ;θ )
�

ds−



f , b(x ) ∗ψ(x ;θ )
�

= |Ω|Eξ1

�

1

2
F

�

ǫ
�

b(ξ1) ∗ψ(ξ1;θ )
��

i j
ǫ
�

b(ξ1) ∗ψ(ξ1;θ )
�

i j

− f 0(ξ1) ·
�

b(ξ1) ∗ψ(ξ1;θ )
�

�
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− |ΓT |Eξ2

�

f 2(ξ2) ·
�

b(ξ2) ∗ψ(ξ2;θ )
��

+ |ΓC |Eξ3

�

jτ
�

(b ∗ψ)τ(ξ3;θ )
��

(3.4)

with random vectors ξ1, ξ2, and ξ3 of uniform distribution over Ω, ΓT , and ΓC , respectively.

In practice, the minimization problem (3.3) is usually solved by the Adam method by ran-

domly sampling the loss function [27]. At each iteration of the optimization algorithm, the

stochastic loss function

Ê
�

b(x ) ∗ψ(x ;θ )
�

=
|Ω|
N

N
∑

l=1

�

1

2
F

�

ǫ
�

b(ξl) ∗ψ(ξl ;θ )
��

i j
ǫ
�

b(ξl) ∗ψ(ξl ;θ )
�

i j
− f 0(ξl) ·
�

b(ξl) ∗ψ(ξl ;θ )
�

�

− |ΓT |
NT

NT∑

l=1

�

f 2(ηl) ·
�

b(ηl) ∗ψ(ηl ;θ )
��

+
|ΓC |
NT

NC∑

l=1

�

jτ
�

(b ∗ψ)τ(ζl ;θ )
��

(3.5)

is minimized instead of the original loss function in (3.4). Note that {ξl}Nl=1
, {ηl}

NT

l=1
, and

{ζl}
NC

l=1
are independent random vectors with uniform distributions over Ω, ΓT , and ΓC ,

respectively.

The form E(b(x ) ∗ψ(x ;θ )) and the stochastic loss function for the frictionless normal

compliance contact problem is defined similar to the frictional bilateral contact problem,

but jτ((b ∗ψ)τ) is replaced by jn((b ∗ψ)n).

4. Numerical Experiments

In this section, we demonstrate the performance of the deep learning method for contact

problems under consideration. Numerical comparisons of the deep learning method and

the virtual element method (VEM) are provided. Besides, we investigate the numerical

performance in terms of fixed and adaptive activation function.

In all numerical experiments, we employ ResNet φ(x ;θ ) introduced in Section 3 as the

solution ansatz to HVIs. In the network, the depth of φ is set to L = 8 and the width to

N = 50. Therefore, the total number of parameters inφ(x ;θ )with fixed activation function

is 18050, and the total number of parameters in φ(x ;θ ) with local adaptive activation

function is 18450. Note that one often uses tanh as the activation function. All numerical

experiments are implemented in Python 3.7 using Pytorch 1.3 in an Nvidia Geforce RTX

2080 Ti GPU card. The code can be shared upon request.

Before reporting the numerical results, let us summarize notations used in this section.

We write uDL = (uDL
1 ,uDL

2 )
T for the approximate solution estimated by the deep learning

method. Suppose Th is a uniform triangulation of Ω into K and h =diam(K). Since the

true solution is unavailable, for the bilateral contact problem, we use u re f as the reference

solution evaluated by VEM with h= 2−7 [11]. Analogously, for the frictionless contact with

normal compliance problem, we take u re f as the reference solution evaluated by VEM with

h = 2−9 [11]. Denote the relative difference between the deep learning solution and the
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reference solution by

Er =



uDL − u re f




E

‖u re f ‖E
,

where ‖ · ‖E is the energy norm

‖v‖E :=
1p
2

�

F (ǫ(v)),ǫ(v)
� 1

2

Q
.

4.1. Bilateral contact problem

Consider the bilateral contact problem (2.4). The domain Ω = (0,4) × (0,4) is the

cross section of a three-dimensional linearly elastic body and the plane stress condition

is imposed. The body is clamped on ΓD = {4} × (0,4) and the vertical traction acts on

ΓT = ({0} × (0,4)) ∪ ((0,4)× {4}). The frictional contact happens on the boundary ΓC =

(0,4)× {0}, and the linear elasticity tensor F has the form

(Fǫ)i j =
Eκ

(1− κ2)
(ǫ11 + ǫ22)δi j +

E

1+ κ
ǫi j, 1≤ i, j ≤ 2,

where E is the Young modulus, κ the Poisson ratio of the material, and δi j the Kronecker

symbol. In numerical simulations, we use the following data:

E = 2000 daN/mm2, κ= 0.4,

f 0(x , y) = (0,0)T daN/mm2 in Ω,

f 2(x , y) =

¨

(200(5− y),−200)T daN/mm2 on {0} × (0,4),

(0,0)T daN/mm2 on (0,4)× {4},

jτ(z) =

∫ ‖z‖

0

�

450e−2000t + 450
�

dt, z = (x , y).

