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Abstract

We consider stochastic semi-linear evolution equations which are driven by additive,

spatially correlated, Wiener noise, and in particular consider problems of heat equation

(analytic semigroup) and damped-driven wave equations (bounded semigroup) type. We

discretize these equations by means of a spectral Galerkin projection, and we study the

approximation of the probability distribution of the trajectories: test functions are regular,

but depend on the values of the process on the interval [0, T ].

We introduce a new approach in the context of quantative weak error analysis for

discretization of SPDEs. The weak error is formulated using a deterministic function

(Itô map) of the stochastic convolution found when the nonlinear term is dropped. The

regularity properties of the Itô map are exploited, and in particular second-order Taylor

expansions employed, to transfer the error from spectral approximation of the stochastic

convolution into the weak error of interest.

We prove that the weak rate of convergence is twice the strong rate of convergence in

two situations. First, we assume that the covariance operator commutes with the generator

of the semigroup: the first order term in the weak error expansion cancels out thanks to

an independence property. Second, we remove the commuting assumption, and extend the

previous result, thanks to the analysis of a new error term depending on a commutator.

Mathematics subject classification: 60H15, 65C30.

Key words: Stochastic Partial Differential Equations, Weak approximation, Spectral Galerkin
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1. Introduction

The numerical analysis of stochastic differential equations (SDEs), in both the weak and

strong senses, has been an active area of research over the last three decades [15, 21]. The

analysis of numerical methods for stochastic partial differential equations (SPDEs) has attracted

a lot of attention and in recent years a number of texts have appeared in this field; see for

instance the recent monographs [13, 18, 19]. The aim of this article is to give a simple argument
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allowing to relate the weak order to the strong order of convergence on the space of trajectories

for a class of spatial approximations to SPDEs.

We focus on the following class of semilinear SPDEs, written using the stochastic evolution

equations framework in Hilbert spaces, from [6]:

dX(t) = AX(t)dt+ F (X(t)) dt+ dWQ(t), X(0) = x0. (1.1)

The semi-linear equation (1.1) is driven by an additive Wiener process WQ, where Q is a

covariance operator. The following parabolic, resp. hyperbolic, SPDEs can be written as (1.1),

with appropriate definitions of the coefficients A, F and Q in terms of A, F and Q:

• the semi-linear stochastic heat equation (parabolic case), with X = u,

du(t) = Au(t)dt+ F (u(t)) dt+ dWQ(t), u(0) = u0; (1.2)

• the damped-driven semi-linear wave equation (hyperbolic case), with X = (u, v)
{

du(t) = v(t)dt

dv(t) = −γv(t)dt+Au(t)dt+ F (u(t))dt+ dWQ(t).
(1.3)

These two equations will be the focus of our work. Notation and assumptions on the coefficients

are precised in Section 2 below. For simplicity, in this introductory section, we assume that

F : H → H is of class C2.

The solution X of (1.1) (well-posed under assumptions given below) is a continuous-time

stochastic process taking values in a separable, infinite-dimensional Hilbert space, which we

denote by H . As for deterministic PDE problems, two kinds of discretizations are required in

order to build practical algorithms: a time-discretization, which in the stochastic context is

often a variant of the Euler-Maruyama method, and a space-discretization, which is based on

finite differences, finite elements or spectral approximation. In this article, we only study the

space-discretization error (no time-discretization), using a spectral Galerkin projection, i.e. by

projecting the equation on vector spaces spanned by N eigenvectors of the linear operator A.

Precisely, X is approximated by the solution XN of an equation of the form

dXN (t) = ANXN (t)dt+ FN (XN (t)) dt+ dWQN (t), (1.4)

where the coefficients AN , FN , QN and the initial condition XN (0) are defined using the

orthogonal projection PN ∈ L(H) onto the N -dimensional vector space spanned by e1, . . . , eN ,

where Aen = −λnen, for all n ∈ N, with λn+1 ≥ λn ≥ λ1 > 0.

When looking at rates of convergence for the discretization of SPDEs, the metric one uses to

compare random variables plays an important role. Let Z, resp. (Zn)n∈{1,2,...}, denote a random

variable, respectively a sequence of random variables, defined on a probability space (Ω,FΩ,P),

with values in a Polish space E (separable and complete metric space, with distance denoted

by dE). Strong approximation is a pathwise concept, typically defined through convergence in

the mean-square sense of Zn to Z, i.e. the convergence of the strong error

estrongn =
(

EdE(Z,Zn)
2
)1/2

,

or in an almost sure sense; see [15] for details. Weak approximation corresponds to convergence

in distribution of Zn to Z, which is often encoded in a weak error of the type

eweak
n = sup

ϕ∈C
|Eϕ(Z)− Eϕ(Zn)|,
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for some class C of sufficiently regular test functions ϕ : E → R. If functions in C are uniformly

Lipschitz continuous, it follows that

eweak
n = O(estrongn ).

The problem we address in our situation is to show (and quantify) that

eweak
n = o(estrongn ).

In many situations, it is known that the weak order of convergence is twice the strong order.

We establish, for spectral approximation of SPDEs, situations where the weak order exceeds

the strong order and where it is, in some cases, precisely twice the strong order.

As the references below will substantiate, the “weak twice strong” type of result has been

proved when E = H and Z = X(T ) for SPDE (1.1), with sufficiently regular test functions, i.e.

looking at the processes at a given deterministic time T ∈ (0,+∞), and a variety of approxi-

mation methods. In this article, we focus on a more difficult problem: the weak approximation

in the separable Banach space E = C
(

[0, T ], H
)

, referred to as the space of trajectories. In

other words, we consider Z =
(

X(t)
)

t∈[0,T ]
. The class C of test functions is taken as a bounded

subset of C2
b (E,R), the Banach space of functions ϕ : E → R which are bounded, and admit

first and second-order bounded and continuous derivatives.

We now review the literature on weak approximation of SPDEs driven by Wiener noise.

Our aim is not to give an exhaustive list of references, but to focus on three approaches which

have been studied in the case of semilinear SPDEs, with low spatial regularity of the noise

perturbation. In a first approach, one relies on a representation formula for the weak error,

using the solution of a deterministic evolution PDE (Kolmogorov equation), depending on anH-

valued variable. This approach is a generalization of the well-known method used to study the

weak error of time-discretization schemes of SDEs, i.e. finite dimensional diffusion processes;

see, e.g., [10, 21] and references therein. For linear equations perturbed with additive-noise, see

[8, 9, 16, 17]. These works however use a specific change of variables, and this trick does not

seem to work for semilinear equations. A related approach using Malliavin calculus techniques

to prove (when the noise has low spatial regularity) that the weak order is twice the strong

order is available, see [7] for the original arguments, and [3, 4, 26] for some extensions, and [11,

25] for related works. In a second approach, considered in [5, 12, 14], one expands the weak

error using a mild Itô formula. This technique allows to improve the results obtained with the

first approach, for SPDEs driven by multiplicative noise. Finally, in a third approach, described

in [1, 2] for example, one estimates the weak error using a duality argument.

These approaches do not seem to apply to the weak approximation problem in the space

of trajectories. Instead, we adopt an approach used in [20, 23, 24] (see also the references

therein) to prove diffusion limits for MCMC methods. The idea goes as follows: write WA,Q

for the stochastic convolution, i.e. the solution of the SPDE (1.1) when F = 0 and build a map

Θ : C
(

[0, T ], H
)

→ C
(

[0, T ], H
)

so that the corresponding solution X to the full SPDE is given

by X = Θ(WA,Q). The key point is that one can then find an error term RN (which encodes

the error due to the approximation of the initial condition and of the semilinear coefficient) so

that the solution XN to the approximate equation can be written as

XN = Θ(WAN ,QN +RN ) ,

where Θ is the exact same map as above. To simplify the discussion, in the present section, we

do not discuss the role of the error term RN : indeed, it usually converges faster to 0 than the
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contribution due to the approximation of the stochastic convolution. We note two differences

with [23]. First, we express the process of interest X in terms of the stochastic convolution

WA,Q, not in terms of the Wiener process WQ; this proof approach is related to the structure

of the SPDEs we are interested in. Second, we derive rates of weak convergence, using C2-

regularity of the Itô map, instead of only utilizing perservation of weak convergence under

continuous mappings.

