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Abstract

This paper is concerned with developing accurate and efficient numerical methods for

one-dimensional fully nonlinear second order elliptic and parabolic partial differential equa-

tions (PDEs). In the paper we present a general framework for constructing high order

interior penalty discontinuous Galerkin (IP-DG) methods for approximating viscosity solu-

tions of these fully nonlinear PDEs. In order to capture discontinuities of the second order

derivative uxx of the solution u, three independent functions p1, p2 and p3 are introduced

to represent numerical derivatives using various one-sided limits. The proposed DG frame-

work, which is based on a nonstandard mixed formulation of the underlying PDE, embeds

a nonlinear problem into a mostly linear system of equations where the nonlinearity has

been modified to include multiple values of the second order derivative uxx. The proposed

framework extends a companion finite difference framework developed by the authors in [9]

and allows for the approximation of fully nonlinear PDEs using high order polynomials and

non-uniform meshes. In addition to the nonstandard mixed formulation setting, another

main idea is to replace the fully nonlinear differential operator by a numerical operator

which is consistent with the differential operator and satisfies certain monotonicity (called

g-monotonicity) properties. To ensure such a g-monotonicity, the crux of the construction

is to introduce the numerical moment, which plays a critical role in the proposed DG frame-

work. The g-monotonicity gives the DG methods the ability to select the mathematically

“correct” solution (i.e., the viscosity solution) among all possible solutions. Moreover, the

g-monotonicity allows for the possible development of more efficient nonlinear solvers as

the special nonlinearity of the algebraic systems can be explored to decouple the equations.

This paper also presents and analyzes numerical results for several numerical test problems

which are used to guage the accuracy and efficiency of the proposed DG methods.

Mathematics subject classification: 65N30, 65M60, 35J60, 35K55.
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1. Introduction

Fully nonlinear partial differential equations (PDEs) refer to a class nonlinear PDEs which

is nonlinear in the highest order derivatives of the unknown functions in the equations. Due
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108 X. FENG AND T. LEWIS

to their strong nonlinearity, this class of PDEs are most difficult to analyze analytically and to

approximate numerically. In the mean time, fully nonlinear PDEs arise in many applications

such as antenna design, astrophysics, differential geometry, fluid mechanics, image processing,

meteorology, mesh generation, optimal control, optimal mass transport, etc [8], which calls for

the development of efficient and reliable numerical methods for solving their underlying fully

nonlinear PDE problems.

This is the second paper in a series [9] which is devoted to developing finite difference (FD)

and discontinuous Galerkin (DG) methods for approximating viscosity solutions of the following

general one-dimensional fully nonlinear second order elliptic and parabolic equations:

F (uxx, ux, u, x) = 0, x ∈ Ω := (a, b), (1.1)

and

ut + F (uxx, ux, u, t, x) = 0, (x, t) ∈ ΩT := Ω× (0, T ], (1.2)

which are complemented by appropriate boundary and initial conditions. The goal of this paper

is to design and implement a class of interior penalty discontinuous Galerkin (IP-DG) methods

which is based on a nonstandard mixed formulation; the proposed IP-DG methods are named

mIP-DG methods. For the ease of presenting the main ideas and avoiding the technicalities,

in this paper we confine our attention to the one dimensional fully nonlinear second order

PDE problem. The generalization and extension to the high dimensional case of the mIP-DG

methods of this paper will be presented in a forthcoming work [11]. In fact, it will be seen later

that even in the one dimensional case, the construction and analysis of the proposed mIP-DG

methods is already quite complicated.

It is well known [8] that the primary challenges for approximating viscosity solutions of fully

nonlinear PDEs are caused by the very notion of viscosity solutions themselves (see section 2 for

the definition). Unlike the notion of weak solutions for linear and quasilinear PDEs, the notion of

viscosity solutions by design is non-variational, and, in general, viscosity solutions do not satisfy

the underlying PDEs in a tangible sense. The non-variational nature of viscosity solutions

immediately prevents any attempt to directly and straightforwardly construct Galerkin-type

(including DG) methods for approximating fully nonlinear PDEs; in other words, nonlinearity in

the highest order derivatives of the unknown function does not allow one to perform integration

by parts to transfer one order of derivatives to test functions as often done with linear and

quasilinear PDEs. Another big challenge for approximating viscosity solutions of fully nonlinear

PDEs is caused by the conditional uniqueness of viscosity solutions; namely, viscosity solutions

may only be unique in a restricted function class. Requiring numerical solutions to stay or

approximately stay in the same function class often imposes a difficult constraint for designing

numerical methods. Finally, we like to mention that as expected, solving the resulting strongly

nonlinear (algebraic) systems, regardless which discretization method is used, is another difficult

issue encountered with numerical fully nonlinear PDEs.

The mIP-DG methods proposed in this paper aim to approximate viscosity solutions of

(1.1) and (1.2) which belong to H1(Ω) in the spatial variable. We note that such a viscosity

still does not satisfy the underlying PDEs in a tangible sense. We also mention that in order to

approximate viscosity solutions that do not have H1 regularity in the spatial variable, we refer

the reader to a companion paper [12] in which we propose another class of more complicated

mixed discontinuous Galerkin that incorporates a local discontinuous Galerkin (LDG) approach

instead of the IP-DG approach. Such an alternate LDG approach is also more appropriate when

a more accurate approximation for ux is desired.
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MIP-DG Methods for Second Order Fully Nonlinear PDEs 109

Several novel ideas are utilized to design the mIP-DG methods in this paper which are

briefly described below. Since integration by parts, which is the necessary tool for constructing

any DG method, cannot be performed on equation (1.1), the first key idea is to introduce the

auxiliary variable p := uxx and rewrite the original fully nonlinear PDE as a system of PDEs:

F (p, ux, u, x) = 0, (1.3)

p− uxx = 0. (1.4)

Unfortunately, since uxx may not exist for a viscosity solution u ∈ H1(Ω), the above mixed

formulation may not make sense. To overcome this difficulty, the second key idea is to replace

p := uxx by three possible values of uxx, namely, the left and right limits, as well as their

average. Thus, we have

p1(x)− uxx(x−) = 0, (1.5)

p2(x)− uxx(xa) = 0, (1.6)

p3(x)− uxx(x+) = 0, (1.7)

where uxx(xa) can be thought of as the arithmetic average of uxx(x−) and uxx(x+). We remark

that (1.5) and (1.7) can be regarded as two “one-sided” Poisson problems in u, and (1.6) can

be thought of as the “regular” Poisson problem. To incorporate the multiple values of uxx,

equation (1.3) must be modified because F is only defined for a single value function p. To this

end, we need the third key idea of this paper, which is to replace (1.3) by

F̂ (p1, p2, p3, ux, u, x) = 0, (1.8)

where F̂ , which is called a numerical operator, should be some well-chosen approximation to F .

Natural questions that now arise are what are the criterions for F̂ , and how can such

a numerical operator F̂ be constucted? These are two immediate questions which must be

addressed. To do so, we need the fourth key idea of this paper, which is to borrow and adapt

the notion of the numerical operators from our previous work [9] where a general finite difference

framework has been developed for fully nonlinear second order PDEs. In summary, the criterions

for F̂ include consistency and g-monotonicity (generalized monotonicity), for which precise

definitions can be found in section 2. It should be pointed out that in order to construct the

desired numerical operator F̂ , a fundamental idea used in [9] is to introduce the concept of the

numerical moment, which can be regarded as a direct numerical realization for the moment

term in the vanishing moment methodology introduced in [13] (also see [8, section 4], [14]).

Finally, we need to design a DG discretization for the mixed system (1.5)–(1.8) to accomplish

the goal. The fifth key idea of this paper is to use different numerical fluxes in the formulations

of IP-DG methods for the “one-sided” Poisson problems (1.5) and (1.7) as well as for the

“regular” Poisson problem (1.6). We remark that, to the best of our knowledge, this is one of

a few scenarios in numerical PDEs where the flexibility and superiority (over other numerical

methodologies) of the DG methodology makes a vital difference.

The remainder of this paper is organized as follows. In Section 2 we collect some pre-

liminaries including the definition of viscosity solutions, the definitions of the consistency and

g-monotonicity of numerical operators, and the concept of the numerical moment. In Section

3 we present the detailed formulation of mIP-DG methods for fully nonlinear elliptic equation

(1.1) following the outline described above. In Section 4 we consider both explicit and implicit

in time fully discrete mIP-DG methods for fully nonlinear parabolic equation (1.2) based on
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the method of lines approach. Euler methods and more general Runge-Kutta methods com-

bined with the spatial mIP-DG methods will be specifically formulated. In Section 5 we present

many numerical experiments for the proposed mIP-DG methods and their fully discrete coun-

terparts for the parabolic equation (1.2). These numerical experiments verify the accuracy of

the proposed mIP-DG methods and also demonstrate the efficiency of these methods. Finally,

we complete the paper with a brief summary and some concluding remarks in Section 6.

