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Abstract. The numerical simulations for the blood flow in arteries by high order accu-

rate schemes have a wide range of applications in medical engineering. The blood flow

model admits the steady state solutions, in which the flux gradient is non-zero and is

exactly balanced by the source term. In this paper, we present a high order finite vol-

ume weighted essentially non-oscillatory (WENO) scheme, which preserves the steady

state solutions and maintains genuine high order accuracy for general solutions. The

well-balanced property is obtained by a novel source term reformulation and discretisa-

tion, combined with well-balanced numerical fluxes. Extensive numerical experiments

are carried out to verify well-balanced property, high order accuracy, as well as good

resolution for smooth and discontinuous solutions.
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Key words: Blood flow model, finite volume scheme, WENO scheme, well-balanced property, high

order accuracy, source term.

1. Introduction

The numerical simulations for the blood flow in arteries by high order accurate schemes

have a wide range of applications in medical engineering [5,8]. The blood flow in arteries

can be described by the following one-dimensional blood flow model:

¨

At +Q x = 0,

Q t +
�

Q2

A +
K

3ρ
p
π

A
3
2

�

x
= KA

2ρ
p
π
p

A0

(A0)x ,
(1.1)

where A is the cross-sectional area (i.e., A = πR2 with R being the radius of the vessel),

Q = Au represents the discharge, u means the flow velocity, and ρ stands for the blood

density. In addition, K denotes the arterial stiffness, and A0 is the cross section at rest (i.e.,

A0 = πR2
0 with R0 being the radius of the vessel, which may be variable in the case of
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aneurism, stenosis or taper). In general, the original governing equations (1.1) take the

following form

Ut + F(U)x = S(A,A0), (1.2)

where U is the solution vector with the corresponding flux F(U), and S(A,A0) stands for

the source term.

The blood flow model (1.1) belongs to the class of hyperbolic equations with source

term (also referred as hyperbolic balance laws). The important property of this system is

that it usually admits non-trivial steady state solutions, also called mechanical equilibrium:

u= 0, A= A0, (1.3)

in which the source term is exactly balanced by the flux gradient. There is a main challenge

in the numerical simulation of such balance laws, i.e., the standard numerical schemes may

not satisfy the discrete version of this balance exactly at (or near) the steady state, and may

introduce spurious oscillations, when the mesh is not extremely refined. However, the

mesh refinement approach is not practical for the high dimensional problems. Therefore,

well-balanced schemes [6] are specially designed to preserve exactly these steady state

solutions up to the machine accuracy for the purpose of saving the computational cost. In

addition, the well-balanced schemes can capture small perturbations on relatively coarse

meshes [17]. We can refer to [11] for more information about the well-balanced schemes.

In the last few years, there have been many interesting attempts proposed in the lit-

erature to derive well-balanced schemes for the blood flow model. For instance, based on

the conservative governing equations [1,2,15] and the hydrostatic reconstruction, Delestre

and Lagrée [3] presented a well-balanced finite volume scheme for the blood flow model.

Recently, Müller et al. [10] constructed a well-balanced high order finite volume scheme for

the blood flow in elastic vessels with varying mechanical properties. And Murillo et al. [9]

designed an energy-balanced approximate solver for the blood flow model with upwind

discretisation for the source term. More recently, Wang et al. [16] have presented a high

order well-balanced finite difference weighted essentially non-oscillatory (WENO) scheme.

During the past few decades, high order finite volume WENO schemes have gained great

attentions in solving hyperbolic conservation laws [12]. Several advantages of the WENO

schemes, including its accuracy and essentially non-oscillatory property, make it useful for

a wide range of applications.

The main objective of this paper is to present a high order accurate finite volume well-

balanced WENO scheme for the blood flow model in arteries. To achieve the well-balanced

property, we firstly reformulate the source terms in an equivalent form by using the steady

state (1.3). Then, we apply well-balanced numerical fluxes accordingly.

In Section 2, we present a novel high order well-balanced finite volume WENO scheme.