It is now easy to explain why the weak order of convergence is expected to be twice the

strong order one, under the condition that Q commutes with A. Indeed, Θ is of class C2, with

bounded first and second order derivatives. In particular, Θ is Lipschitz-continuous and thus,

neglecting the contribution of RN , the strong error is expected to be of order

estrongN =
(

E sup
t∈[0,T ]

|X(t)−XN (t)|2
)1/2

≈
(

E sup
t∈[0,T ]

|WA,Q(t)−WAN ,QN (t)|2
)1/2

.

To control the weak error, one relies on a Taylor second-order expansion of the function ϕ ◦ Θ
(where ϕ : C([0, T ], H) → R is a test function of class C2). The key argument is then the

independence of the processes WAN ,QN and WA,Q − WAN ,QN , which is a consequence of

using the projection operator PN onto a space HN spanned by eigenvectors of both A and Q

(thanks to the assumption that Q commutes with A). Then the expectation of the first-order

term in the Taylor expansion vanishes, which proves that the weak error is of size eweak
N ≤

CE supt∈[0,T ] |WA,Q(t)−WAN ,QN (t)|2 ≈ (estrongN )2.

Our main result is then Theorem 4.3 (in the parabolic case (1.2)): it provides the weak

order of convergence for trajectories of SPDEs in a general setting (depending on regularity

assumptions on F and Q, see Section 2). In the hyperbolic setting, this result is given by

Theorem 5.1.

In the case when A and Q do not commute, the key independence argument above breaks

down and it is not clear a priori whether the weak order is still twice, or at least larger than,

the strong order. In Section 6, we give a control of the weak error in this non-commuting

situation (Theorem 6.1), with an additional error term which depends on an auxiliary stochastic

convolution where commutators appear. We are able to control this additional term in the case

where the operator Q is a multiplication operator, in Section 6.4: we provide a non-trivial

extension of Theorem 4.3 in Theorem 6.2 where there is no commutativity, but the weak order

is still twice the strong order.

Note that the arguments described above do not directly apply if one considers weak approx-

imation of trajectories associated with discretization in time, or discretization in space using

finite elements. These situations will be investigated in future work.

The article is organized as follows. In Section 2, we present the (regularity, growth) as-

sumptions and notation to ensure well-posedness of the parabolic SPDE (1.1). In Section 3, we

introduce one of the main tools for our convergence analysis, namely the Itô map (Section 3.2).

The spectral Galerkin discretization method is introduced in Section 4. The strong and weak

orders of convergence, in the case when A and Q commute, are provided in Theorem 4.2, and

our main result, Theorem 4.3. In Section 5, we generalize the arguments for the stochastic wave

equation (1.3), see Theorem 5.1. Finally, in Section 6 we generalize the approach in the case

when A and Q do not commute: we provide a general result, Theorem 6.1, and identify weak

rates of convergence in a specific case, Theorem 6.2.
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2. Notations and Assumptions

In this section we introduce sufficient assumptions to ensure well-posedness of the following

SPDE, written in abstract form:

du(t) = Au(t)dt+ F (u(t)) dt+ dWQ(t), u(0) = u0. (2.1)

We work with assumptions on A which render the equation in semilinear parabolic form. We

state the precise definitions and assumptions on A and F below, following the standard setting

of [6]. These assumptions will also be used in Section 5, where we study a semilinear damped-

driven wave equation (5.1), also constructed from A and F .

We describe the function space setting, the assumptions on A, the assumptions on F and

the assumptions on Q, in turn, in the following subsections.

2.1. The function space

Our state space is a separable, infinite-dimensional, real Hilbert space H , equipped with its

scalar product 〈·, ·〉H and norm | · |H . We also use the notations 〈·, ·〉 and | · | when no confusion

is likely to arise. A typical example to keep in mind is H = L2(D) where D ⊂ Rd is a bounded,

open set with smooth boundary.

2.2. The linear operator

The operator A appearing in (2.1) is an unbounded linear operator on the Hilbert space H .

Assumption 2.1. The linear operator A is defined on a dense domain D(A) ⊂ H , with values

in H . It is self-adjoint with compact resolvent, such that there exists a non-decreasing sequence

of strictly positive real numbers (λk)k∈N∗ , and a corresponding orthonormal basis (ek)k∈N∗ of

H such that Aek = −λkek for all k ∈ N∗.

Here, we wrote N∗ = {1, 2, . . .}. The fact that A has compact resolvent implies that it is

unbounded, in particular limk→∞ λk = ∞. Under Assumptions 2.1, the operator A generates

an analytic semigroup on H denoted by (etA)t≥0: for any t ≥ 0

etAu =
∑

k∈N∗

e−tλk〈u, ek〉ek .

This semigroup enjoys good regularization properties, which we recall in Proposition 2.1. To

state them, we define the interpolation spaces Hs for s ∈ R as the closure of the linear span of

the ek under the norm

|u|2
s
=

+∞
∑

k=1

λs

k〈u, ek〉2 .

In particular, one has H0 = H and H2 = D(A). It is immediate that, for every s ∈ R, (−A)s is

a bounded linear operator from H2s to H . Moreover, for any s ∈ R, Hs is a Hilbert space with

scalar product 〈·, ·〉s, where for any x, y ∈ Hs

〈x, y〉s = 〈(−A)s/2x, (−A)s/2y〉.

Example 2.1. A typical example is the Laplace operator in D = (0, 1), complemented with

homogeneous Dirichlet boundary conditions. In this case, λk = π2k2 and ek(ξ) =
√
2 sin(kπξ).

Then H1 is the space H1
0 (D).
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We can now state the semigroup regularization properties.

Proposition 2.1. For any −1 ≤ s1 ≤ s2 ≤ 1, there exists Cs1,s2 ∈ (0,+∞) such that:

1. for any t > 0 and u ∈ Hs1

|etAu|s2 ≤ Cs1,s2t
−(s2−s1)/2|u|s1 ;

2. for any 0 < t1 < t2 and u ∈ Hs2

|et2Au− et1Au|s1 ≤ Cs1,s2(t2 − t1)
(s2−s1)/2|u|s2 .

3. for any 0 < t1 < t2 and u ∈ Hs1

|et2Au− et1Au|s1 ≤ Cs1,s2

(t2 − t1)
(s2−s1)/2

t
(s2−s1)/2
1

|u|s1 .

We omit the proof of this classical result; for instance see [22, Chapter 2, Theorem 6.13] for a

general statement (analytic semigroups).

2.3. The nonlinearity

We consider a function F defined on HsF for some nonnegative regularity parameter sF ,

and taking values in H−sF .

Assumption 2.2. For some sF ∈ [0, 1), the map F : HsF → H−sF is of class C2, with bounded

first and second-order Fréchet derivatives.

Equivalently, FsF
:= A−sF /2 ◦ F ◦A−sF /2 : H → H is a function of class C2, with bounded

derivatives. Due to the inclusion property of the spaces Hs, it is natural to take sF ≥ 0 as small

as possible in Assumption 2.2: if the regularity and boundedness conditions of Assumption 2.2

are satisfied for some sF , they are also satisfied for all s > sF .

Remark 2.1. More generally, we can consider functions F : Hs
1
F → H−s

2
F for s1F 6= s2F , and

s1F , s
2
F ≥ 0. In this setting, it is natural to take the smallest possible values for both s1F and

s2F . However, thanks to a simple shift in the definition of the spaces Hs, it is always possible

to fit into the framework of Assumption 2.2 by redefining H .

Example 2.2. If Ψ : Hs → R is a function of class C3 with bounded derivatives, set F = −DΨ.

Then F (u) ∈ H−s, for any u ∈ Hs, thanks to the natural identification of the dual space of Hs

with H−s. When s > 0, the potential function Ψ may thus only be defined on a strict subspace

Hs of H.

2.4. The noise term

The Stochastic PDE (2.1) is driven by an additive noise which is white in time, and can be

either white (when Q is the identity mapping), or colored in space.