2. Preliminaries

For a bounded open domain Ω ⊂ Rd, let B(Ω), USC(Ω) and LSC(Ω) denote, respectively,

the spaces of bounded, upper semicontinuous, and lower semicontinuous functions on Ω. For

any v ∈ B(Ω), we define

v∗(x) := lim sup
y→x

v(y) and v∗(x) := lim inf
y→x

v(y).

Then, v∗ ∈ USC(Ω) and v∗ ∈ LSC(Ω), and they are called the upper and lower semicontinuous

envelopes of v, respectively.

Given a bounded function F : Sd×d×Rd×R×Ω→ R, where Sd×d denotes the set of d×d
symmetric real matrices, the general second order fully nonlinear PDE takes the form

F (D2u,∇u, u, x) = 0, in Ω. (2.1)

Note that here we have used the convention of writing the boundary condition as a discontinuity

of the PDE (cf. [2, p.274]).

The following two definitions can be found in [2, 3, 7].

Definition 2.1. Equation (2.1) is said to be elliptic if for all (q, λ, x) ∈ Rd×R×Ω there holds

F (A,q, λ, x) ≤ F (B,q, λ, x), ∀A,B ∈ Sd×d, A ≥ B, (2.2)

where A ≥ B means that A−B is a nonnegative definite matrix.

We note that when F is differentiable, the ellipticity also can be defined by requiring that the

matrix ∂F
∂A is negative semi-definite (cf. [7, p. 441]).

Definition 2.2. A function u ∈ B(Ω) is called a viscosity subsolution (resp. supersolution) of

(2.1) if, for all ϕ ∈ C2(Ω), if u∗ − ϕ (resp. u∗ − ϕ) has a local maximum (resp. minimum) at

x0 ∈ Ω, then we have

F∗(D
2ϕ(x0),∇ϕ(x0), u∗(x0), x0) ≤ 0,

(resp. F ∗(D2ϕ(x0),∇ϕ(x0), u∗(x0), x0) ≥ 0). The function u is said to be a viscosity solution

of (2.1) if it is simultaneously a viscosity subsolution and a viscosity supersolution of (2.1).

We remark that if F and u are continuous, then the upper and lower ∗ indices can be

removed in Definition 2.2. The definition of ellipticity implies that the differential operator F

must be non-increasing in its first argument in order to be elliptic. It turns out that ellipticity

provides a sufficient condition for equation (2.1) to fulfill a maximum principle (cf. [3,7]). It is

clear from the above definition that viscosity solutions in general do not satisfy the underlying

PDEs in a tangible sense, and the concept of viscosity solutions is nonvariational. Such a
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solution is not defined through integration by parts against arbitrary test functions; hence, it

does not satisfy an integral identity. As pointed out in section 1, the nonvariational nature

of viscosity solutions is the main obstacle that prevents direct construction of Galerkin-type

methods, which are based on variational formulations.

The following definitions are adapted from [9] in the case d = 1.

Definition 2.3. (i) A function F̂ : R6 → R is called a numerical operator.

(ii) A numerical operator F̂ is said to be consistent (with the differential operator F ) if F̂

satisfies

lim inf
pk→p,k=1,2,3

q1→q,λ1→λ,ξ1→ξ

F̂ (p1, p2, p3, q1, λ1, ξ1) ≥ F∗(p, q, λ, ξ), (2.3)

lim sup
pk→p,k=1,2,3

q1→q,λ1→λ,ξ1→ξ

F̂ (p1, p2, p3, q1, λ1, ξ1) ≤ F ∗(p, q, λ, ξ), (2.4)

where F∗ and F ∗ denote respectively the lower and the upper semicontinuous envelopes of

F .

(iii) A numerical operator F̂ is said to be g-monotone if F̂ (p1, p2, p3, q, λ, ξ) is monotone in-

creasing in p1 and p3 and monotone decreasing in p2, that is, F̂ (↑, ↓, ↑, q, λ, ξ).

We note that the above consistency and g-monotonicity play a critical role in the finite

difference framework established in [9]. They also play an equally critical role in the mIP-DG

methods of this paper. We also note that in practice the consistency is easy to fulfill and to

verify, but the g-monotonicity is not. In order to ensure the g-monotonicity, one key idea of [9]

is to introduce the concept of the numerical moment to help. The following are two examples

of so-called Lax-Friedrichs-like numerical operators [9]:

F̂1(p1, p2, p3, q, λ, ξ) := F (p2, q, λ, ξ) + α1

(
p1 − 2p2 + p3

)
, (2.5)

F̂2(p1, p2, p3, q, λ, ξ) := F
(p1 + p2 + p3

3
, q, λ, ξ

)
+ α2

(
p1 − 2p2 + p3

)
, (2.6)

where α1 and α2 are undetermined positive constants and the last term in (2.5) and (2.6) is

called the numerical moment. It is trivial to verify that F̂1 and F̂2 are consistent with F . To

ensure F̂1 to be g-monotone, we need

α >
1

2

∣∣∣∣ ∂F∂u′′
∣∣∣∣ , (2.7)

assuming adequate regularity for the operator F . We remark that it is natural to require that

F̂1 is decreasing in p2 because by the definition of ellipticity, F is decreasing in u′′.

3. Formulation of mIP-DG Methods for Elliptic Problems

We first consider the elliptic problem (1.1) with boundary conditions

u(a) = ua and u(b) = ub, (3.1)

for two given constants ua and ub.
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Let {xj}Jj=0 ⊂ Ω be a mesh for Ω such that x0 = a and xJ = b. Define Ij = (xj−1, xj) and

hj = xj − xj−1 for all j = 1, 2, . . . , J , h0 = hJ+1 = 0 and h = max1≤j≤J hj . Let Th denote the

collection of the intervals {Ij}Jj=1 which form a partition of the domain Ω. We also introduce

the broken H1-space

H1(Th) :=
∏
I∈Th

H1(I)

and the broken L2-inner product

(v, w)Th :=

J∑
j=1

∫
Ij

vw dx, ∀v, w ∈ H1(Th).

For a fixed integer r ≥ 1, we define the standard DG finite element space V h ⊂ H1(Th) ⊂ L2(Th)

by

V h :=
∏
I∈Th

Pr(I),

where Pr(I) denotes the set of all polynomials on I with degree not exceeding r. We also

introduce the following standard jump and average notations:

[vh(xj)] := vh(x−j )− vh(x+
j ), for j = 1, 2, · · · , J − 1,

[vh(x0)] := −vh(x0), [vh(xJ)] := vh(xJ);

{vh(xj)} :=
1

2

(
vh(x−j ) + vh(x+

j )
)
, for j = 1, 2, · · · , J − 1,

{vh(x0)} := vh(x0), {vh(xJ)} := vh(xJ).

It is trivial to verify the following so-called “magic formulas”:

[v(xj)w(xj)] = v(x−j )[w(xj)] + [v(xj)]w(x+
j ), (3.2)

[v(xj)w(xj)] = {v(xj)}[w(xj)] + [v(xj)]{w(xj)}, (3.3)

[v(xj)w(xj)] = v(x+
j )[w(xj)] + [v(xj)]w(x−j ). (3.4)

Let γ0i > 0 for i = 1, 2, 3 denote interior penalty parameters. It will be clear later that

to avoid redundancy of three equations for p1, p2 and p3, we need to require that γ02 >

max {γ01, γ03}. Define the interior penalty terms

J0i (v, w) =

J∑
j=0

γ0i

hj,j+1
[v (xj)] [w (xj)] , (3.5)

for i = 1, 2, 3, where

hj,j+1 = max {hj , hj+1} , for j = 0, 1, 2, . . . , J.

