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Abstract

An algorithmic framework, based on the difference of convex functions algorithm (D-

CA), is proposed for minimizing a class of concave sparse metrics for compressed sensing

problems. The resulting algorithm iterates a sequence of ℓ1 minimization problems. An

exact sparse recovery theory is established to show that the proposed framework always

improves on the basis pursuit (ℓ1 minimization) and inherits robustness from it. Numerical

examples on success rates of sparse solution recovery illustrate further that, unlike most

existing non-convex compressed sensing solvers in the literature, our method always out-

performs basis pursuit, no matter how ill-conditioned the measurement matrix is. More-

over, the iterative ℓ1 (IL1) algorithm lead by a wide margin the state-of-the-art algorithms

on ℓ1/2 and logarithimic minimizations in the strongly coherent (highly ill-conditioned)

regime, despite the same objective functions. Last but not least, in the application of

magnetic resonance imaging (MRI), IL1 algorithm easily recovers the phantom image with

just 7 line projections.

Mathematics subject classification: 90C26, 65K10, 49M29.

Key words: Compressed sensing, Non-convexity, Difference of convex functions algorithm,
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1. Introduction

Compressed sensing (CS) techniques [5, 6, 8, 17] enable efficient reconstruction of a sparse

signal under linear measurements far less than its physical dimension. Mathematically, CS

aims to recover an n-dimensional vector x̄ ∈ R
n with few non-zero components from an under-

determined linear system Ax = Ax̄ of just m ≪ n equations, where A ∈ R
m×n is a known

measurement matrix. The first CS technique is the convex ℓ1 minimization or the so-called

basis pursuit [15]:

min
x∈Rn

‖x‖1 s.t. Ax = Ax̄. (1.1)

Breakthrough results [8] have established that when matrix A satisfies certain restricted isom-

etry property (RIP), the solution to (1.1) is exactly x̄. It was shown that with overwhelming

probability, several random ensembles such as random Gaussian, random Bernoulli, and random

partial Fourier matrices, are of RIP type [8,13,32]. Note that (1.1) is just a minimization prin-

ciple rather than an algorithm for retrieving x̄. Algorithms for solving (1.1) and its associated
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440 P.H. YIN AND J. XIN

ℓ1 regularization problem [36]:

min
x∈Rn

1

2
‖Ax− b‖2 + λ‖x‖1 (1.2)

include Bregman methods [24, 43], alternating direction algorithms [3, 18, 40], iterative thresh-

olding methods [1, 14] among others [25].

Inspired by the success of basis pursuit, researchers then began to investigate various non-

convex CS models and algorithms. More and more empirical studies have shown that non-

convex CS methods usually outperform basis pursuit when matrix A is RIP-like, in the sense

that they require fewer linear measurements to reconstruct signals of interest. Instead of mini-

mizing ℓ1 norm, it is natural to consider minimization of non-convex (concave) sparse metrics,

for instance, ℓq (quasi-)norm (0 < q < 1) [11, 12, 27], capped-ℓ1 [30, 45], and transformed-

ℓ1 [28,44]. Another category of CS methods in spirit rely on support detection of x̄. To name a

few, there are orthogonal matching pursuit (OMP) [37], iterative hard thresholding (IHT) [2],

(re)weighted-ℓ1 scheme [7], iterative support detection (ISD) [38], and their variations [26,31,46].

On the other hand, it has been proved that even if A is not RIP-like and contains highly

correlated columns, basis pursuit still enables sparse recovery under certain conditions of x̄

involving its support [4]. In this scenario, most of the existing non-convex CS methods, however,

are not that robust to the conditioning of A, as suggested by [41]. Their success rates will drop

as columns of A become more and more correlated. In [41], based on the difference of convex

functions algorithm (DCA) [34,35], the authors propose DCA-ℓ1−2 for minimizing the difference

of ℓ1 and ℓ2 norms [19, 42]. Extensive numerical experiments [29, 30, 41] imply that DCA-ℓ1−2

algorithm consistently outperforms ℓ1 minimization, irrespective of the conditioning of A.