The covariance operator Q is assumed to satisfy the following conditions.
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Assumption 2.3. The linear operator Q : H → H is self-adjoint, bounded, and there exists a

bounded sequence (qk)k∈N∗ of nonnegative real numbers such that for any k ∈ N∗

Qek = qkek,

where (ek)k∈N∗ is as in Assumption 2.1.

We do not require that Q is trace class. Assumption 2.3 implies that A and Q commute,

which may be restrictive in practice. Commutativity is not required to obtain weak error

estimates at a fixed time t, but we use it here to prove, under quite general conditions, that

the weak order of convergence for the trajectories is twice the strong order. In Section 6, we

exhibit an example where one can prove such a result even though A and Q do not commute,

but the general non-commuting case will remain open.

We now recall the definition of the cylindrical Wiener process W , and of the associated

Q-cylindrical Wiener process WQ.

Assumption 2.4. W is a cylindrical Wiener process on H , on a probability space, denoted by

(Ω,F , (Ft)t∈R+ ,P), where the filtration (Ft)t∈R+ satisfies the usual conditions: for any t ≥ 0

W (t) =
∑

k∈N∗

βk(t)ek, (2.2)

where (βk)k∈N∗ is a sequence of independent, standard, real-valued Wiener processes (with

respect to the filtration (Ft)t∈R+) and (ek)k∈N∗ is the complete orthonormal system of H

introduced in Assumption 2.1.

The series (2.2) converges in any Hilbert space H̃ such that H is contained in H̃ with a

Hilbert-Schmidt embedding mapping. The resulting process depends neither on the choice of

the complete orthonormal system, nor on the choice of H̃ (modulo canonical embeddings).

Similarly, we define the Q-cylindrical Wiener process WQ(·); since we do not assume in

general that Q is trace-class, WQ also takes values in some larger space H̃ , containing H , as

does W . For any t ≥ 0, set

WQ(t) =
∑

k∈N∗

√
qkβk(t)ek. (2.3)

One of the main conditions we will require is that the stochastic convolution WA,Q (the

solution of (2.1) when F = 0) takes values in HsF . Assumptions on the covariance operator Q

will be made precise in Section 3.3, in particular see Proposition 3.4.

In the sequel, we use the notation Tr
(

L
)

for the trace of a trace-class non-negative symmetric

linear operator L ∈ L(H):

Tr(L) =
∑

n∈N∗

〈Lǫn, ǫn〉 < +∞,

for some (and therefore all) complete orthonormal basis (ǫn)n∈N∗ of H .

3. Well-posedness and the Itô Map

In this section, we state well-posedness results for the Stochastic PDE (2.1), and we define

one of the essential tools for our study of the weak error on trajectories: the Itô map. This

application allows us to express the solution of the semilinear equation as a (deterministic)

function of the solution of the linear equation (F = 0) with the same noise perturbation. Most
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of the material in this section is classical, but explicit inclusion of the important definitions and

properties will help understanding of the weak trajectory error analysis in this paper.

For any regularity parameter s ∈ R and any T ∈ (0,+∞), we introduce the space of

trajectories

Cs,T = C([0, T ],Hs),

the space of continuous functions of the time variable, with values in the Hilbert space Hs.

Elements of the space Cs,T are referred to as trajectories in the sequel. We also define the

family of supremum norms ‖ · ‖∞,s,T :

‖X‖∞,s,T = sup
0≤t≤T

|X (t)|s

for any X ∈ Cs,T ; endowed with the associated topology, Cs,T is a separable Banach space.

In the subsequent subsections we study the deterministic problem arising when Q = 0, we

define the Itô map and we study the SPDE through the Itô map.

3.1. The deterministic semilinear PDE

Under the global Lipschitz condition on F : HsF → H−sF , from Assumption 2.2, the well-

posedness in terms of mild solutions of the deterministic semi-linear equation

dY (t)

dt
= AY (t) + F (Y (t)), Y (0) = u0 ∈ Hs. (3.1)

is a standard result, using regularization properties of the semigroup
(

etA
)

t∈R+ (see Proposi-

tion 2.1) and a Picard iteration argument.

Proposition 3.1. Assume sF ≤ s < 1, and that Assumptions 2.1 and 2.2 are satisfied. For

any initial condition u0 ∈ Hs, and any time T ∈ (0,+∞), there exists a unique mild solution

of equation (3.1), satisfying:

• Y (0) = u0;

• for any t ∈ [0, T ], Y (t) ∈ Hs, and t 7→ Y (t) ∈ Cs,T ;

• for any t ≥ 0,

Y (t) = etAu0 +

∫ t

0

e(t−r)AF (Y (r))dr. (3.2)

Note that for sF ≤ s < 1, F : Hs → H−sF is globally Lipschitz continuous, thanks to

Assumption 2.2.

3.2. The Itô map

The result of Proposition 3.1 is extended in a straightforward manner (using the Picard

iteration argument) to the case where some perturbation by some function w ∈ Cs,T is added

to the mild formulation (3.2).

Proposition 3.2. Assume sF ≤ s < 1, and that Assumptions 2.1 and 2.2 are satisfied. Let

u0 ∈ Hs0 for s0 ≥ s, let T ∈ (0,+∞), and let w ∈ Cs,T . Then there exists a unique function

Y w ∈ Cs,T such that for any t ≥ 0,

Y w(t) = etAu0 +

∫ t

0

e(t−s)AF (Y w(r))dr + w(t). (3.3)
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We can now define the Itô map.

Definition 3.1. The Itô map associated with the SPDE (2.1) is defined as the map Θ: w ∈
Cs,T 7→ Y w, with Y w given by (3.3).

The Itô map Θ depends on the regularity parameter s, the linear operator A, the nonlinear

coefficient F , the initial condition x0 and the time T ∈ (0,+∞). However, to lighten the

notation, we do not mention explicitly these dependences in the sequel. The Itô map inherits

the regularity properties of F from Assumption 2.2.

Theorem 3.1. The Itô map Θ is of class C2 on the Banach space Cs,T = C([0, T ],Hs), with

bounded Fréchet derivatives of first and second order.

We only give a sketch of proof (see [23] for details on the continuity of Θ). Theorem 3.1

is a consequence of the Implicit Function Theorem. Indeed, the mappings (y, w) ∈ Cs,T ×
Cs,T 7→ (F ◦ y, w) ∈ C−s,T × Cs,T and (z, w) ∈ C−s,T × Cs,T 7→ Y ∈ Cs,T , such that Y (t) =
∫ t

0
e(t−r)Az(r)dr + w(t), are of class C2.

3.3. The SPDE and the Itô map

The study of the well-posedness of the SPDE (2.1) is done in two steps. First we consider

the linear case with additive noise, i.e. when F is identically 0 and the initial condition is

x0 = 0; the unique mild solution is the so-called stochastic convolution, for which we give below

the necessary properties concerning spatial regularity. Second, we consider the full semi-linear

equation (2.1), and since the noise is additive we use the Itô map to define solutions, in a strong

sense with respect to the probability space. The material is standard, see [6].

We first define an important regularity parameter sQ, depending on Q.

Definition 3.2. Assume that Tr((−A)−1Q) < +∞, and introduce

s
0
Q = sup

{

s ∈ R
+; Tr((−A)s−1Q) < +∞

}

≥ 0. (3.4)

We also set sQ = min(s0Q, 1).

Proposition 3.3. The linear stochastic equation with additive noise,

dZ(t) = AZ(t)dt+ dWQ(t), Z(0) = 0, (3.5)

admits a unique mild solution Z ∈ C([0, T ],Hs), for any s < sQ, and any T ∈ (0,+∞); this is

the Hs-valued process such that for any 0 ≤ t ≤ T

Z(t) =

∫ t

0

e(t−r)AdWQ(r).

This process is denoted by WA,Q and is called the stochastic convolution.

For the ease of the exposition, we define a set of admissible parameters s.

Definition 3.3. A parameter s ∈ R
+ is called admissible if it satisfies sF ≤ s < 1 and s < sQ.