We now are ready to formulate our DG discretizations for equations (1.5)–(1.8). First, for

(fully) nonlinear equation (1.8) we simply approximate it by its broken L2-projection into V h,

namely,

a0

(
uh, p1h, p2h, p3h;φ0h

)
= 0, ∀φ0h ∈ V h, (3.6)

where

a0(u, p1, p2, p3;φ0) =
(
F̂ (p1, p2, p3, u

′, u, ·), φ0

)
Th
.
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Next, we discretize the three linear equations (1.5)–(1.7). Notice that for given “sources”

{pi}3i=1, (1.5)–(1.7) are three (different) Poisson equations for u. Thus, we can use the standard

IP-DG formulation for the Laplacian operator to discretize these equations. However, there is a

crucial distinction for doing so on the three equations. We use, respectively, “magic formulas”

(3.2), (3.3), and (3.4) when we add the local integration by parts formula to handle the jump

terms at the interior nodes. To realize the above strategy, we define the bilinear forms bi :

H1(Th)×H1(Th)→ R by

bi(v, w) := (v′, w′)Th + v′(a)w(a)− ε v(a)w′(a)− v′(b)w(b) (3.7)

+ ε v(b)w′(b) + J0i(v, w) ∀v, w ∈ H1 (Th) , i = 1, 2, 3,

where ε ∈ {−1, 0, 1} is often called the “symmetrization” parameter [19]. Note, bi is symmetric

if ε = −1, nonsymmetric if ε = 1, and incomplete if ε = 0. Using the bilinear forms bi, we define

the following DG discretizations of (1.5)–(1.7):

ai(uh, pih;φih) = fi(φih), ∀φih ∈ V h, i = 1, 2, 3, (3.8)

where

a1(u, p1;φ1) = (p1, φ1)Ω + b1(u, φ1)−
J−1∑
j=1

(
u′(x−j )

[
φ1(xj)

]
− ε
[
u(xj)

]
φ′1(x−j )

)
,

a2(u, p2;φ2) = (p2, φ2)Ω + b2(u, φ2)−
J−1∑
j=1

({
u′(xj)

}[
φ2(xj)

]
− ε
[
u(xj)

]{
φ′2(xj)

})
,

a3(u, p3;φ3) = (p3, φ3)Ω + b3(u, φ3)−
J−1∑
j=1

(
u′(x+

j )
[
φ3(xj)

]
− ε
[
u(xj)

]
φ′3(x+

j )
)
,

and

fi(φi) =
( γ0i

h0,1
φi(a)− ε φ′i(a)

)
ua +

( γ0i

hJ,J+1
φi(b) + ε φ′i(b)

)
ub,

for i = 1, 2, 3.

In summary, our mIP-DG methods for the fully nonlinear Dirichlet problem (1.1), (1.2),

and (3.1) are defined as seeking
(
uh, p1h, p2h, p3h

)
∈ [V h]4 such that (3.6) and (3.8) hold.

We conclude this section with a few remarks.

Remark 3.1. (a) Looking backwards, (3.8) provides a proper interpretation for each of p1h,

p2h, and p3h for a given function uh. Each pih defines a discrete second order derivative of uh.

The functions p1h, p2h, and p3h should be very close to each other if uxx exists; however, their

discrepancies are expected to be large if uxx does not exist. p1h, p2h, and p3h defined by (3.8)

can be regarded as high order extensions of their lower order counterparts defined in [9].

(b) It is easy to check that the three equations defined by (3.8) are linearly independent

provided that γ02 > max {γ01, γ03}.
(c) The reason for r 6= 0 can be explained as follows. When r = 0, the piecewise constant

basis functions have piecewise zero derivatives on the given mesh. After eliminating the jump

terms containing derivatives in (3.8), it is clear that the ability for p1 and p3 to carry information

from the left and the right, respectively, is lost. Furthermore, if γ01 = γ02 = γ03, then a1 =

a2 = a3, which in turn implies that on a uniform mesh, p1h = p2h = p3h. In fact, the variables

are all equal to the centered difference approximation for the second order derivative of uh. As a
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result, the numerical moment term vanishes and we are left with the standard three-point finite

difference approximation for (1.1) and (3.1). On the other hand, when r ≥ 1, the numerical

operator maintains the directional interpretations for p1 and p3, allowing the numerical operator

to take advantage of the numerical moment.

(e) Notice that (3.6)–(3.8) is a nonlinear system of equations, with the nonlinearity only

appearing in a0. Thus, a nonlinear solver is necessary in implementing the above scheme. In

section 5, an iterative method is used with initial guess given by projecting the secant line

resulting from the boundary conditions into V h. Since a good initial guess is essential for most

nonlinear solvers to converge, another possibility is to first linearize the nonlinear operator and

solve the resulting linear system first. However, we show in our numerical tests that the simple

initial guess works well in many cases. We suspect that the g-monotonicity of F̂ enlarges the

domain of “good” initial values over which the iterative method converges.

4. Formulation of Fully Discrete mIP-DG Methods for Parabolic

Problems

The goal of this section is to extend our mIP-DG methods to solving the initial-boundary

value problem for (1.2) using the method of lines. Let the initial condition be given by

u(0, x) = u0(x), ∀x ∈ Ω, (4.1)

and the boundary conditions be given by

u(t, a) = ua(t), u(t, b) = ub(t), ∀t ∈ (0, T ). (4.2)

For the ease of the presentation, we first consider the forward and backward Euler methods.

Next, we present generic Runge-Kutta methods.

For a fixed integer M > 0, let ∆t = T
M be the time-step size. Define tn := n∆t for

n = 0, 1, · · · ,M . Then, the forward Euler method (in operator form) for (1.2) is defined by

seeking un+1 : Ω→ R such that

un+1 = un −∆t F (unxx, u
n
x , u

n, tn, ·) , in Ω, (4.3)

and the standard backward Euler method (in operator form) for (1.2) is defined by seeking

un+1 : Ω→ R such that

un+1 = un −∆t F
(
un+1
xx , un+1

x , un+1, tn+1, ·
)
, in Ω, (4.4)

for n = 0, 1, . . . ,M − 1, where

u0 = u0, in Ω.

The compatibility condition between the initial and boundary data immediately implies that

un(a) = ua(tn), un(b) = ub(t
n), n = 1, 2, · · · ,M. (4.5)

We next apply the mIP-DG framework developed in the previous section to equations (4.3)

and (4.4) for their spatial discretizations. We present these two cases separately below because

they require different treatments and involve different technicalities.
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4.1. Forward Euler method

It turns out that the forward Euler method is tricky to formulate because the variables

un+1
h and pn+1

jh (j = 1, 2, 3) are not determined simultaneously. Instead, they are constructed

sequentially. For a given unh, we first construct pnjh for j = 1, 2, 3 using (3.8). We then define

un+1
h to be a modified L2-projection of the right-hand side of (4.3). To take care of the boundary

condition, we choose to enforce the boundary condition for un+1
h weakly in the definition of the

modified L2-projection.

Specifically, for any v ∈ L2(Ω), we recall that the standard L2-projection Phv ∈ V h of v is

defined by (
Phv, φh

)
Th

=
(
v, φh

)
Th
, ∀φh ∈ V h. (4.6)

For any v ∈ C0(Ω), we define a modified L2-projection P̃hv ∈ V h of v by(
P̃hv, φh

)
Th

+
1√
h

(
P̃hv(a)φh(a) + P̃hv(b)φh(b)

)
=
(
v, φh

)
Th

+
1√
h

(
v(a)φh(a) + v(b)φh(b)

)
, ∀φh ∈ V h, (4.7)

and the corresponding modified L2-projection operator P̃h : L2(Ω)∩C0(Ω)→ V h. In the above

definition, the boundary condition (4.2) is weakly enforced via a penalty technique which is due

to Nitsche [18].

For a given function v ∈ H1(Th) which satisfies the boundary condition (4.2), we define

its three discrete “one-sided” second order derivatives Q−h v,Qahv,Q
+
h v ∈ V h (j = 1, 2, 3) using

(3.8) as follows:(
Q−h v, φh

)
Ω

=
( γ01

h0,1
φh(a)− εφ′h(a)

)
ua(t) +

( γ01

hJ,J+1
φh(b) + εφ′h(b)

)
ub(t)

− b1(v, φh) +

J−1∑
j=1

(
v′(x−j )[φh(xj)]− ε[v(xj)]φ

′
h(x−j )

)
, ∀φh ∈ V h, (4.8)

(
Qahv, φh

)
Ω

=
( γ02

h0,1
φ2(a)− εφ′h(a)

)
ua(t) +

( γ02

hJ,J+1
φh(b) + εφ′h(b)

)
ub(t)

− b2(v, φh) +

J−1∑
j=1

(
{v′(xj)}[φh(xj)]− ε[v(xj)]{φ′h(xj)}

)
, ∀φh ∈ V h, (4.9)(

Q+
h v, φh

)
Ω

=
( γ03

h0,1
φh(a)− εφ′h(a)

)
ua(t) +

( γ03

hJ,J+1
φh(b) + εφ′h(b)

)
ub(t)

− b3(v, φh) +

J−1∑
j=1

(
v′(x+

j )[φ3(xj)]− ε[v(xj)]φ
′
h(x+

j )
)
, ∀φh ∈ V h,

(4.10)

and the corresponding operators Q−h ,Qah,Q
+
h : H1(Th)→ V h.

With the help of the operators Q−h ,Qah,Q
+
h , and P̃h, we now define our fully discrete forward

Euler method for the initial-boundary value problem (1.2), (4.1), (4.2) as follows: for n =

0, 1, . . . ,M − 1,

un+1
h = P̃h

(
unh −∆t F̂

(
Q−h u

n
h,Qahunh,Q+

h u
n
h, u

n
hx, u

n
h, t

n, ·
))
, (4.11)

u0
h = Phu0, (4.12)
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where the operators Q−h , Qah, and Q+
h are evaluated at time tn over each iteration and the

modified projection operator is understood at time tn+1. Thus, the projection operator is used

to both enforce the boundary condition and map the value of F̂ back into V h.