Section 3 contains extensive numerical results to demonstrate the behavior of our well-

balanced WENO scheme for the blood flow model, verifying high order accuracy, the well-

balanced property, and good resolution for smooth and discontinuous solutions. Some

conclusions are given in Section 4.
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2. Well-Balanced WENO Scheme

In this section, we design a high order accurate well-balanced finite volume WENO

scheme for the blood flow model satisfying the steady state solutions (1.3).

2.1. Notations and WENO reconstruction

We firstly introduce some notations and the standard WENO reconstruction which will

be applied later. In one space dimension, the computational domain is divided into cells

I j = [x j− 1
2
, x j+ 1

2
] with ∆x = x j+ 1

2
− x j− 1

2
being the mesh size. The usual notation {u} =

(u++u−)/2 is used to represent the arithmetic average of the function u at the cell interfaces.

Under the framework of the finite volume schemes for the hyperbolic balance laws (1.2),

our computational variables are U j(t), which approximate the cell averages U(x j, t) =
1
∆x

∫

I j
U(x , t)dx . The conservative finite volume WENO scheme for the hyperbolic balance

laws can be given by

d

dt
U j(t) +

1

∆x

�

bF j+ 1
2
− bF j− 1

2

�

=
1

∆x

∫

I j

Sdx , (2.1)

with bF j+ 1
2
= f (U−

j+ 1
2

, U+
j+ 1

2

) being the numerical flux. The simplest numerical flux is the

well-known Lax-Friedrichs flux

f (a, b) =
1

2

�

F(a) + F(b)−α(b− a)
�

, (2.2)

where α=maxx |λ(U)| with λ(U) being the eigenvalues of the Jacobian matrix F ′(U), and

the maximum is taken over the whole region. U−
j+ 1

2

and U+
j+ 1

2

are the high order pointwise

approximations to U(x j+ 1
2
, t) on left and right of the cell interface x j+ 1

2
respectively. They

are computed through the neighboring cell average values by a high order WENO recon-

struction procedure. Basically, for a (2k−1)-th order WENO scheme, we firstly compute k

reconstructed boundary values U
(k),±

j+ 1
2

corresponding to different candidate stencils. Then

by providing each value a nonlinear weight which indicates the smoothness of the corre-

sponding stencil, we define the (2k − 1)-th order WENO reconstruction U±
j+ 1

2

as a convex

combination of all these k reconstructed values. Eventually, the WENO reconstruction can

be written out as:

U−
j+ 1

2

=

k−1
∑

r=−k+1

wr U j+r , U+
j+ 1

2

=

k
∑

r=−k+2

ewr U j+r (2.3)

the coefficients wr and ewr depend nonlinearly on the smoothness indicators involving the

cell averages U . For hyperbolic systems of conservation laws, we usually apply the local

characteristic decomposition procedure, which is more robust than a component by com-

ponent version. The complete algorithm can be found in [7,12].
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2.2. Reformulation of the equations

Firstly, in order to achieve the well-balanced property, we split the source term into

two terms, i.e., KA

2ρ
p
π
p

A0

(A0)x =
K

ρ
p
π
(A−A0)(
p

A0)x +
K

3ρ
p
π
(A

3
2

0
)x . Therefore, the original

system (1.1) can be rewritten as
(

At +Q x = 0,

Q t +
�

Q2

A +
K

3ρ
p
π

A
3
2

�

x
= K

ρ
p
π
(A− A0)(
p

A0)x +
K

3ρ
p
π

�

A
3
2

0

�

x
,

(2.4)

which can also be denoted in a compact vector form

Ut + F(U)x = S,

where U = (A, Q)T , F(U) = (Q,
Q2

A +
K

3ρ
p
π

A
3
2 )T , S = (0, K

ρ
p
π
(A−A0)(
p

A0)x+
K

3ρ
p
π
(A

3
2

0
)x )

T ,

with the superscript T denoting the transpose.

2.3. Novel source term approximation

For the approximation of the source term S[2] in the second equation, we can decompose

its integral as

1

∆x

∫

I j

S[2]dx =
1

∆x

K

ρ
p
π

∫

I j
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�p
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1
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2

�

.