The set of admissible parameters is of course non empty if and only if sF < sQ, so from now

on we assume this is the case. Note that s = sF is an admissible parameter.
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Proposition 3.4. Let T ∈ (0,+∞) and assume that u0 ∈ Hs for some admissible s. Then

(2.1) admits a unique mild solution X, i.e. an Hs-valued process such that, for any 0 ≤ t ≤ T ,

u(t) = etAu0 +

∫ t

0

e(t−r)AF (u(r))dr +

∫ t

0

e(t−r)AdWQ(r). (3.6)

Moreover, u admits a version in C([0, T ],Hs) such that, denoting by Θ the Itô map, we have

u = Θ(WA,Q) . (3.7)

Proof. Once we know that WA,Q admits a version in C([0, T ],Hs), we can define X by (3.7)

and verify that it solves (3.6). Uniqueness of the mild solution (modulo indistinguishability

of stochastic processes) follows from a simple Picard iteration argument. The existence of a

version of WA,Q in C([0, T ],Hs), with E‖WA,Q‖∞,s,T < +∞, follows from [6, Theorem 5.9] and

the admissibility of s. �

4. Spectral Galerkin Discretization of Parabolic SPDEs

In this section we introduce the spectral Galerkin approximation of the SPDE (2.1) and we

study strong and weak error estimates. Section 4.1 defines the discretization scheme, Section 4.2

contains the strong convergence result, and Section 4.3 the weak convergence result. We discuss

the two results in Section 4.4.

4.1. Definition of the discretization scheme

We approximate the solution u of the SPDE (2.1) by a projection onto the finite dimensional

subspace HN ⊂ H spanned by {e1, . . . , eN}, with the ei as in Assumption 2.1. To this end

define PN ∈ L(H) as the orthogonal projection from H onto HN , where L(H) is the space of

bounded linear operators from H to H . In the sequel, the identity mapping on H is denoted by

I ∈ L(H). Set also H⊥
N = span {en;n ≥ N + 1}, and P⊥

N = I − PN the associated orthogonal

projection. For any s ∈ R, HN is a subspace of Hs and we can view PN as an element of L(Hs),

which is still an orthogonal projection operator.

Given N ∈ N∗, the process uN with values in HN , is defined as the unique mild solution of

the SPDE

duN(t) = AuN(t)dt+ FN (uN(t)) dt+ PNdWQ(t), uN (0) = PNu0. (4.1)

where FN = PN ◦ F : HsF → H−sF satisfies Assumption 2.2, with bounds on FN and its

derivatives which are uniform with respect to N . Note that uN satisfies the identity (mild

formulation of (4.1))

uN (t) = PNetAu0 + PN

∫ t

0

e(t−r)AF (uN (r))dr + PNWA,Q(t) .

As a consequence, we make the following simple observation, which is crucial to obtain the

strong and weak error estimates in Cs,T .

Theorem 4.1. Let RN be given by

RN (t) = (PN − I)etAu0 +

∫ t

0

(PN − I)e(t−r)AF (uN (r))dr. (4.2)
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Then, one has the identity

uN = Θ(PNWA,Q +RN ) . (4.3)

Moreover, one has the following a priori estimate.

Lemma 4.1. For any T > 0, any u0 ∈ HsF , there exists C(T, |u0|sF ) ∈ (0,+∞) such that

sup
N∈N∗

E
∥

∥uN

∥

∥

∞,sF ,T
≤ C(T, |u0|sF ). (4.4)

Proof. Note first that PNWA,Q = WA,QN with QN = QPN . It then suffices to note that

the bounds obtained by the Picard iteration (3.6) only depend on the Lipschitz constant of F ,

on λ1, and on the exponents sF and sQ. All of these quantities can be chosen independent of

N when F is replaced by FN and Q by QN . �

4.2. Strong convergence

Our first result is a strong error estimate on trajectories in Cs,T . Given T ∈ (0,+∞), we

give a bound on the expectation of the ‖ · ‖s,T -norm of the difference between u and uN . For

completeness we include a detailed proof, even though the main focus of our work is weak error

and hence, in this section, Theorem 4.3; moreover, some bounds obtained during the proof are

used later in the proof of the weak error estimates. The stochastic part is controlled thanks to

the factorization method (see [6, p. 128]).

Theorem 4.2. Let T ∈ (0,+∞), assume that Assumptions 2.1, 2.2 and 2.3 hold, and let

u0 ∈ Hs0 for s0 ≥ s with s admissible. Then for any ǫ ∈ (0, sQ − s), there exists a constant

Cǫ,s ∈ (0,+∞), such that for any N ∈ N∗

E‖u− uN‖∞,s,T ≤ Cǫ,s

(

1

λ
(s0−s)/2
N+1

|u0|s0 +
1

λ
1−(sF+s+ǫ)/2
N+1

+
1

λ
(sQ−s−ǫ)/2
N+1

)

. (4.5)

Proof. To simplify the notation, C denotes a real number (0,+∞) which does not depend on

N , on x0 and on F . It may vary from line to line. Since Θ is Lipschitz thanks to Theorem 3.1,

using (3.7) and (4.3), only the quantities E‖RN‖∞,s,T and E‖WA,Q − PNWA,Q‖2∞,s,T need to

be controlled. First, for any t ∈ [0, T ],

|RN (t)|s ≤ |P⊥
N etAu0|s +

∫ t

0

∣

∣P⊥
N e(t−r)AF (uN (r))

∣

∣

s
dr

≤ |(−A)s/2P⊥
N etA(−A)−s0/2|L(H)|u0|s0

+

∫ t

0

|(−A)s/2P⊥
N e(t−r)A(−A)sF /2|L(H)|F (uN (r))|−sF

dr

≤ Cλ
(s−s0)/2
N+1 |u0|s0

+C
(

1 + ‖uN‖∞,s,T

)

(−A)−1+ǫ/2+s/2+sF /2P⊥
N |L(H)

∫ t

0

C

(t− r)1−ǫ/2
dr,

thanks to the Lipschitz continuity of F : HsF → H−sF (Assumption 2.2).

Using the a priori bound (4.4) of Lemma 4.1, we thus obtain

E‖RN‖∞,s,T ≤ Cλ
−(s0−s)/2
N+1 |u0|s0 + Cλ

−1+(sF+s+ǫ)/2
N+1 . (4.6)
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It remains to deal with the contribution of the discretization of the stochastic convolution. As

in [6], we can write

WA,Q − PNWA,Q = Γ
(

P⊥
NZA,Q

)

,

where

Γ(z)(t) =

∫ t

0

(t− r)ǫ−1e(t−r)Az(r)dr , (4.7)

ZA,Q is the auxiliary process given by

ZA,Q(t) =

∫ t

0

(t− r)−ǫe(t−r)AdWQ(r) , (4.8)

and ǫ ∈ (0, 1). Since, as in [6, p. 128], Γ maps Lp([0, T ],Hs) → C([0, T ],Hs) for p > 1 sufficiently

large (depending on ǫ), we have

E‖WA,Q − PNWA,Q‖p∞,s,T ≤ Cp,T

(

∫ T

0

E|P⊥
NZA,Q(r)|p

s
dr

)

≤Cp,T |P⊥
N (−A)(s−sQ+ǫ)/2|pL(H)

(

∫ T

0

E|ZA,Q(r)|p
sQ−ǫdr

)

≤Cλ
−

p(sQ−s−ǫ)

2

N+1 , (4.9)

by Fernique’s theorem, since sup0≤t≤T E|ZA,Q(t)|2
sQ−ǫ < +∞ as soon as ǫ ∈ (0, sQ). �

4.3. Weak convergence

In this section, we state and prove our main result, Theorem 4.3, which is a weak error

estimate in the space of trajectories Cs,T . Considering the contribution of the stochastic parts,

the weak order of convergence is twice the strong order appearing in Theorem 4.2. For this, we

need an appropriate set of test functions to define a metric on the set of probability distributions

on Cs,T , which is the purpose of the following definition.