4.2. Backward Euler method

We rewrite the backward Euler scheme (4.4) as

un + ∆t F
(
unxx, u

n
x , u

n, tn, ·
)

= un−1, (4.13)

for n = 1, · · · ,M , where u0 = u0.

Clearly, (4.13) and (1.2) have the same form. Thus, the spatial discretization of the backward

Euler scheme (4.4) is a straightforward adaptation of the mIP-DG framework for elliptic PDEs

developed in section 3. To the end, we define a new numerical operator Ĝ by

Ĝ
(
p1, p2, p3, u, t, x

)
:= u(x, t) + ∆t F̂

(
p1, p2, p3, ux, u, t, x

)
, ∀(x, t) ∈ ΩT . (4.14)

Then, analogous to the formulation for (1.1) and (3.1), the fully discrete backward Euler mIP-

DG methods for (1.2), (4.1), and (4.2) is defined by seeking (unh, p
n
1h, p

n
2h, p

n
3h) ∈ (V h)4 such

that, for n = 1, 2, . . . ,M ,

â0

(
tn, unh, p

n
1h, p

n
2h, p

n
3h;φ0h

)
=
(
un−1
h , φ0h

)
Th
, ∀φ0h ∈ V h, (4.15)

âi
(
unh, p

n
ih;φih

)
= gi(t

n, φih), ∀φih ∈ V h, i = 1, 2, 3, (4.16)

u0
h = Phu0. (4.17)

where

â0

(
t, u, p1, p2, p3;φ0

)
=
(
Ĝ
(
p1, p2, p3, u, t, ·

)
, φ0

)
Th
,

â1

(
u, p1;φ1

)
= (p1, φ1)Ω + b1(u, φ1)−

J−1∑
j=1

(
u′(x−j )[φ1(xj)]− ε [u(xj)]φ

′
1(x−j )

)
,

â2

(
u, p2;φ2

)
= (p2, φ2)Ω + b2(u, φ2)−

J−1∑
j=1

(
{u′(xj)}[φ2(xj)]− ε [u(xj)]{φ′2(xj)}

)
,

â3

(
u, p3;φ3

)
= (p3, φ3)Ω + b3(u, φ3)−

J−1∑
j=1

(
u′(x+

j )[φ3(xj)]− ε [u(xj)]φ
′
3(x+

j )
)
,

and

gi(t, φi) =
( γ0i

h0,1
φi(a)− ε φ′i(a)

)
ua(t) +

( γ0i

hJ,J+1
φi(b) + ε φ′i(b)

)
ub(t),

for i = 1, 2, 3. That is, a nonhomogeneous fully nonlinear elliptic problem is solved at each time

step.

4.3. Runge-Kutta methods

We can also formulate Runge-Kutta (RK) methods for approximating the initial value prob-

lem corresponding to (1.2) as follows. For simplicity, we first introduce a semi-discrete version

of (1.2) that has been spatially discretized. To this end, we introduce some convenient notation.
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Define tk := k∆t for 0 ≤ k ≤ M . Thus, tk ∈ [0, T ] for all k. We let Q−,kh , Qa,kh , and Q+,k
h

denote the discrete second order derivative operators evaluated at time tk in (4.8), (4.9), and

(4.10), respectively. We also define the operator F̂ k : V h × Ω→ R by

F̂ k
[
vh
]
(x) := F̂

(
Q−,kh vh,Qa,kh vh,Q+,k

h vh, vhx, vh, t
k, x
)
, (4.18)

for all 0 ≤ k ≤M . Then, the semi-discrete form of (1.2) is

∂

∂t
uh(x, tk) = −F̂ k

[
uh
]
(x), (4.19)

for all 0 < k ≤M , x ∈ Ω.

Let s be a positive integer, A ∈ Rs×s, and b, c ∈ Rs such that

s∑
`=1

ak,` = ck,

for each k = 1, 2, . . . , s. Then, a generic s-stage RK method for approximating (4.19) can be

written

un+1
h = P̃h

(
unh −∆t

s∑
`=1

b`F̂
n+c` [ξn,`h ]

)
, (4.20)

with

ξn,`h = Ph

(
unh −∆t

s∑
k=1

ak,`F̂
n+ck [ξn,kh ]

)
,

for all n = 0, 1, . . . , N − 1 and u0
h = Phu0. We note that (4.20) corresponds to an explicit

method when A is strictly lower diagonal and an implicit method otherwise. Also, we can

interpret ξn,`h in (4.20) as an approximation for un+c`
h . Since the boundary condition at time

tn+1 is enforced by F̂n+1, we can replace P̃h with Ph in (4.20) if cs = 1. In the next section,

we implement the classical (explicit) RK4 method to test the effectiveness of our fully-discrete

formulation when paired with a high-order time stepping scheme.

5. Numerical Experiments

In this section, we present a series of numerical tests to demonstrate the utility of the

proposed mIP-DG methods for fully nonlinear PDEs of the types (1.1) and (1.2). In all of

our tests we shall use uniform spatial meshes as well as uniform temporal meshes for the

dynamic problems. To solve the resulting nonlinear algebraic systems, we use the Matlab

built-in nonlinear solver fsolve. For the elliptic problems we choose the initial guess as the

linear interpolant of the boundary data ua and ub. For dynamic problems, we let u0
h = Phu0,

p0
1h = u0

hxx(x−), p0
2h = {u0

hxx(x)}, and p0
3h = u0

hxx(x+). Also, the initial guess for unh will be

provided by un−1
h , and the initial guesses for pn1h, pn2h, and pn3h will be provided by pn−1

1h , pn−1
2h ,

and pn−1
3h , respectively. For convenience, we set ε = 0 for all tests. We remark that similar

results can be obtained when ε 6= 0, and the actual benefit of the symmetrization parameter is

unclear in the context of nonlinear algebraic systems. The role of α and the numerical moment

will be further explored in Section 5.3.

For our numerical tests, errors will be measured in the L∞ norm and the L2 norm, where the

errors are measured at the current time step for the dynamic problems. For the dynamic test

problems, we shall see that the lower order time discretization dominates the approximation
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r Norm h = 1/10 h = 1/20 h = 1/40 h = 1/80

Error Error Order Error Order Error Order

1 L2 2.9e-03 7.3e-04 2.00 1.8e-04 1.99 4.7e-05 1.97

L∞ 3.8e-03 9.4e-04 2.00 2.4e-04 1.99 6.1e-05 1.96

Fig. 5.1. Test 1: ε = 0, α = 2, γ01 = γ03 = 1, and γ02 = 1.1. The plot corresponds to r = 1

and h = 1/80.

error for reasonable time step size ∆t when using Euler methods. For the elliptic test problems

and for the dynamic test problems where the error is dominated by the spatial discretizations,

it appears that the spatial error is of order O(h`), where

` =

{
r + 1, for r odd,

r, for r even.

Furthermore, we observe that when using odd order elements, the schemes exhibit optimal rate

of convergence in both norms.

5.1. Elliptic test problems

We first present the results for three test problems of type (1.1). Both Monge-Ampère and

Bellman types of equations will be tested.

Test 1. Consider the stationary Monge-Ampère problem

− u2
xx + 1 = 0, 0 < x < 1,

u(0) = 0, u(1) =
1

2
.

It is easy to check that this problem has exactly two classical solutions:

u+(x) =
1

2
x2, u−(x) = −1

2
x2 + x,

where u+ is convex and u− is concave. Note that u+ is the unique viscosity solution which we

want our numerical schemes to converge to. In Section 5.3 we shall give some insights about

the selectiveness of our schemes.

We approximate the given problem using the linear element (r = 1) to see how the ap-

proximation converges with respect to h when the solution is not in the approximation space.
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(a) r = 1, h = 1/8. (b) r = 5, h = 1/8.

r Norm h = 1 h = 1/2 h = 1/4 h = 1/8

Error Error Order Error Order Error Order

1 L2 8.1e-01 2.4e-01 1.73 8.0e-02 1.60 2.8e-02 1.52

L∞ 1.0e+00 2.3e-01 2.14 7.8e-02 1.58 2.7e-02 1.54

2 L2 1.1e+00 2.9e-01 1.88 4.2e-02 2.78 2.9e-02 0.56

L∞ 8.1e-01 2.4e-01 1.76 4.5e-02 2.40 1.8e-02 1.30

3 L2 6.4e-01 2.7e-02 4.55 1.4e-03 4.33 6.5e-05 4.38

L∞ 4.9e-01 3.1e-02 3.99 1.6e-03 4.32 9.1e-05 4.09

4 L2 5.6e-02 3.2e-03 4.14 2.4e-04 3.72 1.7e-05 3.83

L∞ 4.9e-02 3.0e-03 4.02 2.6e-04 3.56 1.6e-05 4.02

5 L2 2.3e-02 8.5e-04 4.79 1.5e-05 5.82 2.4e-07 5.96

L∞ 2.1e-02 9.3e-04 4.49 1.8e-05 5.67 2.6e-07 6.11

Fig. 5.2. Test 2: ε = 0, α = 4, γ01 = γ03 = 2, and γ02 = 2.5.