(2.5)

Then we take the following numerical approximation

1

∆x

∫

I j

S[2]dx ≈
1

∆x

K

ρ
p
π
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(2.6)

where (A
3
2

0
) j± 1

2
is replaced by {A

3
2

0
} j± 1

2
= 1

2 ((A
3
2

0
)+

j± 1
2

+ (A
3
2

0
)−

j± 1
2

), and the integration in the

first term on the right hand side can be obtained by the standard Gaussian quadrature rule.

2.4. Well-balanced numerical fluxes

Finally, we modify the numerical flux bF j+ 1
2

to design a well-balanced WENO scheme.

The term α(b − a) in the Lax-Friedrichs flux (2.2) leads to the numerical viscosity term,

which is essential for this nonlinear hyperbolic conservation laws. However, the well-

balanced property of the resulting scheme will be destroyed by them at the steady state.

Therefore, we propose to modify the original numerical flux as follows

bF j+ 1
2
=

1

2

h

F

�

U+
j+ 1

2

�

+ F

�

U−
j+ 1

2

�

−α j

�

eU+
j+ 1

2

− eU−
j+ 1

2

�i

, (2.7)

with eU being given by
eU = (A− A0, Q)T ,
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which ensures that eU = constant and the effect of the viscosity terms eU+
j+ 1

2

− eU−
j+ 1

2

disap-

pears at the steady state. Therefore, the effect of these viscosity terms becomes zero and

the original numerical flux now reduces to a simple form

bF j+ 1
2
=

1

2

h

F

�

U+
j+ 1

2

�

+ F

�

U−
j+ 1

2

�i

. (2.8)

2.5. Well-balanced scheme

All of these together lead to a well-balanced finite volume WENO scheme for the blood

flow model in arteries, as outlined in the following proposition.

Proposition 2.1. For the blood flow model (1.1), the semi-discrete scheme (2.1), combined

with (2.6) and (2.7), are well-balanced for the steady state solutions (1.3).

Proof. At the steady state (1.3), we have

u= 0, A= A0.

It is obvious to conclude that the well-balanced property holds for the first equation, as both

the numerical flux and the source term approximation in these equations become zero. For

the second equation, the source term approximation becomes

1

∆x

∫

I j

S[2]dx ≈
1

∆x

K

3ρ
p
π

�
n

A
3
2

0

o

j+ 1
2

−
n

A
3
2

0

o

j− 1
2

�

. (2.9)

Since u = 0 leading to Q = Au = 0, so the flux term F [2] =
Q2

A +
K

3ρ
p
π

A
3
2 reduces to K

3ρ
p
π

A
3
2 ,

and its numerical approximation takes the following form:

1

∆x

�

bF
[2]

j+ 1
2

− bF [2]
j− 1

2

�

=
1

∆x

K

3ρ
p
π

�
¦

A
3
2

©

j+ 1
2

−
¦

A
3
2

©

j− 1
2

�

. (2.10)

From (2.9) and (2.10) and based on the fact that A = A0, we can conclude that the flux

and source term approximations balance each other, which indicates that our scheme can

preserve the well-balanced property. As a consequence, this finishes the proof.

For the temporal discretisation, high order total variation diminishing (TVD) Runge-

Kutta methods [13] can be taken into consideration. In the numerical section of this paper,

we apply the third order Runge-Kutta method:

U (1) =Un +∆tF (Un),

U (2) =
3

4
Un +

1

4

�

U (1) +∆tF (U (1))
�

,

Un+1 =
1

3
Un +

2

3

�

U (2) +∆tF (U (2))
�

, (2.11)

with F (U) being the spatial operator.
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Table 1: L1
errors and numerial orders of auray for the Setion 3.1.

A QN

L1 error Order L1 error Order

100 3.3556E-04 2.7724E-03

200 2.2322E-05 3.91 1.9630E-04 3.82

400 8.8296E-07 4.66 7.9830E-06 4.62

800 2.9166E-08 4.92 3.3609E-07 4.57

1600 8.8039E-10 5.05 1.0287E-08 5.03

3. Numerical Results

In this section, we carry out extensive numerical experiments to demonstrate the per-

formances of a fifth-order (k = 3) finite volume well-balanced WENO scheme. The CFL

number is taken as 0.6 for all the computations.