Definition 4.1. Let T ∈ (0,+∞) and s be an admissible regularity parameter in the sense of

Definition 3.3. A function Φ : Cs,T → R is called an admissible test function if it is bounded

and of class C2, with bounded Fréchet derivatives of first and second order, where the metric on

Cs,T is induced by the norm ‖ · ‖∞,s,T .

This class is somewhat restrictive since we require C2 regularity in order to be able to

perform a second-order Taylor expansion of the error. However, some interesting observables

depending on the whole trajectory and falling in this class are now given:

Example 4.1. Let φ : Hs → R be bounded and of class C2 with bounded first and second

order derivatives. Then for any t ∈ [0, T ],

Φt : Y ∈ Cs,T 7→ φ(Y (t))

is an admissible test function. Moreover, for any 0 ≤ t1 < t2 ≤ T ,

Φt1,t2 : Y ∈ Cs,T 7→
∫ t2

t1

φ(Y (t))dt

is another admissible test function. Finally, if Ψ : R → R is of class C2, with bounded first and

second order derivatives, the mapping Ψ ◦ Φt1,t2 is also an admissible test function.
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The main object of study in this section is the weak error

eN (Φ, s) = E[Φ(u)]− E[Φ(uN )] , (4.10)

where s is an admissible regularity parameter, Φ is an admissible test function from Cs,T to R,

u is the solution of the SPDE (2.1) and uN is the approximation in dimension N given by (4.1).

To simplify the notation, we fix the time T ∈ (0,+∞) and do not mention the dependence of

eN (Φ, s) with respect to this quantity. Our main result is the following Theorem 4.3; comments

on this theorem and its relation to Theorem 4.2, are given in Section 4.4.

Theorem 4.3. Let T ∈ (0,+∞), let Assumptions 2.1, 2.2 and 2.3 hold, let u0 ∈ Hs0 for s0 ≥ s

with s an admissible parameter, and let Φ : Cs,T → R be an admissible test function. Then for

any ǫ ∈ (0, sQ − s), there exists a constant Cǫ,s(Φ) ∈ (0,+∞), such that for any N ∈ N∗

∣

∣eN(Φ, s)
∣

∣ ≤ Cǫ,s(Φ)

(

1

λ
(s0−s)/2
N+1

|u0|s0 +
1

λ
1−(sF+s+ǫ)/2
N+1

+
1

λ
sQ−s−ǫ
N+1

)

. (4.11)

Proof. Thanks to the definition of the Itô map Θ and Proposition 3.4, we have u = Θ(WA,Q);

moreover uN = Θ(PNWA,Q + RN ), for any N ∈ N∗, by Theorem 4.1. Therefore, setting

Ψ = Φ ◦Θ for the Itô map Θ, the weak error (4.10) can be rewritten as

eN(Φ, s) = E[Φ(u)]− E[Φ(uN )]

= E[Φ ◦Θ(WA,Q)]− E[Φ ◦Θ(PNWA,Q +RN )]

= E[Ψ(WA,Q)]− E[Ψ(PNWA,Q)]

+ E[Ψ(PNWA,Q)]− E[Ψ(PNWA,Q +RN )].

Thanks to Theorem 3.1, the map Ψ : Cs,T → R is again an admissible test function (in the

sense of Definition 4.1); in particular, it is Lipschitz continuous, and for any N ∈ N∗

∣

∣

∣
E[Ψ(PNWA,Q)]− E[Ψ(PNWA,Q +RN )]

∣

∣

∣
≤ C1

s
(Φ)E‖RN‖∞,s,T

≤ C1
s
(Φ)

λ
(s0−s)/2
N+1

|u0|s0 +
C1

s
(Φ)

λ
1−(sF+s+ǫ)/2
N+1

,

for some C1
s
(Φ) ∈ (0,+∞), thanks to the component of the strong error derived as (4.6).

It remains to study the part of the error due to the discretization of the stochastic convolution

WA,Q. The test function Ψ being admissible, it is of class C2 with bounded first and second

order derivatives, so that

|Ψ(WA,Q)−Ψ(PNWA,Q)−DΨ(PNWA,Q).
[

P⊥
NWA,Q

]

|
≤C‖P⊥

NWA,Q‖2∞,s,T , (4.12)

for some constant C. The expectation of this term is easily controlled by using the strong error

estimate proved above: for any ǫ ∈ (0, sQ − s), there exists C such that for any N ∈ N∗

E‖P⊥
NWA,Q‖2∞,s,T ≤ C

λ
sQ−s−ǫ
N+1

, (4.13)

thanks to (4.9).
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To control the first order term, the key observation is that that the Cs,T -valued random

variables PNWA,Q and P⊥
NWA,Q are independent since the former depends only on {βi : i ≤

N}, while the latter only depends on {βi : i > N}. Furthermore, P⊥
NWA,Q is a centred

Gaussian process, so that

E
(

DΨ(PNWA,Q).
[

P⊥
NWA,Q

])

= 0 .

Combining this with (4.12) and (4.13), we obtain the weak error estimate

∣

∣

∣
E[Ψ(WA,Q)]− E[Ψ(PNWA,Q)]

∣

∣

∣
≤ Cǫ,s(Φ)

λ
sQ−s−ǫ
N+1

,

thus concluding the proof. �

4.4. Comments on Theorems 4.2 and 4.3

The aim of this section is to compare the strong and weak orders of convergence from

Theorems 4.2 and 4.3. For simplicity of the discussion, we take ǫ = 0, even if the results are

only valid for ǫ > 0. Note that s = sF is an admissible parameter, and that it is a natural

choice.

When s increases, the orders of convergence of each term in (4.5) and (4.11) decreases;

observe that the decrease is slower for the third term in (4.11) than for the other terms (one

finds s instead of s/2): indeed that terms comes from the second-order term in the Taylor

expansion. On the contrary, the higher the spatial regularity of the initial condition u0 (increase

of s0), of the coefficient F (decrease of sF ) and of the covariance operator (sQ increases), the

higher the rates of convergence.

The two first error terms in (4.5) and (4.11) are the same. These terms are due to the

discretization of the initial condition x0 and of the coefficient F . Indeed, in the weak error

estimate we have only used the Lipschitz continuity of the Itô map to control these contributions

to the weak error.

However, the rate of convergence sQ − s > 0 of the third term in (4.11) is twice the rate of

convergence (sQ−s)/2 of the third term in (4.5). These terms correspond with the discretization

of the stochastic convolution, and this is where the difference between strong and weak orders

of convergence appears. Observe that the second term always converges to 0 faster than the

third one: when s is an admissible parameter,

1− 1

2
(sF + s) ≥ 1− s ≥ sQ − s.

To have a similar control on the first term, one needs to assume that s0 is sufficiently large:

s0 ≥ 2sQ − s; this type of assumption is natural, since if s0 = s, then the convergence of PNx0

to x0 in Hs may be very slow.

As a consequence, if s0 ≥ 2sQ − s, we have

E‖u− uN‖∞,s,T ≤ Cǫ,s

λ
(sQ−s−ǫ)/2
N+1

, E[Φ(u)]− E[Φ(uN )] ≤ Cǫ,s(Φ)

λ
(sQ−s−ǫ)
N+1

,

and thus the weak order of convergence is twice the strong order one.
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5. Error Estimates for the Damped-driven Wave Equation

In this section, we study the spectral Galerkin approximation of the following damped and

stochastically driven wave equation, where we keep the notation and assumptions of Section 2:

{

du(t) = v(t)dt

dv(t) = −γv(t)dt+Au(t)dt+ F (u(t))dt + dWQ(t).
(5.1)

We impose the initial conditions u(0) = u0 ∈ H and v(0) = v0 ∈ H−1. The coefficient γ ≥ 0 is a

damping parameter. The linear operators A and Q satisfy Assumptions 2.1 and 2.3 respectively;

however, we modify the assumption on F as follows, changing the range of allowable exponent:

Assumption 5.1. For some sF ∈ [0, 12 ], the map F : HsF → H−sF is of class C2, with bounded

first and second-order Fréchet derivatives.