The numerical results are shown in Fig. 5.1. The results for the quadratic element (r = 2) are

presented in Fig. 5.10. We note that the approximations using r = 2 are almost exact for each

mesh size. This is expected since u+ ∈ V h when r = 2.

Test 2. Consider the problem

− u3
xx + |ux|+ S(x) = 0, −2 < x < 2,

u(−2) = sin(4), u(2) = − sin(4),

where

S(x) =
[
2sign(x) cos(x2)− 4x2 sin(x|x|)

]3 − 2|x cos(x2)|.

This problem has the exact (viscosity) solution u(x) = sin(x|x|). Notice that the equation

is nonlinear in both uxx and ux, and the exact solution is not twice differentiable at x = 0.

The numerical results are shown in Fig. 5.2. As expected, we can see from the plot that the

error appears largest around the point x = 0, and both the accuracy and order of convergence

improve as the order of the element increases.

Test 3. Consider the stationary Hamilton-Jacobi-Bellman problem

inf
0<θ(x)≤1

{
−θuxx + θ2 x2 ux +

1

x
u+ S(x)

}
= 0, 1.2 < x < 4,

u(1.2) = 1.44 ln 1.2, u(4) = 16 ln 4,
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(a) r = 1, h = 2.8/32. (b) r = 4, h = 2.8/32.

r Norm h = 2.8/4 h = 2.8/8 h = 2.8/16 h = 2.8/32

Error Error Order Error Order Error Order

1 L2 3.5e-01 9.8e-02 1.83 2.6e-02 1.93 6.6e-03 1.97

L∞ 3.9e-01 1.2e-01 1.70 3.4e-02 1.81 9.0e-03 1.91

2 L2 9.1e-03 1.9e-03 2.28 4.2e-04 2.18 9.6e-05 2.11

L∞ 9.9e-03 1.7e-03 2.53 3.6e-04 2.23 8.2e-05 2.15

3 L2 3.5e-04 2.7e-05 3.69 1.9e-06 3.85 4.2e-07 2.14

L∞ 5.1e-04 4.2e-05 3.61 3.3e-06 3.69 3.7e-07 3.15

4 L2 2.5e-05 1.4e-06 4.14 7.7e-08 4.19 8.5e-09 3.18

L∞ 3.3e-05 1.5e-06 4.46 7.6e-08 4.30 1.3e-08 2.51

Fig. 5.3. Test 3: ε = 0, α = 4, γ01 = γ03 = 2, and γ02 = 2.5.

where

S(x) =
4 ln(x)2 + 12 ln(x) + 9− 8x4 ln(x)2 − 4x4 ln(x)

4x3 [2 ln(x) + 1]
.

It can be shown that the exact (viscosity) solution of this problem is given by u(x) = x2 lnx,

which occurs when

θ∗(x) =
2 ln(x) + 3

2x3[2 ln(x) + 1]
.

We solve this problem using various order elements and record the numerical results in Fig. 5.3,

which shows that our mIP-DG methods can also handle the Bellman-type fully nonlinear PDEs

very well.

5.2. Parabolic test problems

We now implement the proposed fully discrete forward and backward Euler and RK4 mIP-

DG methods for approximating fully nonlinear parabolic equations of the form (1.2). While

the above formulation makes no attempt to formally quantify a CFL condition for either the

forward Euler method or RK4, our test problems generally require ∆t = O(h2) to ensure the

stability. In fact, the constant for the CFL condition appears to decrease as the order of the

element increases. Below we implement both the implicit and explicit methods for each test

problem. However, we make no attempt to classify and compare the efficiency of the two

methods. Instead, we focus on testing and demonstrating the usability of the proposed fully

discrete schemes and their promising potentials. For explicit tests, we record the parameter κt
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(a) r = 1, h = 1/32. (b) r = 2, h = 1/32.

r Norm h = 1/4 h = 1/8 h = 1/16 h = 1/32

Error Error Order Error Order Error Order

1 L2 5.7e-03 1.4e-03 1.98 3.7e-04 1.99 9.2e-05 1.99

L∞ 7.9e-03 2.0e-03 1.99 5.0e-04 1.99 1.3e-04 1.99

2 L2 3.3e-05 8.2e-06 2.00 2.1e-06 2.00 5.1e-07 2.00

L∞ 4.5e-05 1.1e-05 2.00 2.8e-06 2.00 7.1e-07 2.00

3 L2 3.3e-05 8.2e-06 2.00 2.1e-06 2.00 5.1e-07 2.00

L∞ 4.5e-05 1.1e-05 2.00 2.8e-06 2.00 7.1e-07 2.00

Fig. 5.4. Test 4: Computed solutions at T = 1 using the explicit Euler method with κt = 0.002,

ε = 0, α = 2, γ01 = γ03 = 2, and γ02 = 2.5. Note, the scheme is unstable for r = 2, 3 when

κt = 0.01.

which serves as the scaling constant for the CFL condition, so we have ∆t = κth
2. For implicit

tests, we record computed solutions with various time step ∆t.

Test 4. Let Ω = (0, 1), ua(t) = t4, ub = 1
2 + t4, and u0(x) = 1

2x
2. We consider the

(benchmark) quasilinear problem (1.2), (4.1), and (4.2) with

F (uxx, ux, u, t, x) = −uxx u+
1

2
x2 + t4 − 4 t3 + 1.

It is easy to verify that this problem has a unique classical solution u(x, t) = 0.5x2 + t4 + 1.

The numerical results for the fully discrete forward Euler method are presented in Fig. 5.4, and

the results for the backward Euler method are shown in Fig. 5.5. We observe that the errors for

the backward Euler method are dominated by the relatively small size of the time step when

Table 5.1. Test 4: Computed solutions at T = 1 using RK4 with κt = 0.002, ε = 0, α = 2,

γ01 = γ03 = 2, and γ02 = 2.5.

r Norm h = 1/4 h = 1/8 h = 1/16 h = 1/32

Error Error Order Error Order Error Order

1 L2 4.7e-03 1.2e-03 2.01 2.9e-04 2.01 7.2e-05 2.01

L∞ 1.4e-02 3.5e-03 1.98 8.9e-04 1.99 2.2e-04 2.00

2 L2 5.2e-10 3.9e-10 0.40 3.3e-10 0.23 3.1e-10 0.12

L∞ 8.9e-10 6.1e-10 0.54 4.9e-10 0.31 4.4e-10 0.17

3 L2 7.0e-10 5.5e-10 0.35 4.7e-10 0.21 4.4e-10 0.11

L∞ 1.2e-09 8.6e-10 0.44 7.0e-10 0.29 6.3e-10 0.16
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(a) r = 1, h = 1/16. (b) r = 2, h = 1/16.

r Norm h = 1/4 h = 1/8 h = 1/16

Error Error Order Error Order

1 L2 4.4e-03 9.6e-04 2.20 1.8e-04 2.40

L∞ 9.4e-03 2.4e-03 2.00 5.9e-04 2.00

2 L2 2.6e-04 2.6e-04 -0.00 2.6e-04 -0.00

L∞ 3.6e-04 3.6e-04 -0.00 3.6e-04 -0.00

3 L2 2.6e-04 2.6e-04 -0.00 2.6e-04 -0.00

L∞ 3.6e-04 3.6e-04 -0.00 3.6e-04 -0.00

Fig. 5.5. Test 4: Computed solution at T = 1 using the implicit Euler method with ∆t = 0.001,

ε = 0, α = 2, γ01 = γ03 = 2, and γ02 = 2.5.

compared to the forward Euler method. For smaller time step sizes, the errors are similar.

However, the backward Euler method appears unstable for κt > 0.01. We also recorder the

results for RK4 in Table 5.1 where we observe optimal convergence rates for r = 1 and recover

the exact solution for r ≥ 2.

We now consider the error for the approximation resulting from using Euler time stepping

methods. Note that the solution u is a quadratic in space and a quartic in time. Letting r = 2,

we limit the approximation error almost entirely to the time discretization scheme. In fact,

setting t = 0 and solving the stationary form of the PDE, we have

‖u− uh‖L2((0,1)) ≈ 1.6× 10−9 and ‖u− uh‖L∞((0,1)) ≈ 2.4× 10−9

using the elliptic solver with h = 1/4, α = 2, γ01 = γ03 = 1, γ02 = 1.1, and initial guess given

by the secant line for the boundary data. Then, approximating the problem for varying ∆t, we

have the results recorded in Table 5.2 for the forward Euler method and in Table 5.3 for the

backward Euler method. We observe that the convergence rate in time appears to have order 1

as expected when using the Euler methods. We also see in Table 5.4 that we recover the exact

solution when using RK4.