3.1. To test the order of accuracy

We apply this example to test the order of accuracy of the resulting scheme. We take

the following initial conditions:

A(x , 0) = sin2(πx), Q(x , 0) = sin(πx) + cos(πx) and A0(x) = cos2(πx),

on a computational domain [0,2] based on the following parameters: K = 1× 108 Pa/m,

ρ = 1060 kg/m3.

We impose this problem with periodic boundary conditions at the two endpoints. Then,

we solve this example up to t = 0.1 s and get reference solutions on a mesh with 2000 cells.

We present the errors and the order of accuracy in Table 1. As expected, we recover fifth

order errors.

3.2. The ideal tourniquet

This example is similar to the dam break problem for shallow water equations [4].

Herein, we consider the analogous problem in blood flow model: a tourniquet is applied

and we remove it instantaneously. And we deal with the following initial conditions

A(x , 0) =

¨

πR2

L
if x ≤ 0,

πR2

R
otherwise,

and Q(x , 0) = 0,

on a computational domain [−L, L] based on the following parameters: K = 1.×107 Pa/m,

ρ = 1060 kg/m3, R
L
= 5× 10−3 m, R

R
= 4× 10−3 m, L = 0.04 m.

We impose this problem with transmissive boundary conditions at the two endpoints.

Then, we solve this example on a mesh with 200 cells up to t = 0.005 s and present the

numerical solutions against the exact ones in Fig. 1. It is clear that the numerical results fit

well with the exact ones and keep steep discontinuity transitions at the same time.
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Fig. 1: The numerial solutions of the ideal tourniquet problem in Setion 3.2 on a mesh with 200 ells

at t = 0.005 s. Radius (left) and disharge (right).

3.3. Wave equation

Then, the following quasi-stationary test case has been proposed by Delestre and Lagrée

[3]. It is chosen to demonstrate the capability of the proposed scheme for computations on

the perturbation of steady state solutions.

With initial conditions R(x , 0) = Φ(x), u(x , 0) = 0, we obtain the following exact solu-

tions:
�

R(x , t) = R0 +
ε
2 [Φ(x − C0t) +Φ(x + C0t)] ,

u(x , t) = − ε2
C0

R0
[−Φ(x − C0t) +Φ(x + C0t)] ,

with the Moens Korteweg wave velocity

C0 =

√

√

√K
p

A0

2ρ
p
π
=

√

√KR0

2ρ
.

Herein, we apply the following initial data:

A(x , 0) =

¨

πR2
0 if x ∈

�

0, 40L
100

�

∪
�

60L
100 , L
�

,

πR2
0

�

1+ ε sin
�

π
x−40L/100

20L/100

��2
if x ∈
�

40L
100 , 60L

100

�

,

and Q(x , 0) = 0 on a computational domain [0, L]. The following parameters have been

used for this example: ε = 5 × 10−3, K = 108 Pa/m, ρ = 1060 kg/m3, R0 = 4 ×
10−3 mand L = 0.16 m.

We impose this problem with transmissive boundary conditions at the two endpoints.

Then, we show the numerical solutions on a mesh with 200 cells at t = 0.002 s, 0.004 s,

and 0.006 s against the exact solutions, respectively, in Fig. 2. The figures strongly suggest

that the numerical solutions agree well with the exact ones.
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Fig. 2: The numerial solutions of the wave equation problem in Setion 3.3 on a mesh with 200 ells.

Radius at time t = 0 s (upper left), t = 0.002 s (upper right), t = 0.004 s (lower left), and t = 0.006 s
(lower right), respetively.

3.4. The man at eternal rest

The purpose of this example is to verify that the proposed scheme indeed maintains

the well-balanced property. Herein, we consider a configuration with no flow and with a

change of radius R0(x), this is the case for a dead man with an aneurism. Therefore, for

the initial conditions, the section of the artery is not constant with the following form

R(x , 0) = R0(x) =













eR if x ∈ [0, x1]∪ [x4, L],

eR+ ∆R
2

�

sin
�

x−x1

x2−x1
π− π2
�

+ 1
�

if x ∈ [x1, x2],

eR+∆R if x ∈ [x2, x3],

eR+ ∆R
2

�

cos
�

x−x3

x4−x3
π
�

+ 1
�

if x ∈ [x3, x4],
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Table 2: L1
and L∞ errors for di�erent preisions for the man at eternal rest.