Stimulated by the empirical evidence found in [29,30,41], we propose a general DCA-based

CS framework for the minimization of a class of concave sparse metrics. More precisely, we

consider the reconstruction of a sparse vector x̄ ∈ R
n by minimizing sparsity-promoting metrics:

min
x∈Rn

P (|x|) s.t. Ax = Ax̄. (1.3)

Throughout the paper, we assume that P (x) always takes the form
∑n

i=1 p(xi) unless otherwise

stated, where p defined on [0,+∞) satisfies:

• p is concave and increasing.

• p is continuous with the right derivative p′(0+) > 0.

The first condition encourages zeros in |x| rather than small entries, since p changes rapidly

around the origin; the second one is imposed for the good of the proposed algorithm, as will be

seen later. A number of sparse metrics in the literature enjoy the above properties, including

smoothly clipped absolute deviation (SCAD) [20], capped-ℓ1, transformed-ℓ1, and of course ℓ1
itself. Although ℓq (q ∈ (0, 1)) and logarithm functional do not meet the second condition,

their smoothed versions p(t) = (t + ε)q and p(t) = log(t + ε) are differentiable at zero. These

proposed properties will be essential in the algorithm design as well as in the proof of main

results.

Our proposed algorithm calls for solving a sequence of minimization subproblems. The

objective of each subproblem is ‖x‖1 plus a linear term, which is convex and tractable. We

further validate robustness of this framework, by showing theoretically and numerically that it

performs at least as well as basis pursuit in terms of uniform sparse recovery, independent of

the conditioning of A and sparsity metric.
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The paper is organized as follows. In Section 2, we overview RIP and coherence of sensing

matrices, as well as descent property of DCA. In Section 3, we provide the iterated ℓ1 framework

for non-convex minimization, with worked out examples on representative sparse objectives

including the total variation. In Section 4, we prove the main exact recovery results based on

unique recovery property of ℓ1 minimization instead of RIP, which forms a theoretical basis

of the better performance of DCA. In Section 5, we compare iterative ℓ1 algorithms with two

state-of-the-art non-convex CS algorithms, IRLS-ℓq [27] and IRL1 [7], and ADMM-ℓ1, in CS test

problems with varying degree of coherence. We find that iterative ℓ1 outperforms ADMM-ℓ1
independent of the sensing matrix coherence, and leads IRLS-ℓq [27] and IRL1 [7] in the highly

coherent regime. This is consistent with earlier findings of DCA-ℓ1−2 algorithm [29, 30, 41]

to which our theory also applies. We also evaluate these two non-convex metrics on a two-

dimensional example of reconstructing MRI from a small number of projections, our iterative

ℓ1 algorithm succeed with 7 projections for both metrics. Using the same objective functions,

the state-of-the-art algorithms need at least 10 projections. Concluding remarks are in Section

6.

Notations. Let us fix some notations. For any x, y ∈ R
n, 〈x, y〉 = xTy is their inner

product. 0 ∈ R
n is the vector of zeros, and similar to 1. ◦ is Hadamard (entry-wise) product,

meaning that x◦ y =
∑n

i xiyi. Im is the identity matrix of dimension m. For any function g on

R
n, ∇g(x) ∈ ∂g(x) is a subgradient of g at x. The sgn(x) is the signum function on R

n defined

as

(sgn(x))i :=

{

xi

|xi|
if xi 6= 0,

0 if xi = 0.

For any set Ω ⊆ R
n, ιΩ(x) is given by

ιΩ(x) :=

{

0 if x ∈ Ω,

∞ if x 6∈ Ω.

2. Preliminaries

The well-known CS concept during the past decade is the restricted isometry property

(RIP) introduced by Candès et al. [8], which is used to characterize matrices that are nearly

orthonormal.

Definition 2.1. For each number s, s-restricted isometry constant of A is the smallest δs ∈
(0, 1) such that

(1 − δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22
for all x ∈ R

n with sparsity of s. The matrix A is said to satisfy the s-RIP with δs.

Mutual coherence [15] is another commonly-used concept closely related to the success of CS

task.