Table 5.2. Test 4: Computed solutions at time T = 1 using the explicit Euler method with

h = 1/16, ε = 0, α = 2, γ01 = γ03 = 1, and γ02 = 1.1.

r Norm κt = 0.008 κt = 0.004 κt = 0.002 κt = 0.001

Error Error Order Error Order Error Order

2 L2 8.2e-06 4.1e-06 1.00 2.1e-06 1.00 1.0e-06 1.00

L∞ 1.1e-05 5.7e-06 1.00 2.8e-06 1.00 1.4e-06 1.00
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Table 5.3. Test 4: Computed solutions at T = 1 using the implicit Euler method with h = 1/4,

ε = 0, α = 2, γ01 = γ03 = 1, and γ02 = 1.1.

r Norm ∆t = 1/10 ∆t = 1/20 ∆t = 1/40 ∆t = 1/80

Error Error Order Error Order Error Order

2 L2 2.4e-02 1.3e-02 0.93 6.4e-03 0.96 3.2e-03 0.98

L∞ 3.3e-02 1.7e-02 0.93 8.8e-03 0.96 4.5e-03 0.98

Table 5.4. Test 4: Computed solutions at time T = 1 using RK4 with h = 1/16, ε = 0, α = 2,

γ01 = γ03 = 1, and γ02 = 1.1.

r Norm κt = 0.008 κt = 0.004 κt = 0.002 κt = 0.001

Error Error Order Error Order Error Order

2 L2 8.9e-10 8.9e-10 -0.00 8.9e-10 0.00 8.9e-10 0.00

L∞ 1.3e-09 1.3e-09 0.00 1.3e-09 -0.00 1.3e-09 0.00

Test 5. Let Ω = (0, 2), ua(t) = 1, ub = e2(t+1), and u0(x) = ex. We consider the problem

(1.2), (4.1), and (4.2) with

F (uxx, ux, u, t, x) = −ux ln
(
uxx + 1

)
+ S(x, t),

S(x, t) = e(t+1)x
(
x− (t+ 1) ln

(
(t+ 1)2e(t+1)x + 1

))
.

It is easy to verify that this problem has a unique classical solution u(x, t) = e(t+1)x. Notice,

the exact solution u cannot be factored into the form u(x, t) = G(t)Y (x) for some functions

G and Y . The numerical results for the fully discrete forward Euler method are recorded in

Fig. 5.6 and the results for the backward Euler method are given in Fig. 5.7. The error appears

to be dominated by the low order time discretization given the relatively large value for ∆t

in the backward Euler test. However, using a smaller ∆t for the forward Euler test, we were

able to achieve a higher order of accuracy. We remark that even for ∆t = 0.005h2, the forward

Euler scheme is not stable for h = 1
4 and r = 1. We also record the results for RK4 in Table 5.5

where we observe optimal rates of convergence in h until the the error reaches a level of 1.0e-09,

which appears to the the floor for our implementation as suggested in Table 5.4.

Test 6. Let Ω = (0, 2π), ua(t) = 0, ub = 0, and u0(x) = sin(x). We consider the problem

(1.2), (4.1), and (4.2) with

F (uxx, ux, u, t, x) = − min
θ(t,x)∈{1,2}

{
Aθ uxx − c(x, t) cos(t) sin(x)− sin(t) sin(x)

}
,

where A1 = 1, A2 = 1
2 , and

c(x, t) =

{
1, if 0 < t ≤ π

2 and 0 < x ≤ π or π
2 < t ≤ π and π < x < 2π,

1
2 , otherwise.

It is easy to check that this problem has a unique classical solution u(x, t) = cos(t) sin(x). Notice

that this problem has a finite dimensional control parameter set, and the optimal control is given

by

θ∗(t, x) =

{
1, if c(x, t) = 1,

2, if c(x, t) = 2.
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(a) r = 1, h = 1/16. (b) r = 5, h = 1/16.

r Norm h = 1/2 h = 1/4 h = 1/8 h = 1/16

Error Error Order Error Order Error Order

1 L2 5.0e-01 3.6e-02 1.73 1.2e-02 1.32 3.6e-03 1.67

L∞ 8.2e-01 2.8e-01 1.57 1.0e-01 1.47 3.1e-02 1.69

2 L2 4.5e-02 1.2e-02 1.89 3.3e-03 1.87 8.7e-04 1.93

L∞ 6.0e-02 1.4e-02 2.11 3.6e-03 1.96 9.0e-04 1.98

3 L2 1.5e-03 2.8e-04 2.39 7.1e-05 1.98 1.8e-05 1.98

L∞ 2.7e-03 3.5e-04 2.97 7.6e-05 2.21 1.8e-05 2.05

4 L2 1.2e-03 2.9e-04 2.06 7.2e-05 2.02 1.8e-05 2.01

L∞ 1.3e-03 3.0e-04 2.13 7.3e-05 2.02 1.8e-05 2.01

5 L2 1.2e-03 2.9e-04 2.00 7.2e-05 2.00 1.8e-05 2.00

L∞ 1.2e-03 2.9e-04 2.00 7.3e-05 2.00 1.8e-05 2.00

Fig. 5.6. Test 5: Computed solutions at time T = 3.10 using the explicit Euler method with

κt = 0.0025, ε = 0, α = 4, γ01 = γ03 = 2, and γ02 = 2.5. The method is not stable for

κt = 0.005.

The numerical results are recorded in Fig. 5.8 for the fully discrete forward Euler method and in

Fig. 5.9 for the backward Euler method. We observe that the accuracy of the implicit method

appears to suffer from the lower order accuracy of the Euler method. For h = π
8 , the explicit

method requires ∆t ≈ 3.1 × 10−4, while the implicit method only uses ∆t = 0.062. When

∆t increases, the explicit method demonstrates instability. We also observe optimal rates of

convergence in Table 5.6 for RK4 timestepping.

5.3. The role of the numerical moment

We now discuss the role and utility of the numerical moment in forming an appropriate

numerical operator. Consider the stationary Monge-Ampère problem from Test 1, which has

the following two solutions:

u+(x) =
1

2
x2, u−(x) = −1

2
x2 + x,

where u+ is convex and u− is concave. The solution u+ is the unique viscosity solution.

To demonstrate the role of the numerical moment, we approximate the given problem using

α > 0, α = 0, and α < 0. Notice that multiplying the PDE by −1, we see that u− is the unique

viscosity solution of the equation with the operator F (u) = u2
xx − 1. Then, for α > 0, our
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(a) r = 1, h = 1/8. (b) r = 3, h = 1/8.

r Norm h = 1/2 h = 1/4 h = 1/8

Error Error Order Error Order

1 L2 4.2e-01 1.4e-01 1.54 4.6e-02 1.66

L∞ 8.3e-01 2.4e-01 1.77 7.9e-02 1.63

2 L2 7.3e-02 1.6e-02 2.21 3.0e-03 2.40

L∞ 9.6e-02 1.8e-02 2.41 3.2e-03 2.49

3 L2 2.8e-03 7.8e-04 1.82 9.1e-04 -0.22

L∞ 5.6e-03 8.5e-04 2.71 9.2e-04 -0.11

Fig. 5.7. Test 5: Computed solutions at time T = 0.5 using the implicit Euler method with

∆t = 0.0005, ε = 0, α = 4, γ01 = γ03 = 2, and γ02 = 2.5.

scheme should converge to u+, and for α < 0, our scheme should converge to u− provided |α| is
sufficiently large. However, for α = 0, the scheme may converge to either u+ or u− depending

on the initial guess used for the nonlinear solver. Note that while we cannot globally bound

∂u′′F for the operator F (u′′) = 1 − (u′′)2, we can locally bound ∂u′′F . Thus, the necessary

magnitude for α to allow for selective convergence depends on the initial guess and the solver.

Without a global bound on ∂u′′F , the numerical operator is only locally g-monotone.

Let u be the linear interpolant of the boundary data and let the initial guess for u be given

by u(0) = 1
3u+ 2

3 u
− and the initial guesses for pi be given by p

(0)
i = 0 for i = 1, 2, 3. Thus, the

initial guess is closer to u−. From Fig. 5.10 we see that the scheme converges to u+ for α = 4

and the scheme converges to u− for α = 0 and α = −4 for the given parameters. If we change

the initial guess to u(0) = 1
3u+ 2

3 u
+, the scheme converges to u+ for α = 0 and α = 4 and the

scheme converges to u− for α = −4 for the given parameters. Furthermore, for u(0) = u, fsolve

does not find a root for α = 0, whereas the scheme converges for α = ±4.