L1 error L∞ errorPrecision

A Q A Q

Single 3.32e-07 3.83e-07 3.57e-07 2.75e-07

Double 2.31e-16 4.18e-16 2.31e-15 3.44e-16

Quadruple 7.82e-31 4.64e-32 2.28e-33 3.44e-31

x [m]

V
el

oc
ity

[m
/s

]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008
exact
WB
non-WB

Fig. 3: The man at eternal rest problem in Setion 3.4 on a mesh with 200 ells at t = 5 s. The result of

the well-balaned (denoted by WB) sheme with 200 and 2000 ells, and that of the non-well-balaned

(denoted by non-WB) sheme with 200 ells.

on a computational domain [0, L] with eR = 4× 10−3 m,∆R = 10−3 m, K = 108 Pa/m, ρ =

1060 kg/m3, L = 0.14 m, x1 = 10−2 m, x2 = 3.05× 10−2 m, x3 = 4.95× 10−2 m and x4 =

7 × 10−2 m. In addition, the initial velocity is zero. We impose this problem with trans-

missive boundary conditions at the two endpoints. Then, we compute this example up to

t = 5 s.

In order to show that the well-balanced property is maintained up to machine round-off

error, tests are run using single, double and quadruple precisions, respectively. The L1 and

L∞ errors calculated for A and Q are presented in Table 2. It can be clearly seen that the

L1 and L∞ errors are all at the level of round-off error associated with different precisions,

which verify that the current scheme maintains the well-balanced property as expected.

In Fig. 3, we present the velocity at t = 5 s on a mesh with 200 cells against a reference

solution obtained with a much refined mesh with 2000 cells. In addition, we run the same

numerical test using the non-well-balanced WENO schemes, with a straightforward inte-

gration of the source term, and show their results in Fig. 3 for comparison. It is obvious

that the results of the well-balanced WENO scheme are in good agreement with the refer-

ence solutions for the case, while the non-well-balanced WENO scheme fails to capture the

small perturbation with 200 cells.
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3.5. Propagation of a pulse to an expansion

Firstly, we test the case of a pulse in a section R
R

passing through an expansion: AL > AR,

taking the following parameters: K = 1 × 108 Pa/m, L = 0.16 m,ρ = 1060 kg/m3, R
L
=

5 × 10−3 m, R
R
= 4 × 10−3 m, ∆R = 1 × 10−3 m. We take a decreasing shape on a rather

small scale:

R0(x) =







R
R
+∆R if x ∈ [0, x1],

R
R
+ ∆R

2

�

1+ cos
�

x−x1

x2−x1
π
��

if x ∈ [x1, x2],

R
R

else,

with x1 = 19L/40, x2 = L/2. As initial conditions, we consider a fluid at rest Q(x , 0) =

0 m3/s and the following perturbation of radius:

R(x , 0) =

�

R0(x)
�

1+ ε sin
�

100
20Lπ(x −

65L
100 )
��

if x ∈
�

65L
100 , 85L

100

�

,

R0(x) else,

with ε = 5.0× 10−3. And we impose this problem with transmissive boundary conditions

at the two endpoints.

We present the numerical results against the reference solutions at t = 0.002 s and

t = 0.006 s in Fig. 4. It is obvious that the numerical solutions are in good agreement with

the reference ones and are comparable with those in [3].

3.6. Propagation of a pulse from an expansion

Then, we consider a pulse propagating from an expansion. Therefore, the parameters

are the same as in the Section 3.5, only the initial radius is changed:

R(x , 0) =

�

R0(x)
�

1+ ε sin
�

100
20Lπ
�

x − 15L
100

���

if x ∈
�

15L
100 , 35L

100

�

,

R0(x) else,

with ε = 5.0× 10−3.

In Fig. 5, we demonstrate the numerical results against the reference solutions at t =

0.002 s and t = 0.006 s. Similarly, the numerical solutions fit well with the reference ones

and are comparable with those in [3].