Definition 2.2. The coherence of a matrix A is the maximum absolute value of the cross-

correlations between the columns of A, namely

µ(A) := max
i6=j

|AT
i Aj |

‖Ai‖2‖Aj‖2
.
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When matrix A has small mutual coherence (incoherent) or small RIP constant, its columns

tend to be more separated or distinguishable, which is intuitively favorable to identification of

the supports of target signal. On the other hand, a highly coherent matrix with large coherence

poses challenge to the reconstruction.

Next we give a brief review on the difference of convex functions algorithm (DCA). DCA

has been widely applied to sparse optimization problems in several works [19,23,28,30,41]. For

an objective function F (x) = G(x) −H(x) on the space R
n, where G(x) and H(x) are lower

semicontinuous proper convex functions, we call G−H a DC decomposition of F .

DCA takes the following form

{

y(k) ∈ ∂H(x(k))

x(k+1) = argminx∈Rn G(x)− (H(x(k)) + 〈yk, x− xk〉)

Since y(k) ∈ ∂H(x(k)), by the definition of subgradient, we have

H(xk+1) ≥ H(xk) + 〈yk, xk+1 − xk〉.

Consequently,

G(x(k))−H(x(k)) ≥ G(x(k+1))− (H(x(k)) + 〈y(k), x(k+1) − x(k)〉) ≥ G(x(k+1))−H(x(k+1)).

The fact that x(k+1) minimizes G(x)− (H(x(k))+ 〈yk, x−x(k)〉) was used in the first inequality

above. Therefore, DCA permits a decreasing sequence {F (x(k))}, leading to its convergence

provided F (x) is bounded from below.

3. Iterative ℓ1 Framework

Our proposed iterative ℓ1 framework for solving (1.3) is built on ℓ1 minimization and DCA.

Note that (1.3) can be equivalently written as

min
x∈Rn

P (|x|) + ι{x:Ax=Ax̄}(x).

We then rewrite the above objective in DC decomposition form:

P (|x|) + ι{x:Ax=Ax̄}(x) = (p′(0+)‖x‖1 + ι{x:Ax=Ax̄}(x))− (p′(0+)‖x‖1 −
n
∑

i=1

p(|xi|))

Clearly the first term on the right-hand side is convex in terms of x. We show below that the

second term is also a convex function.

Proposition 3.1. p′(0+)‖x‖1 −
∑n

i=1 p(|xi|) is convex in x.

Proof. For notational convenience, define f(t) := p′(0+)t−p(t) on [0,∞). Since p is concave

on [0,∞), we have that f is convex on [0,∞). We only need to show that f(| · |) is convex on

R, or equivalently, for all t1, t2 ∈ R, a ∈ (0, 1),

f(|at1 + (1− a)t2|) ≤ af(|t1|) + (1− a)f(|t2|).

Case 1. If t1 and t2 have the same sign or one of them is 0. Since f(|at1 + (1 − a)t2|) =
f(a|t1|+ (1− a)|t2|) and f is convex on [0,∞), then the above inequality holds.

OPEN ACCESS

DOI https://doi.org/10.4208/jcm.1610-m2016-0620 | Generated on 2024-12-19 04:08:50



Iterative ℓ1 Minimization for Non-Convex Compressed Sensing 443

Case 2. If t1 and t2 are of the opposite sign. By the concavity of p on [0,∞), we have

p(t) ≤ p(0) + p′(0+)t, ∀t > 0,

that is, f(t) ≥ f(0) for all t > 0. Without loss of generality, we suppose a|t1| ≥ (1 − a)|t2|.
Then

f(|at1 + (1− a)t2|) = f(a|t1| − (1− a)|t2|)

≤(1 − a)(|t1|+ |t2|)
|t1|

f(0) +
a|t1| − (1 − a)|t2|

|t1|
f(|t1|)

≤(1 − a)f(|t2|) +
(1− a)|t2|

|t1|
f(|t1|) +

a|t1| − (1− a)|t2|
|t1|

f(|t1|)

=af(|t1|) + (1− a)f(|t2|)

In the first inequality above, we used the convexity of f on [0,∞), whereas in the second one,

we used the fact that f(t) ≥ f(0) for t > 0. �

At the (k + 1)th iteration, DCA calls for linearization of the second convex term at the

current guess x(k), and solving the resulting convex subproblem for x(k+1). After converting

back the linear constraint and removing the constant and the factor of p′(0+), we iterate:

x(k+1) = argmin
x

‖x‖1 − 〈R(x(k)), x〉 s.t. Ax = Ax̄, (3.1)

where

R(x) := sgn(x) ◦ (1− P ′(|x|)
p′(0+)

) ∈ ∂(‖ · ‖1 −
P (| · |)
p′(0+)

)(x).