Therefore, the numerical moment plays two major roles. It allows the scheme to converge for

a wider range of initial guesses, and it enables the scheme to address the issue of the conditional

uniqueness of viscosity solutions. Given the form of the numerical moment, α(p1 − 2 p2 + p3),

these benefits are even more substantial given the way in which p1, p2, and p3 are formed.

The three variables only differ in their jump terms. When γ01 = γ02 = γ03, the three different

choices for the numerical fluxes (or jump terms) are all equivalent at the PDE level, and often

the various jump formulations are presented as interchangeable when discretizing linear and

quasilinear PDEs using the DG methodology. Yet, for our schemes for fully nonlinear PDEs,

we see that the three different choices of the numerical fluxes all play an essential role at the

numerical level when combined to form the numerical moment, even in the degenerative case
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Table 5.5. Test 5: Computed solutions at time T = 3.10 using RK4 with κt = 0.0025, ε = 0,

α = 4, γ01 = γ03 = 2, and γ02 = 2.5.

r Norm h = 1/4 h = 1/8 h = 1/16 h = 1/32

Error Error Order Error Order Error Order

1 L2 5.0e-01 1.4e-01 1.75 4.3e-02 1.73 1.2e-02 1.81

L∞ 9.9e-01 3.2e-01 1.63 9.8e-02 1.71 2.8e-02 1.81

2 L2 7.5e-02 1.7e-02 2.16 3.9e-03 2.10 9.3e-04 2.06

L∞ 1.0e-01 1.9e-02 2.41 4.1e-03 2.20 9.6e-04 2.10

3 L2 3.3e-03 2.3e-04 3.87 1.5e-05 3.96 9.1e-07 4.00

L∞ 6.7e-03 5.2e-04 3.69 3.6e-05 3.85 2.4e-06 3.93

4 L2 2.2e-04 1.1e-05 4.33 5.7e-07 4.23 2.0e-08 4.87

L∞ 3.4e-04 1.3e-05 4.65 6.6e-07 4.35 2.4e-08 4.80

5 L2 6.4e-06 1.1e-07 5.89 1.9e-09 5.83 1.4e-09 0.47

L∞ 1.4e-05 2.5e-07 5.75 6.5e-09 5.28 1.9e-09 1.80

Table 5.6. Test 6: Computed solutions at time T = 3.10 using the explicit Euler method with

κt = 0.002, ε = 0, α = 2, γ01 = γ03 = 2, and γ02 = 2.5.

r Norm h = 1/4 h = 1/8 h = 1/16 h = 1/32

Error Error Order Error Order Error Order

1 L2 1.9e-01 4.9e-02 1.91 1.3e-02 1.95 3.2e-03 1.98

L∞ 1.9e-01 4.6e-02 2.01 1.2e-02 1.95 3.0e-03 1.99

2 L2 7.8e-02 1.9e-02 2.03 4.6e-03 2.05 1.1e-03 2.03

L∞ 7.0e-02 1.6e-02 2.12 3.6e-03 2.17 8.3e-04 2.11

3 L2 1.0e-02 5.7e-04 4.16 3.4e-05 4.07 2.1e-06 4.03

L∞ 8.4e-03 4.7e-04 4.14 2.9e-05 4.01 1.8e-06 4.01

4 L2 1.3e-03 8.4e-05 3.94 5.1e-06 4.05 3.1e-07 4.05

L∞ 1.1e-03 6.9e-05 3.93 3.9e-06 4.15 2.2e-07 4.13

5 L2 1.0e-04 1.4e-06 6.20 2.0e-08 6.12 2.4e-10 6.38

L∞ 8.6e-05 1.1e-06 6.25 1.5e-08 6.20 2.6e-10 5.89

where γ01 = γ02 = γ03 which will be discussed below.

The role of the numerical moment can heuristically be understood as follows when the

numerical moment is rewritten in the form

αh2
(p1 − 2p2 + p3

h2

)
.

From here, we can see that the numerical moment acts as a centered difference approximation

for uxxxx multiplied by a factor that tends to zero with rate O
(
h2
)
. Thus, at the PDE level,

we are in essence approximating the nonlinear elliptic operator

F (uxx, ux, u, x)

by the quasilinear fourth order operator F̂ρ, where

F̂ρ (uxxxx, uxx, ux, u, x) = ρ uxxxx + F (uxx, ux, u, x) .

In the limit as ρ → 0, we heuristically expect the unique limit of the fourth order problem

to converge to the unique viscosity solution of the second order problem. Using a converging
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(a) r = 1, h = π/16. (b) r = 5, h = π/16.

r Norm h = π/2 h = π/4 h = π/8 h = π/16

Error Error Order Error Order Error Order

1 L2 2.2e-01 5.3e-02 2.07 1.3e-02 2.02 3.3e-03 2.01

L∞ 1.7e-01 4.8e-02 1.87 1.2e-02 1.98 3.1e-03 1.99

2 L2 6.0e-02 1.6e-02 1.90 4.2e-03 1.94 1.1e-03 1.97

L∞ 6.4e-02 1.5e-02 2.07 3.5e-03 2.13 8.2e-04 2.09

3 L2 7.4e-03 6.9e-04 3.43 1.4e-04 2.32 3.5e-05 2.00

L∞ 8.0e-03 5.6e-04 3.82 1.0e-04 2.46 2.3e-05 2.14

4 L2 2.5e-03 5.7e-04 2.10 1.4e-04 2.03 3.5e-05 2.01

L∞ 1.4e-03 3.5e-04 2.01 8.9e-05 1.98 2.2e-05 1.99

5 L2 2.2e-03 5.6e-04 2.00 1.4e-04 2.00 3.5e-05 2.00

L∞ 1.4e-03 3.6e-04 1.99 8.9e-05 2.00 2.2e-05 2.00

Fig. 5.8. Test 6: Computed solutions at time T = 3.10 using the explicit Euler method with

κt = 0.002, ε = 0, α = 2, γ01 = γ03 = 2, and γ02 = 2.5.

family of fourth order quasilinear PDEs to approximate a fully nonlinear second order PDE

has previously been considered for PDEs such as the Monge-Ampère equation, the prescribed

Gauss curvature equation, the infinity-Laplace equation, and linear second order equations of

non-divergence form. The method is known as the vanishing moment method. We refer the

reader to [8, 14] for a detailed exposition.

In addition to the connection with the numerical moment to quasilinear fourth order PDEs,

we also mention another benefit of the numerical moment. By the choice of α, we can enlarge

the domain for which the numerical operator F̂ is increasing in p1 and p3 and decreasing in p2.

Since the definition of ellipticity is based on the monotonicity of the operator, and the issue

of conditional uniqueness stems from whether the solution preserves the monotonicity of the

operator, building monotonicity into the discretization is important when trying to preserve

the nature of the operator we are approximating.

We can demonstrate the power of the monotonicity of the numerical operator with two

simple tests. For both tests, we shall again approximate the Monge-Ampère problem from Test

1. However, now we let γ01 = γ02 = γ03. Then, we have p2 = p1+p3
2 , which in turn implies that

the equation for p2 is redundant in the formulation and the numerical moment should be zero

upon convergence to a root.

For the first test, we again approximate the Monge-Ampère problem from Test 1 while

plotting the norm of p1 − 2p2 + p3 after each iteration of fsolve. From Fig. 5.11, we can see
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(a) r = 1, h = π/8. (b) r = 3, h = π/8.

r Norm h = π/2 h = π/4 h = π/8 h = π/16

Error Error Order Error Order Error Order

1 L2 1.7e-01 4.9e-02 1.82 1.4e-02 1.84 4.8e-03 1.50

L∞ 1.5e-01 4.4e-02 1.78 1.3e-02 1.82 4.1e-03 1.60

2 L2 8.0e-02 2.0e-02 2.00 5.9e-03 1.76 3.2e-03 0.87

L∞ 7.0e-02 1.6e-02 2.14 4.0e-03 1.98 1.9e-03 1.06

3 L2 1.1e-02 3.0e-03 1.91 2.8e-03 0.09 2.8e-03 0.00

L∞ 8.1e-03 1.8e-03 2.16 1.8e-03 0.01 1.8e-03 0.00

Fig. 5.9. Test 6: Computed solutions at time T = 3.10 using the implicit Euler method with

∆t = 0.0062, ε = 0, α = 2, γ01 = γ03 = 2, and γ02 = 2.5.

that even though we expect the moment to be zero based on the redundancy of the equation

for p2 given the equations for p1 and p3, the Newton-based solver fsolve treats p1, p2, and p3

as independent variables when searching for a root. The monotonicity of each variable appears

to aid fsolve in the search for a root.