3.7. Wave damping

In the last test part, we look at the viscous damping term in the linearized momentum

equation. This is an analogue of the Womersley [14] problem, and we consider a periodic

signal at the inflow with a constant section at rest. We consider the following model coupled

with a linear friction term

¨

At +Q x = 0,

Q t +
�

Q2

A +
K

3ρ
p
π

A
3
2

�

x
= KA

ρ
p
π
(
p

A0)x − C f
Q
A ,

(3.1)
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Fig. 4: The numerial solutions of the propagation of a pulse to an expansion in Setion 3.5 on a mesh

with 200 ells. The errors R− R0 at t = 0 s (upper), t = 0.002 s (lower left) and t = 0.006 s (lower

right).

where C f = 8πν with ν being the blood viscosity. We consider this example on a compu-

tational domain [0,3] subject to the given initial conditions

�

A(x , 0) = πR2
0,

Q(x , 0) = 0,

accompanied by the following parameters: K = 1 × 108 Pa/m, ρ = 1060 kg/m3, R0 =

4× 10−3 m. We solve this example up to t = 25 s.

Subsequently, we obtain a damping wave in the domain [3]

Q(t, x) =

�

0 if kr x >ωt,

Q
amp

sin(ωt − kr x)eki x if kr x ≤ωt,
(3.2)

OPEN ACCESS

DOI https://doi.org/10.4208/eajam.181016.300517f | Generated on 2024-12-27 03:04:49



Well-Balanced Scheme for a Blood Flow Model in Arteries 863

x [m]

R
-R

0
[m

]

0 0.04 0.08 0.12 0.16
-5E-06

0

5E-06

1E-05

1.5E-05

2E-05

2.5E-05
t=0

x [m]

R
-R

0
[m

]

0 0.04 0.08 0.12 0.16
-5E-06

0

5E-06

1E-05

1.5E-05

2E-05

nx=2000
nx=200

x [m]

R
-R

0
[m

]

0 0.04 0.08 0.12 0.16
-5E-06

0

5E-06

1E-05

1.5E-05

2E-05

nx=2000
nx=200

Fig. 5: The numerial solutions of the propagation of a pulse from an expansion in Setion 3.6 on a

mesh with 200 ells. The errors R − R0 at t = 0 s (upper), t = 0.002 s (lower left) and t = 0.006 s
(lower right).

with

kr =

�

ω4

c4
0

+

�

ωC f

πR2
0
c2
0

�2
� 1

4

cos

�

1

2
arctan

�

−
C f

πR2
0
ω

��

,

ki =

�

ω4

c4
0

+

�

ωC f

πR2
0
c2
0

�2
� 1

4

sin

�

1

2
arctan

�

−
C f

πR2
0
ω

��

,

ω= 2π/T
pulse
= 2π/0.5 s,

c0 =

√

√

√K
p

A0

2ρ
p
π
=

√

√KR0

2ρ
.
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Fig. 6: The numerial solutions of the wave damping problem in Setion 3.7 on a mesh with 200 ells

at t = 25 s. The damping of a disharge wave with C f = 0 (upper left), C f = 0.000022 (upper right),

C f = 0.000202 (lower left) and C f = 0.005053 (lower right). The frition term has been treated with the

expliit method.

For the boundary conditions, we impose the incoming discharge

Qb(t) = Q
amp

sin(ωt)m3/s,

at x = 0 m with Q
amp
= 3.45× 10−7 m3/s being the amplitude of the inflow discharge. As

the flow is subcritical, the discharge is imposed at the outflow boundary, thanks to (3.2) at

the right boundary x = 3 m.

We present the numerical results against the exact solutions at t = 25 s with different

C f in Fig. 6. The numerical solutions are in good agreement with the exact solutions and

are comparable with those in [3].
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4. Conclusions

In this paper, we present a high order well-balanced finite volume WENO scheme to

solve the blood flow model in arteries. A special splitting of the source term allows us

to construct specific approximations to the source term. With the help of well-balanced

numerical fluxes, the resulting WENO scheme maintains the well-balanced property for

steady state solutions, and at the same time keeps its original high order accuracy and

essentially non-oscillatory property for general solutions. Extensive numerical examples

are given to demonstrate the well-balanced property, high order accuracy, and steep shock

transitions of the proposed numerical scheme.
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