Be aware that P ′(|x|) ∈ ∂P (·)(|x|) denotes subgradient of P at |x| rather than subgradient of

P (| · |) at x. In this way, the subproblem reduces to minimizing ‖x‖1 plus a linear term of x,

which can be effciently solved by a variety of state-of-the-art algorithms for basis pursuit (with

minor modifications). In Table 3.1, we list some non-convex metrics and the corresponding

iterative ℓ1 algorithm.

Table 3.1: Examples of sparse metrics and associated iterative ℓ1 scheme.

sparse metric p(t) p′(0+) (R(x))i
capped-ℓ1 min{t, θ}, θ > 0 1 sgn(xi)ι|xi|≥θ

transformed-ℓ1
(θ+1)t
t+θ

, θ > 0 θ+1
θ

sgn(xi)(1− ( θ
|xi|+θ

)2)

smoothed log log(t+ ε), ε > 0 1
ε

sgn(xi)(1− ε
|xi|+ε

)

smoothed ℓq (t+ ε)q, ε > 0 qεq−1 sgn(xi)(1− ( ε
|xi|+ε

)1−q)

For initialization, we take x(0) = R(x(0)) = 0, which is basically ℓ1 minimization. The

proposed algorithm is thus summarized in Algorithm 3.1 below. Due to the descending property

of DCA, Algorithm 3.1 produces a convergent sequence {P (x(k))}. Beyond that, we shall not

prove any stronger convergence result on the iterates {xk} itself in this paper. The reason is that

the convergence analysis may vary individually by choice of sparse metric. We refer the readers

to [41] and [44], in which subsequential convergence of {x(k)} is established for DCA-ℓ1−2 and

DCA-transformed-ℓ1 respectively.
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Algorithm 3.1 Iterative ℓ1 minimization

Initialize: x(0) = 0.

for k = 1, 2, . . . do

y(k) = sgn(x(k)) ◦ (1− P ′(|x(k)|)
p′(0+) )

x(k+1) = argminx ‖x‖1 − 〈y(k), x〉 s.t. Ax = Ax̄

end for

Extensions. Two natural extensions of (1.3) are regularized model:

min
x∈Rn

1

2
‖Ax− b‖22 + λP (|Dx|), (3.2)

and denoising model:

min
x∈Rn

P (|Dx|) s.t. ‖Ax− b‖2 ≤ σ, (3.3)

where b is the measurement, D is a general matrix, and λ, σ > 0 are parameters. They find

applications in magnetic resonance imaging [5], total variation denoising [33] and so on. We

can show that DC decomposition of P (|Dx|) is

P (|Dx|) = p′(0+)‖Dx‖1 − (p′(0+)‖Dx‖1 − P (|Dx|)). (3.4)

The iterative ℓ1 frameworks are detailed in Algorithms 3.2 and 3.3 respectively.

Algorithm 3.2 Iterative ℓ1 regularization

Initialize: x(0) = 0.

for k = 1, 2, . . . do

y(k) = DT
(

sgn(Dx(k)) ◦ (1− P ′(|Dx(k)|)
p′(0+) )

)

x(k+1) = argminx
1
2‖Ax− b‖22 + λp′(0+)(‖Dx‖1 − 〈y(k), x〉)

end for

Algorithm 3.3 Iterative ℓ1 denoising

Initialize: x(0) = 0.

for k = 1, 2, . . . do

y(k) = DT
(

sgn(Dx(k)) ◦ (1− P ′(|Dx(k)|)
p′(0+) )

)

x(k+1) = ‖Dx‖1 − 〈y(k), x〉 s.t. ‖Ax− b‖2 ≤ σ

end for

4. Recovery Results

Although in general global minimum is not guaranteed in minimization, we can show that

its performance is provably robust to the conditioning of measurement matrix A, by proving

that it always tends to sharpen ℓ1 solution.