The HVI(2.4) is approximated by the ResNet φ(x ;θ ) with the fixed activation function

tanh(x) and locally adaptive activation function (LAA) tanh(nax). The parameter n = 3

is fixed and the adjustable adaptive parameter a is initialized by 1. These neural networks

are trained by the Adam optimizer [27] with default initial learning rate η = 0.001. In

optimization, the learning rate is adjusted in an exponentially decaying scheme with de-

caying rate 0.011/50000. The domain has batch size 4096 and on each boundary there are

1024 training data. Then we discuss the numerical performance of different neural network

structures.

Fig. 1 shows the change of the loss function during the iterations. We note that in early

iterations the fixed activation function has a faster convergence rate than the local adaptive

activation one. Fig. 2 (left and middle) displays the numerical solution to the above problem

obtained by ResNet with locally adaptive activation after 50.000 epochs. For the contact

boundary, the results obtained by deep learning method and VEM are presented in Fig. 2
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Figure 1: Changes of loss function during iterations.

(right). We note that for fine mesh, the deep learning method has numerical accuracy

similar to VEM.

Aiming to quantify the accuracy of deep learning methods and to compare the efficiency

of different networks, we evaluate the relative error between numerical and reference so-

lutions. In Table 1, we list the mean value and standard deviation of relative errors for all

approaches. It is worth noting that relative errors are reduced to 3% by all deep learning

methods. In particular, the use of the local adaptive activation function instead of the fixed

activation one improves accuracy by 32%.

Table 1: The relative error of different activation functions for the bilateral contact problem.

Algorithm ResNet-Adam LAA-ResNet-Adam

Er 0.0295± 0.15% 0.0200± 0.36%

Figure 2: The numerical solution in the domain (left and middle) and on the contact boundary (right).

Remark 4.1. Since for this problem the function jτ(z) in the contact condition has a good

regularity, we also use the L-BFGS method [32] to train the network with fixed activation

function. After about 150s (GPU time), we get an approximation with the relative error
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0.0536± 0.89%. That means the L-BFGS method is very efficient in solving this problem.

However, it exhibits different behaviour in the second example.

4.2. Frictionless normal compliance contact problem

Consider the frictionless normal compliance contact problem (2.6). The domain Ω =

(0,1)× (0,1) is the cross section of a three-dimensional linearly elastic body and the plane

stress condition is imposed. The body is clamped on ΓD = ({0} × (0,1)) ∪ ({1} × (0,1))

and the vertical traction acts on ΓT = (0,1)× {1}. The frictional contact happens on the

boundary ΓC = (0,1)× {0}, and the linear elasticity tensor F has the form

(Fǫ)i j =
Eκ

(1+ κ)(1− 2κ)
(ǫ11 + ǫ22)δi j +

E

1+ κ
ǫi j, 1≤ i, j ≤ 2,

where E is the Young modulus, κ the Poisson ratio of the material, and δi j the Kronecker

symbol. In numerical simulations, we use the following data:

E = 70 GPa, κ= 0.3,

f 0(x , y) = (0,0)T GPa in Ω,

f 2(x , y) = (0,−52)T GPa on ΓT ,

jn(un) =













0, un ≤ 0,

50u2
n + 0.1un, un ∈ (0,0.1],

20.1un − 50u2
n− 1, un ∈ (0.1,0.15),

200u2
n− 54.9un + 4.625, un ≥ 0.15.

Similar to the bilateral contact problem, we solve (2.6) by using different activation func-

tions. The parameters for training algorithms and local adaptive activation functions (LAA)

are the same as in Section 4.1. In this problem, the domain has the batch size 1024 and

there are 256 training data on each boundary. Fig. 3 shows the change of the loss function

Figure 3: The changes of loss function with iterations.
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Figure 4: Numerical solution. Top: In the domain. Bottom: On contact boundary.

during iterations. It suggests that the deep learning method related to a fixed activation

function or a local adaptive activation function converges.

Fig. 4 (top) displays the numerical solution to the above problem obtained by ResNet

with locally adaptive activation after 50,000 epochs. Besides, Fig. 4 (bottom) suggests that

for fine mesh on the contact boundary, the deep learning method has numerical accuracy

similar to VEM.

Analogously, evaluating the relative error between the deep learning method and the

reference solution for different networks — cf. Table 2, we note that the relative errors

are reduced to nearly 3% by the Adam method. In particular, the use of the local adaptive

activation function instead of the fixed activation one can improve the accuracy by 9%.

Table 2: The relative error of different activation functions for the frictionless normal compliance contact
problem.

Algorithm ResNet-Adam LAA-ResNet-Adam

Er 0.0343± 0.26% 0.0312± 0.75%

5. Conclusion

We develop a deep learning method for solving HVIs based on their variational formula-

tions. The solution space is parameterized via DNNs. After that, the HVI is reformulated as

an expectation minimization problem, which allows to apply the stochastic gradient descent

method or its variants — e.g. the Adam method. As applications to contact mechanics, we

consider a frictional bilateral contact problem and a frictionless normal compliance contact

problem. Numerical experiments show the following features of the method:
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1. For fine meshes, the deep learning method can approximate HVIs with accuracy sim-

ilar to VEM.

2. The local adaptive activation function increases about 2% parameters, but it improves

the accuracy by 10%, at least.
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