Our aim is to show that the Itô map technique used to prove strong and weak error estimates

in spaces of trajectories Cs,T in Sections 4.2 and 4.3 can also be applied to this damped-driven

wave equation to obtain results similar to Theorems 4.2 and 4.3; our main result is Theorem 5.1.

In order to be concise, we only sketch the main arguments of the analysis, since they are

straightforward generalizations of the ones used in the previous sections in the parabolic case.

The following subsections tackle, in order, the notation employed, the definition of solution and

relation to an Itô map, the Galerkin approximation and the strong and weak error estimates.

5.1. Notation

Introduce the processX(t) =
(

u(t), v(t)
)

, with values in Ĥ = H0×H−1. For s ∈ R, set Ĥs =

Hs × Hs−1, which is a Hilbert space with the scalar product defined by
[

(u1, v1), (u2, v2)
]

s
=

〈u1, u2〉s + 〈v1, v2〉s−1. The associated norm in Ĥs is denoted by | · |s. Then the second-order

SPDE (5.1) can be rewritten as the following first-order stochastic evolution equation in Ĥ:

dX(t) = AX(t)dt+ F(X(t))dt+ dWQ(t), X(0) = x0 =
(

u0, v0
)

, (5.2)

where

Ax = (v,Au) ∈ Ĥ0 for all x =
(

u, v
)

∈ Ĥ1,

F(x) = (0, F (u)− γv) ∈ ĤsF for all x =
(

u, v
)

∈ ĤsF ,

Q(x) = (0, Qv) for all x =
(

u, v
)

∈ Ĥ0,

and the stochastic perturbation WQ is a Q-Wiener process on Ĥ0. The unbounded linear

operator A on H generates a group
(

etA
)

t∈R
, where, for all t ∈ R, and x = (u, v) ∈ Ĥ,

etAx =
(

ut, vt
)

satisfies

ut =
∑

k∈N∗

(

cos(t
√

λk)〈u, ek〉+
√

λ−1
k sin(t

√

λk)〈v, ek〉
)

ek,

vt =
∑

k∈N∗

(

−
√

λk sin(t
√

λk)〈u, ek〉+ 〈cos(t
√

λk)〈v, ek〉
)

ek.
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5.2. Mild solutions and the Itô map

For any s ∈ R and T ∈ (0,+∞), denote by Ĉs,T = C
(

[0, T ], Ĥs

)

= Cs,T × Cs−1,T the space

of trajectories for X . The norm in Ĉs,T is still denoted by ‖ · ‖∞,s,T . The Itô map Θ̂ associated

with the wave equation (5.1) is defined in Proposition 5.1 below (see Propositions 3.1 and 3.2

in the parabolic case).

Proposition 5.1. Let Assumptions 2.1 and 5.1 hold, and assume that s ∈ [sF , 1/2]. Let x0 =

(u0, v0) ∈ Ĥs0 with s0 ≥ s, T ∈ (0,+∞). Let ŵ ∈ Ĉs,T . Then:

• there exists a unique function Ŷ ŵ ∈ Ĉs,T such that for any t ≥ 0,

Ŷ ŵ(t) = etAx0 +

∫ t

0

e(t−s)AF(Ŷ ŵ(r))dr + ŵ(t); (5.3)

• the mapping Θ̂ : Ĉs,T → Ĉs,T given by ŵ 7→ Ŷ ŵ is of class C2, with bounded Fréchet

derivatives of first and second order.

The following replaces Definition 3.3 for the duration of this section; specifically it is used

in the proposition and theorem which follow.

Definition 5.1. The parameter s ∈ R+ is an admissible parameter if the following conditions

are satisfied: s ∈ [sF , 1/2] and s < sQ, where sQ is given in Definition 3.2.

Proposition 5.2. Let T ∈ (0,+∞) and assume that x0 = (u0, v0) ∈ Ĥs0 , for some admissible

s. Then (5.2) admits a unique mild solution X = (u, v), i.e. an Ĥ0-valued process such that,

for any 0 ≤ t ≤ T ,

X(t) = etAx0 +

∫ t

0

e(t−s)AF(X(r))dr +WA,Q(t), (5.4)

with the stochastic convolution WA,Q satisfying

WA,Q(t) =

∫ t

0

e(t−r)AdWQ(r). (5.5)

Moreover, X admits a version in Ĉs,T such that we have the Itô map representation

X = Θ̂
(

WA,Q
)

.

5.3. Galerkin discretization

For any ℓ ∈ N∗, set ê2ℓ−1 = (eℓ, 0) and ê2ℓ = (0,
√
λℓeℓ). Then

(

ên
)

n∈N∗
is a complete

orthonormal system of Ĥ0 such that Aê2ℓ−1 = −
√
λℓê2ℓ and Aê2ℓ =

√
λℓê2ℓ−1. For all N ∈ N

∗,

define ĤN = span {êk ; k ∈ {1, . . . , 2N}} and denote by PN the associated orthogonal projector

in Ĥ0 onto ĤN .

Define XN =
(

uN , vN
)

as the unique mild solution of

dXN (t) = AXN (t)dt+ PNF(X(t))dt+ PNdWQ(t), XN(0) = PNx0. (5.6)
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Equivalently,
{

duN (t) = vN (t)dt

dvN (t) = −γvN(t)dt+AuN (t)dt+ PNF (u(t))dt + PNdWQ(t)
(5.7)

with uN (0) = PNu0, vN (0) = PNv0.

Similarly to Theorem 4.1 in the parabolic case, Proposition 5.3 below gives an expression

of XN in terms of the Itô map Θ̂.

Proposition 5.3. Set

R̂N (t) = (PN − I)etAx0 +

∫ t

0

(PN − I)e(t−r)AF(XN (r))dr.

Then

XN = Θ̂(R̂N + PNWA,Q).

Moreover, set s = min(1/2, s0, sQ). Then for any ǫ ∈ (0, s), the following moment estimate is

satisfied: there exists Cs−ǫ,T ∈ (0,+∞) such that

sup
N∈N∗

E
∥

∥XN‖∞,s−ǫ,T ≤ Cs,T .

5.4. Strong and weak error estimates

We are now in position to state strong and weak error estimates for the convergence of XN =

(uN , vN ) to X = (u, v) in a space of trajectories Ĉs,T , with appropriate orders of convergence.

Note that for the weak convergence result, one can choose test functions Φ depending only on

the u-component of X = (u, v).

Theorem 5.1. Let x0 = (u0, v0) ∈ Ĥs0 , T ∈ (0,+∞) and s be admissible, with s0 ≥ s.

Define s = min(1/2, s0, sQ). Let Φ : Ĉs,T → R be an admissible test function, i.e. it is

bounded and of class C2, with bounded Fréchet derivatives of first and second order.Then for

any ǫ ∈ (0, s ∧ (sQ − s)), there exists Cǫ,s, Cǫ,s(Φ) ∈ (0,+∞), such that for any N ∈ N
∗:

• the following strong error estimate is satisfied

E‖X −XN‖∞,s,T ≤ Cǫ,s

(

1

λ
(s0−s)/2
N+1

|x0|s0 +
1

λ
(s−s−ǫ)/2
N+1

+
1

λ
(sQ−s−ǫ)/2
N+1

)

. (5.8)

• the following weak error estimate is satisfied

∣

∣E[Φ(X)]− E[Φ(XN )]
∣

∣ ≤ Cǫ,s(Φ)

(

1

λ
(s0−s)/2
N+1

|x0|s0 +
1

λ
(s−s−ǫ)/2
N+1

+
1

λ
sQ−s−ǫ
N+1

)

. (5.9)

The proof of the above is very similar to the parabolic case and we omit it. The key

argument to obtain the weak error estimate (5.9) using Proposition 5.3 is the independence

of the Ĉs,T -valued random variables PNWA,Q and (I − PN )WA,Q: indeed the former depends

only on {βi : i ≤ N}, while the latter only depends on {βi : i > N}.

Remark 5.1. When γ = 0, one may replace the definition of s with s = min(1 − sF , s0, sQ).