Let us take another look at the assumptions on p which were crucial in the proof of Propo-

sition 3.1. Since p is concave and increasing on [0,∞), we have

0 ≤ (
P ′(|x|)
p′(0+)

)i ≤ 1, ∀x ∈ R, 1 ≤ i ≤ n,
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and thus ‖R(x)‖∞ ≤ 1. Now we are ready to show the main results.

Theorem 4.1 (Support-wise uniform recovery) Let T ⊆ {1, . . . , n} be an arbitrary but

fixed index set. If basis pursuit uniquely recovers all x̄ supported on T , so does (3.1).

Proof. By the assumption that basis pursuit uniquely recovers all x̄ supported on T , and

by the well-known null space property [22] for ℓ1 minimization, we must have

‖hT ‖1 < ‖hT c‖1, ∀h ∈ Ker(A) \ {0},

and x(1) = x̄ in (3.1). The 2nd step of DCA reads

x(2) = argmin ‖x‖1 − 〈R(x̄), x〉 s.t. Ax = Ax̄.

Let x(2) = x̄+ h(2), then

‖x̄‖1 − 〈R(x̄), x̄〉 ≥ ‖x̄+ h(2)‖1 − 〈R(x̄), x̄ + h(2)〉
=⇒ ‖x̄‖1 − 〈R(x̄), x̄〉 ≥ ‖x̄‖1 + 〈sgn(x̄), h(2)

T 〉+ ‖h(2)
T c ‖1 − 〈R(x̄), x̄+ h

(2)
T 〉

⇐⇒− 〈sgn(x̄)−R(x̄), h
(2)
T 〉 ≥ ‖h(2)

T c ‖1

⇐⇒− 〈sgn(x̄) ◦ P ′(|x̄|)
p′(0+)

, h
(2)
T 〉 ≥ ‖h(2)

T c ‖1

Since ‖P ′(|x̄|)
p′(0+) ‖∞ ≤ 1, we have

‖h(2)
T ‖1 ≥ ‖h(2)

T c ‖1.

As a result, h(2) must be 0.

If nonzero entries of x̄ have the same magnitude, a stronger result holds that (3.1) recovers

any fixed signal whenever basis pursuit does. �

Theorem 4.2 (Recovery of equal-height signals) Let x̄ be a signal with equal-height peaks

supported on T , i.e.

|xi| = |xj |, ∀i, j ∈ T.

If the basis pursuit uniquely recovers x̄, so does (3.1).

Proof. If basis pursuit uniquely recovers x̄, then for all h ∈ Ker(A) \ {0},

‖x̄‖1 < ‖x̄+ h‖1 = ‖x̄+ hT ‖1 + ‖hT c‖1.

This implies that for all h ∈ Ker(A) \ {0} and

‖h‖∞ ≤ min
i∈T

|x̄i|, ‖x̄‖1 < ‖x̄+ hT ‖1 + ‖hT c‖1 = ‖x̄‖1 + 〈sgn(x̄), hT 〉+ ‖hT c‖1.

So for all h ∈ Ker(A) \ {0} and ‖h‖∞ ≤ mini∈T |x̄i|, we have −〈sgn(x̄), hT 〉 < ‖hT c‖1.
Therefore,

−〈sgn(x̄), hT 〉 < ‖hT c‖1, ∀h ∈ Ker(A) \ {0}, (4.1)

and also x(1) = x̄.
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We let x(2) = x̄+ h(2), and suppose that h(2) 6= 0. Repeating the argument in Theorem 4.1

and by (4.1), we arrive at

−〈sgn(x̄) ◦ P ′(|x̄|)
p′(0+)

, h
(2)
T 〉 ≥ ‖h(2)

T c ‖1 > −〈sgn(x̄), h(2)
T 〉.