Note that in the general case γ > 0, 1−sF ≥ 1
2 ≥ s: as a consequence, the orders of convergence

in (5.8) and (5.9) do not depend on sF .
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6. Parabolic Equation with Non-commuting Noise

In this section, we return to the parabolic SPDE (2.1), studied in Sections 3 and 4, and we

remove the assumption that A and Q commute (see Assumption 2.3). Instead, from now on

we consider Assumption 6.1 below. Note that the strong convergence analysis (Theorem 4.2) is

not modified. However, the assumption that A and Q commute has been crucial to prove The-

orem 4.3; now, under Assumption 6.1, the processes PNWA,Q and P⊥
NWA,Q are not necessarily

independent. In order to generalize Theorem 4.3, we introduce two auxiliary processes:

• WA,Q,(N) defined by (6.3) is the stochastic convolution with truncated noise PNW instead

of W .

• ρN = WA,Q,(N) − PNWA,Q, which involves a commutator.

We first state and prove a general result, Theorem 6.1, where we repeat the arguments of the

proof of Theorem 4.3; an extra error term appears when effectively Q and A do not commute.

In general, we are not able to identify the order of convergence. We thus consider a specific

case, where explicit computations allow us to prove that the weak order of convergence is twice

the strong one, see Theorem 6.2.

6.1. Assumptions

The assumption that A and Q do not necessarily commute is expressed in Assumption 6.1

below, thanks to the introduction of a new complete orthonormal system (fk)k∈N∗ of H .

Assumption 6.1. There exists a complete orthonormal system (fk)∈N∗ , and a bounded se-

quence (qk)k∈N∗ of nonnegative real numbers, such that the bounded linear operator Q ∈ L(H)

satisfies for any k ∈ N∗

Qfk = qkfk.

Define also the self-adjoint operator B ∈ L(H) as follows: for all x ∈ H

Bx =

+∞
∑

k=1

√
qk〈x, fk〉fk.

Note that the Q-cylindrical Wiener process WQ is such that

WQ(t) =
∑

k∈N∗

√
qkβ̃k(t)fk = BW (t), (6.1a)

W (t) =
∑

k∈N∗

βk(t)ek =
∑

k∈N∗

β̃k(t)fk, (6.1b)

where
(

β̃k

)

k∈N∗
is a sequence of independent, standard, real-valued Wiener processes. The

spectral Galerkin discretization of the unique mild solution X of (2.1) is still defined by

projection onto HN , see (4.1).

Let Φ (see Definition 4.1) be an admissible test function. The aim is to study the weak error

eN (Φ, s) defined by (4.10). Following the proof of Theorem 4.3, using the Lipschitz continuity

of Φ ◦Θ,

|eN(Φ, s)| ≤ CE‖RN‖∞,s,T + ẽN (Φ, s),
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with

ẽN (Φ, s) = E[Φ ◦Θ(WA,Q)]− E[Φ ◦Θ(PNWA,Q)]. (6.2)

The error term E‖RN‖∞,s,T is controlled in Theorem 4.2. Thus in the sequel we focus on

controlling the auxiliary weak error (6.2).

6.2. Truncation of the noise

Introduce the Wiener process W (N) and the associated stochastic convolution WA,Q,(N)

with truncation at level N :

W (N)(t) = PNW (t) =
N
∑

n=1

βn(t)en, (6.3a)

WA,Q,(N)(t) =

∫ t

0

e(t−r)ABdW (N)(r). (6.3b)

The process WA,Q,(N) is equal to the stochastic convolution WA,QN , with the covariance oper-

ator QN = BPNB.

The key observation is the independence of the Cs,T -valued random variables WA,Q,(N) and

WA,Q−WA,Q,(N), since the former depends only on {βi : i ≤ N}, while the latter only depends

on {βi : i > N}. Applying the strategy of the proof of Theorem 4.3, we obtain, with Ψ = Φ◦Θ,
∣

∣

∣
E[Φ ◦Θ(WA,Q)]− E[Φ ◦Θ(WA,Q,(N))]

∣

∣

∣

=
∣

∣

∣
E

(

Ψ(WA,Q)−Ψ(WA,Q,(N))−DΨ(WA,Q,(N)).[WA,Q −WA,Q,(N)]
)
∣

∣

∣

≤C(Ψ)E‖WA,Q −WA,Q,(N)‖2∞,s,T . (6.4)

The inequality above is interesting, but is not sufficient for our purpose. Indeed, the stochastic

convolution WA,Q,(N) does not a priori take values in HN .

6.3. The general weak error analysis

We now decompose the weak error (6.2) as follows:

ẽN (Φ, s) = E[Φ ◦Θ(WA,Q)]− E[Φ ◦Θ(PNWA,Q)]

= E[Φ ◦Θ(WA,Q)]− E[Φ ◦Θ(WA,Q,(N))

+ E[Φ ◦Θ(WA,Q,(N))− E[Φ ◦Θ(PNWA,Q)]. (6.5)

Observe that for any t ∈ [0, T ]

ρN (t) := WA,Q,(N)(t)− PNWA,Q(t) =

∫ t

0

e(t−r)A[B,PN ]dW (r),

with the commutator [B,PN ] = BPN − PNB.

The first error term in (6.5) is controlled thanks to (6.4). Moreover, using the Lipschitz

continuity of Φ ◦Θ, there exists Cs(Φ) ∈ (0,+∞) such that for any N ∈ N∗

E[Φ ◦Θ(WA,Q,(N))− E[Φ ◦Θ(PNWA,Q)] ≤ Cs(Φ)E‖ρN‖s,T,∞. (6.6)

Note that using a second-order Taylor expansion would not lead to an improved order of con-

vergence for this term.
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As a consequence, (6.4) and (6.6) give for any N ∈ N∗

∣

∣ẽN (Φ, s)
∣

∣ ≤ C
(

E‖ρN‖s,T,∞ + E‖WA,Q −WA,Q,(N)‖2
s,T,∞

)

≤ Cs(Φ)
(

E‖ρN‖s,T,∞ + 2E‖ρN‖2
s,T,∞ + 2E‖WA,Q − PNWA,Q‖2

s,T,∞

)

.
(6.7)

It is not difficult to prove that E‖ρN‖2
s,T,∞ →

N→+∞
0. However, the identification of the

order of convergence in the general case is not easy. In Section 6.4 below, we perform this task

in a specific example.

Thus we have proved the following general result.

Theorem 6.1. Let T ∈ (0,+∞). Let Assumptions 2.1, 2.2 and 6.1 hold. Assume that the

initial condition satisfies u0 ∈ Hs0 , and that s is an admissible parameter (see Definition 3.3),

with s0 ≥ s. Let Φ : Cs,T → R be an admissible test function. Then for any ǫ ∈ (0, sQ − s),

there exists a constant Cǫ,s(Φ) ∈ (0,+∞), such that for any N ∈ N
∗

∣

∣eN (Φ, s)
∣

∣ ≤ Cǫ,s(Φ)

(

1

λ
(s0−s)/2
N+1

|u0|s0 +
1

λ
1−(sF+s+ǫ)/2
N+1

+
1

λ
sQ−s−ǫ
N+1

)

+ Cǫ,s(Φ)
(

E‖ρN‖2
s,T,∞

)1/2
. (6.8)

The first part of the right-hand side of (6.8) exactly corresponds with the right-hand side

of (4.11) (since ρN = 0 in this case): the non-commutation of A and Q makes the second part

of the right-hand side of (6.8) appear. If this fourth error term converges faster to 0 than the

third one, one thus recovers the same rates of convergence as in the commuting case.

6.4. Identification of the weak order for a specific non-commuting example

We consider the following SPDE with periodic boundary conditions on (0, 1) driven by a

Q-Wiener process WQ:

du(t) = Au(t)dt+ F (u(t))dt+ dWQ(t) , X(0) = 0. (6.9)

We slightly modify the framework exposed in Section 2, in order to simplify computations

below: we now consider the Hilbert space of square integrable complex-valued functions. The

new framework is given by Assumption 6.2.

Assumption 6.2. • The state space H = L2(T), with T = R/Z, is the space of C-valued

square integrable functions, with sesquilinear form given by

〈f, g〉 =
∫ 1

0

f(ξ)g(ξ)dξ.