Since peaks of x̄ have equal height, (P
′(|x̄|)

p′(0+) )i ∈ [0, 1) is a constant for all i ∈ T . So −〈sgn(x̄) ◦
P ′(|x̄|)
p′(0+) , h

(2)
T 〉 is non-negative and less than −〈sgn(x̄), h(2)

T 〉, which leads to a contradiction. �

Remark 4.1. Although the conditions proposed in Section 1 are not applicable to the metric

ℓ1−2 since it is not separable, it is not hard to generalize these conditions and iterative ℓ1
algorithm to accommodate this case. The resulting algorithm is exactly DCA-ℓ1−2 in [41]. We

can also readily extend the recovery theory to DCA-ℓ1−2, with P (x) = ‖x‖1 − ‖x‖2 and

R(x) =

{

x
‖x‖2

if x 6= 0,

0 if x = 0.

Theorem 4.1 provides a theoretical explanation for the experimental observations made in

[29, 30, 41] that DCA-ℓ1−2 performs consistently better than ℓ1 minimization.

5. Numerical Experiments

5.1. Exact recovery of sparse vectors

We reconstruct sparse vector x̄ using iterative ℓ1 algorithm (Algorithm 3.2 with D = In) for

minimizing the regularized model (3.2) with smoothed ℓq norm (IL1-ℓq) and smoothed logarithm

functional (IL1-log), and compare them with two state-of-the-art non-convex CS algorithms,

namely IRLS-ℓq [27] and IRL1 [7]. Note that IRLS-ℓq and IRL1 attempt to minimize ℓq and

logarithm, respectively, and both involve a smoothing strategy in minimization. So it would

be particularly interesting to compare IL1-ℓq with IRLS-ℓq, and IL1-log with IRL1. q = 0.5

is chosen for IRLS-ℓq and IL1-ℓq in all experiments. We shall also include ADMM-ℓ1 [3] for

solving ℓ1 regularization (LASSO) in comparison.

Experiments are carried out as follows. We first sample a sensing matrix A ∈ R
m×n,

and generate a test signal x̄ ∈ R
n of sparsity s supported on a random index set with i.i.d.

Gaussian entries. We then compute the measurement Ax̄ and apply each solver to produce a

reconstruction x∗ of x̄. The reconstruction is called a success if

‖x∗ − x̄‖2
‖x̄‖2

< 10−3.

We run 100 independent realizations and record the corresponding success rates at different

sparsity levels.

Matrix for test. We test on random Gaussian matrix whose columns satisfy

Ai
i.i.d.∼ N (0, Im/m), i = 1, · · · , n

Gaussian matrices are RIP-like and have uncorrelated (incoherent) columns. For Gaussian

matrix, we choose m = 64 and n = 256.

OPEN ACCESS

DOI https://doi.org/10.4208/jcm.1610-m2016-0620 | Generated on 2024-12-19 04:08:50



Iterative ℓ1 Minimization for Non-Convex Compressed Sensing 447

We also use more ill-conditioned sensing matrix of significantly higher coherence. Specifi-

cally, a randomly oversampled partial DCT matrix A is defined as

Ai =
1√
m

cos(2iπξ/F ), i = 1, · · · , n

where ξ ∈ R
m ∼ U([0, 1]m) whose components are uniformly and independently sampled from

[0,1]. F ∈ N is the refinement factor. Coherence µ(A) goes up as F increases. In this setting, it

is still possible to recover the sparse vector x̄ if its spikes are sufficiently separated. Specifically,

we randomly select a T (support of x̄) so that

min
j,k∈T

|j − k| ≥ L,

where L is called the minimum separation. It is necessary for L to be at least 1 Rayleigh length

(RL) which is unity in the frequency domain [16, 21]. In our case, the value of 1 RL equals

F . The testing matrix A ∈ R
100×1500, i.e. m = 100, n = 1500. We test at three coherence

levels with F = 5, 10, 15. Note that µ(A) ≈ 0.95 for F = 5, µ(A) ≈ 0.998 for F = 10, and

µ(A) ≈ 0.9996 for F = 15. We also set L = 2F in experiments.

Algorithm implementation. For ADMM-ℓ1, we let λ = 10−6, β = 1 , ρ = 10−5,

ǫabs = 10−7, ǫrel = 10−5, and the maximum number of iterations maxiter = 5000 [3, 41].