• The Fourier basis is denoted as follows: for any n ∈ Z (Z denotes the set of integers) and

any ξ ∈ R

en(ξ) = exp(2iπnξ).

• For any N ∈ N∗, HN = span {e−N , . . . , e0, . . . , eN}, and PN is the orthogonal projector

on HN .
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• The linear operator A satisfies for any n ∈ Z

Aen = −λnen, with λn = 4n2π2 + 1.

• Let b : T → R be a function of class Cm, for some m ≥ 2, such that b > 0 everywhere.

Then B : H → H is the multiplication operator x 7→ Bx = b.x. B is a self-adjoint

bounded operator; moreover it is invertible, with B−1 : x 7→ b−1.x.

• b is not constant: as a consequence A and B do not commute.

• The Fourier coefficients of b are defined as follows:

bn = 〈b, en〉 =
∫ 1

0

b(ξ) exp(−2iπnξ)dξ, for n ∈ Z.

• The covariance operator Q is defined as Q = B2.

Note that there exists Cm ∈ (0,+∞) such that for any n ∈ Z

|bn| ≤ Cm|n|−m ≤ Cmλ−m/2
n .

Due to Assumption 6.2, B is an invertible operator: as a consequence the process X defined by

(6.9) possesses the same regularity as in the case when B = I: this gives sQ = 1/2. Indeed, for

any s ∈ R,

Tr(As−1Q) = Tr(BAs−1B) = |b|2H Tr(As−1),

where |b|2H =
∫ 1

0 |b(ξ)|2dξ.
According to Theorem 6.1, we need to control E‖ρN‖2∞,s,T , where

ρN (t) =

∫ t

0

e(t−r)A[B,PN ]dW (r).

The main result required to prove a weak convergence theorem for the specific non-commuting

example is the following lemma whose proof is deferred to a final subsection.

Lemma 6.1. Under Assumption 6.2, for any ǫ ∈ (0, 1/2− s) there exists a constant Cǫ,s,T ∈
(0,+∞) such that for any N ∈ N∗

E‖ρN‖2∞,s,T ≤ Cǫ,s,T

λ1−s−ǫ
N

. (6.10)

Since sQ = 1/2 and s ≥ 0, we have 1/2 − s/2 − ǫ/2 ≥ sQ − s − ǫ: this means that in the

example treated in this section, the fourth error term in (6.8) is bounded from above by the

third error term (up to a multiplicative constant). Thanks to Theorem 6.1, we thus immediately

obtain the following generalization of Theorem 4.3 in a non-commuting example, with the same

rates of convergence.

Theorem 6.2. Under Assumptions 6.2 and 2.2, let u0 ∈ Hs0 , and let s be an admissible

parameter with s0 ≥ s. Let Φ : Cs,T → R be an admissible test function. Then for any

ǫ ∈ (0, sQ − s), there exists a constant Cǫ,s(Φ) ∈ (0,+∞), not depending on N ∈ N∗, such that

∣

∣eN (Φ, s)
∣

∣ ≤ Cǫ,s(Φ)

(

1

λ
(s0−s)/2
N+1

|u0|s0 +
1

λ
1−(sF+s+ǫ)/2
N+1

+
1

λ
1/2−s−ǫ
N+1

)

. (6.11)
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Proof. [Proof of Lemma 6.1] We use the factorization formula

ρN = Γ
(

ZN

)

,

where Γ is defined by (4.7) and ZN is the Gaussian process such that for all t ∈ [0, T ]

ZN (t) =

∫ t

0

(t− r)−ǫ/2e(t−r)A[B,PN ]dW (r).

To obtain a control of E‖ρN‖20,T,∞, it thus suffices to bound sup0≤t≤T E|ZN (t)|2
s
. For any

t ∈ [0, T ], by Itô’s formula from [6] which applies under the conditions of this section,

E|ZN (t)|2
s
=

∫ t

0

1

(t− r)ǫ
Tr
(

(−A)s/2e(t−r)A[B,PN ][B,PN ]T e(t−r)A(−A)s/2
)

dr

=

∫ t

0

1

(t− r)ǫ

∑

k∈Z

∣

∣(−A)s/2e(t−r)A[B,PN ]ek
∣

∣

2
dr

=

∫ t

0

1

(t− r)ǫ

∑

k,ℓ∈Z

∣

∣〈(−A)s/2e(t−r)A[B,PN ]ek, eℓ〉
∣

∣

2
dr

=
∑

k,ℓ∈Z

∫ t

0

∣

∣〈[B,PN ]ek, eℓ〉
∣

∣

2 λs

ℓe
−2λℓ(t−r)

(t− r)ǫ
dr.

Straightforward computations give

bek =
∑

ℓ∈Z

〈bek, eℓ〉eℓ =
∑

ℓ∈Z

bℓ−keℓ

∣

∣〈[B,PN ]ek, eℓ〉
∣

∣ = |bℓ−k|
(

1|k|>N1|ℓ|≤N + 1|k|≤N1|ℓ|>N

)

.

As a consequence, the following equality is satisfied: for any N ∈ N∗

E|ZN (t)|2
s
=
∑

|k|≤N

∑

|ℓ|>N

|bℓ−k|2
∫ t

0

λs

ℓe
−2λℓ(t−r)

(t− r)ǫ
dr

+
∑

|k|>N

∑

|ℓ|≤N

|bℓ−k|2
∫ t

0

λs

ℓe
−2λℓ(t−r)

(t− r)ǫ
dr. (6.12)

We now prove bounds on the terms of the right-hand side of (6.12). Note that there exists

Cǫ,s,T ∈ (0,+∞) such that for any ℓ ∈ Z

∫ t

0

λs

ℓe
−2λℓ(t−r)

(t− r)ǫ
dr ≤ Cǫ,s,T

λ1−s−ǫ
ℓ

≤ Cǫ,s,T

(|ℓ|+ 1)2(1−s−ǫ)
.

The first term in (6.12) is bounded as follows: for any N ∈ N∗

∑

|k|≤N

∑

|ℓ|>N

|bℓ−k|2
∫ t

0

λs

ℓe
−2λℓ(t−r)

(t− r)ǫ
dr

≤C
∑

|k|≤N

∑

|ℓ|>N

1

|ℓ− k|2m
1

(|ℓ|+ 1)2−2s−2ǫ
≤

+∞
∑

ℓ=N+1

C

ℓ2−2s−2ǫ

∑

k≤N

1

(ℓ− k)2m

≤ C

N2−2s−2ǫ

+∞
∑

ℓ=N+1

1

(ℓ−N)2m−1
≤ C

λ1−s−ǫ
N+1

,
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where the last series converges since 2m− 1 > 1.

The second term in (6.12) is bounded similarly: for any N ∈ N∗,

∑

|k|>N

∑

|ℓ|≤N

|bℓ−k|2
∫ t

0

λs

ℓe
−2λℓ(t−r)

(t− r)ǫ
dr

≤C
∑

|k|>N

∑

|ℓ|≤N

1

|ℓ− k|2m
1

(|ℓ|+ 1)2−2s−2ǫ
≤ C

+∞
∑

k=N+1

∑

|ℓ|≤N

1

(k − ℓ)2m
1

(|ℓ|+ 1)2−2s−2ǫ
.

On the one hand,

+∞
∑

k=N+1

∑

−N≤ℓ≤N/2

1

(k − ℓ)2m
1

(|ℓ|+ 1)2−2s−2ǫ
≤

+∞
∑

k=N+1

CN

k2m
≤ C

N2m−2
≤ C

λm−1
N+1

.

On the other hand,

+∞
∑

k=N+1

N
∑

ℓ=N/2

1

(k − ℓ)2m
1

(ℓ+ 1)2−2s−2ǫ
≤ C

N2−2s−2ǫ

+∞
∑

j=1

j

j2m
≤ C

λ1−s−ǫ
N+1

,

since 2m− 1 > 1. Thus for any t ∈ [0, T ]

E|ZN (t)|2
s
≤ C

C

λ1−s−ǫ
N+1

.

This concludes the proof of Lemma 6.1. �
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