For IRLS-ℓq, maxiter = 1000, tol= 10−8. For rewighted ℓ1, the smoothing parameter ε is

adaptively updated as introduced in [7], and the outer iteration criterion is stopped if the

relative error between two consecutive iterates is less than 10−2. The weighted ℓ1 minimization

subproblems is solved by the YALL1 solver (available at http://yall1.blogs.rice.edu/). The

tolerance for YALL1 was set to 10−6. All other settings of the algorithms are set to default

ones.

For IL1-ℓq, we let λ = 10−6, and the smoothing parameter ε = max{ |x(1)|(d)
3 , 0.01}, where

x(1) is the output from the first iteration, which is also the solution to LASSO. |x|(d) denotes the
dth largest entry of |x|. We set d to ⌊m

4 ⌋. For IL1-log, ε = max{|x(1)|(d), 0.01}. The subproblems

are solved by alternating direction method of multipliers (ADMM), which is detailed in [41].

The parameters for solving subproblems are the same as that for ADMM-ℓ1.

Interpretation of results. The plot of success rates is shown in Figure 5.1. When A is

Gaussian, we see that all non-convex CS solvers are comparable and much better than ADMM-

ℓ1, with IRLS-ℓq being the best. For oversampled DCT matrices, we see that the success rates

of IRLS-ℓq and IRL1 drop as F increases, whereas the proposed IL1-ℓq and IL1-log are robust

and consistently outperform ADMM-ℓ1.

5.2. MRI reconstruction

We present an example of reconstructing the shepp-Logan phantom image of size 256× 256,

to further demonstrate effectiveness of IL1 algorithm. In this application, the sparsity of the

gradient of the image/signal denoted by u is exploited, which leads to the following minimization

problem:

min
u

P (|∇u|) s.t. SFu = b,

where S denotes the sampling mask in the frequency domain, and F is the Fourier transform

and b the acquired data. With P (| · |) being the ℓ1 norm, the above formulation reduces to the
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Fig. 5.1. Plots of success rates for comparing the iterative ℓ1 with other CS algorithms under the

increasing coherence of the sensing matrices.

celebrated total variation (TV) minimization:

min
u

‖∇u‖1 s.t. SFu = b.

The above unconstrained problem together with its regularized problem

min
u

1

2
‖SFu− b‖22 + λ‖∇u‖1, (5.1)

can be sovled efficiently by split Bregman method [24], known to be equivalent to ADMM [18].

For general sparse metric P (or p), (3.4) gives the DC decomposition

P (|∇u|) = p′(0+)‖∇u‖1 − (p′(0+)‖∇u‖1 − P (|∇u|)),

and thus its IL1 algorithm for solving the regularized model takes the following form






w(k) = ∇T
(

sgn(∇u(k)) ◦ (1− P ′(|∇u(k)|)
p′(0+) )

)

u(k+1) = argminu
1
2‖SFu− b‖22 + λp′(0+)(‖∇u‖1 − 〈w(k), u〉).

Likewise the subproblem for updating u(k+1) above can also be solved by split Bregman, as the

objective only differs by a linear term compared with (5.1).
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7 sampled projections ℓ1, rel. error = 0.4832

IL1-ℓq, rel. error = 3.6× 10−9 IL1-log, rel. error = 4.8× 10−9

Fig. 5.2. Sampled lines and reconstructions for Shepp-Logan phatom image.

Numerical results. In the experiment, we again choose p to be the smoothed ℓq (q = 1
2 )

and smoothed log respectively for the IL1 algorithm, and set smoothing parameter ε = 0.1

and regularization parameter λ = 10−6 for both implementations. The reconstruction results

are shown in Figure 5.2. We find that 7 sampled projections are sufficient for both of the

two penalties to recover the phantom image perfectly, in comparison to ℓ1 (TV) minimization

which needs 10 projections for perfect image reconstruction by split Bregman. To the best of

our knowledge, the other existing non-convex solvers for minimizing either ℓq or log penalties

did no better than 10 projections [7, 9, 10].

6. Conclusions

We developed an iterative ℓ1 framework for a broad class of Lipschitz continuous non-convex

sparsity promoting objectives, including those arising in statistics. The iterative ℓ1 algorithm

is shown via theory and computation to improve on the ℓ1 minimization for CS problems

independent of the coherence of the sensing matrices.
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