For the second test, instead of using fsolve, a Newton-based solver, for solving the nonlinear

system of equations, we use the following splitting algorithm:

Algorithm 5.1.

(1) Pick an initial guess for u, p1, and p3.

(2) Solve equation (3.6) for p2.

(3) Solve equation (3.8) for i = 2 for u.

(4) Solve equation (3.8) for i = 1 for p1.

(5) Solve equation (3.8) for i = 3 for p3.

(6) Repeat Steps 2 - 5 until the change in p2 is sufficiently small.

We observe that only Step (2) involves the use of a nonlinear solver. Each of Steps (3)-(5)

only requires solving a linear system with a constant matrix that can be pre-factored. Thus,

the above solver fully decouples the entire system of equations and minimizes the number of

unknowns in the nonlinear system. Because this paper is concerned mainly with the discretiza-
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(a) α = 4. (b) α = 0.

(c) α = −4.

Norm α = 4 α = 0 α = −4

L2 2.5e-08 5.3e-10 3.7e-10

L∞ 3.3e-08 8.6e-10 5.7e-10

Fig. 5.10. Test 1: r = 2, h = 1/10, ε = 0, γ01 = γ03 = 1.1, and γ02 = 1.5.

tion of fully nonlinear PDEs, we do not make an effort to compare solvers. The simple solver

presented here is meant to demonstrate a potential benefit of using the numerical moment to

create monotone numerical operators.

We use Algorithm 5.1 with fsolve to execute Step (2) for Test 1. Let the initial guesses

be given by u = u− and p1 = p2 = p3 = −0.99. For p2 = −0.99, F is increasing while

F̂ is decreasing for α > 0.99. Since F (−0.99) > 0 and F̂ is decreasing for p2 ≥ −1 when

(a) r = 1, h = 1/20. (b) r = 3, h = 1/20.

Fig. 5.11. Plots of the norm of p1 − 2p2 + p3 with α = 4, ε = 0, and γ01 = γ02 = γ03 = 2 at

each iteration of fsolve.
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(a) α = 1.1, h = 1/10. (b) α = 1, h = 1/10.

(c) α = 1.1, h = 1/20. (d) α = 1, h = 1/20.

α Norm h = 1/5 h = 1/10 h = 1/20 h = 1/40

Error Error Order Error Order Error Order

4 L2 6.8e-03 1.7e-03 2.00 4.3e-04 2.00 1.0e-04 2.08

L∞ 1.0e-02 2.5e-03 2.00 6.2e-04 2.00 1.6e-04 2.00

2 L2 6.8e-03 1.7e-03 2.00 4.3e-04 2.01 9.8e-05 2.12

L∞ 1.0e-02 2.5e-03 2.00 6.2e-04 2.00 1.6e-04 2.00

1.1 L2 6.8e-03 1.7e-03 2.00 4.2e-04 2.01 9.7e-05 2.13

L∞ 1.0e-02 2.5e-03 2.00 6.2e-04 2.00 1.6e-04 2.00

1 L2 6.8e-03 1.7e-03 2.00 5.7e-04 1.58 8.2e-04 -0.53

L∞ 1.0e-02 2.5e-03 2.00 9.4e-04 1.42 1.2e-03 -0.32

0.99 L2 6.0e-03 9.7e-04 2.62 5.7e-04 0.77 8.2e-04 -0.53

L∞ 9.9e-03 2.5e-03 2.00 9.4e-04 1.40 1.2e-03 -0.32

0 L2 6.8e-03 1.7e-03 2.00 4.3e-04 1.99 1.1e-04 1.96

L∞ 1.0e-02 2.5e-03 2.00 6.3e-04 1.99 1.6e-04 1.96

Fig. 5.12. Test 1 is solved using Algorithm 5.1 with r = 1, ε = 0, and γ01 = γ02 = γ03 = 2.

For α ≥ 1.1, the scheme converges to u+. For α ≤ 0.99, the scheme converges to u−. When

α = 1.0, the scheme converges to u+ for h ≥ 1
10 and the scheme converges to u− for h ≤ 1

20 .

α > 1, we expect the splitting algorithm will move away from the concave root p2 = −1. The

numerical results are presented in Fig. 5.12. We note that even with the initial guess close to

u−, the solver, with the aid of the numerical moment, converges to u+. Similarly, the solver

converges to u+ when p1 = p2 = p3 > −0.99 are used as initial guesses. For initial guesses

p1 = p2 = p3 < −1.0, the solver does not converge. Thus, we see that even for the above simple

solver, the monotonicity of F̂ provided by the numerical moment allows the scheme to either
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(a) u
(0)
h = µ̂. (b) u

(0)
h = 0.99µ̂+ 0.01u.

Fig. 5.13. Computed solutions for Test 1 using r = 2, α = 4, h = 5.000e-02, γ01 = γ03 = 10.0,

γ02 = 20.0, εi = 0, and Algorithm 5.1.

selectively converge to u+ or diverge and find no solution. Hence, we again see the benefit of

including the numerical moment when tackling the issue of conditional uniqueness for viscosity

solutions.

A key concern when discretizing a fully nonlinear PDE is the presence of numerical artifacts,

i.e., algebraic solutions that do not correspond to PDE solutions. We continue considering the

Monge-Ampère equation from Test 1. In addition to the two classical PDE solutions, there exists

infinitely many C1 functions that satisfy the PDE and boundary conditions almost everywhere

with respect to the Lebesgue measure, as seen by µ̂ defined below in (5.1). These almost

everywhere solutions will correspond to numerical artifacts due to the fact algebraic solutions for

a given discretization may correspond to these functions. It is well known that using a standard

linear discretization scheme for the Monge-Ampère problem can yield multiple solutions, many

of which are numerical artifacts that do not correspond to PDE solutions (cf. [8]). For example,

let µ̂ ∈ H2(0, 1) \ C2(0, 1) be defined by

µ̂(x) =

{
1
2x

2 + 1
4x, for x < 0.5,

− 1
2x

2 + 5
4x−

1
4 , for x ≥ 0.5.

(5.1)

Furthermore, suppose x = 0.5 is a node in the partition. Then, when using a standard IPDG

discretization, µ̂ corresponds to a numerical solution, yielding a numerical artifact.

We first explore the possibility that the discretization contains numerical artifacts such as

µ̂. Let r = 2 in V h. Then, µ̂ ∈ C1(Ω) ∩ V h. Thus, we have [µ̂] = [µ̂′] = 0 on EIh and µ̂ = g on

∂Ω. Therefore, whenever x = 0.5 is a node in the partition, we have uh = µ̂ and pih(x) = 1 if

x < 0.5 and pih(x) = −1 if x > 0.5 for i = 1, 2, 3 is a numerical solution, and it follows that our

discretization does have numerical artifacts when r ≥ 2. We can see the presence of a numerical

artifact in Fig. 5.13. The function µ̂ corresponds to a fixed point for the solver. However, if

we slightly perturb the initial guess away from µ̂, we see that Algorithm 5.1 converges to u+.

Unfortunately, the Newton algorithm fsolve does still converge to µ̂ with the same slightly

perturbed initial guess. Thus, for r = 2, our discretization does contain numerical artifacts

that must be addressed at the solver level. We do note that in all testing, Algorithm 5.1 only

converged to a numerical artifact when the numerical artifact corresponded to an initial guess.
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(a) u
(0)
h = Phµ̂ and α = 4. (b) u

(0)
h = Ph (0.75µ̂+ 0.25u) and α = 4.

(c) u
(0)
h = Phµ̂ and α = 0.

Fig. 5.14. Computed solutions for Test 1 using r = 1, h = 5.000e-02, γ01 = γ03 = 10.0,

γ02 = 20.0, εi = 0, and fsolve.

We now consider the presence of numerical artifacts when r = 1 in V h. Then, µ̂ /∈ V h.

Furthermore, the only C1 function in V h that satisfies the boundary condition is u. Thus,

we expect the numerical moment to have an effect since a good approximation for u± or µ̂

must have jumps in the gradient along EIh. Since we cannot determine analytically if there is a

numerical solution in V h that corresponds to µ̂, we will explore the possibility numerically. To

this end, we approximate Test 1 with r = 1 using fsolve and initial guesses that correspond to

functions near µ̂. The results can be found in Fig. 5.14, where we plot the resulting values of p2h

and note that p2h near −1 corresponds to u− and p2h near 1 corresponds to u+. Observe, for

the initial guess u
(0)
h = Phµ̂, the solution appears to converge to a function near u−. While the

final approximation has a small residual, O(10−26), the last step for the solver was ineffective

according to the error flags for fsolve. When approximating u− with r = 1 by using a negative

value for the coefficient of the numerical moment, the plot for p2h is near −1 over the entire

domain. Thus, while it is unclear if the approximation actually converged to u−, it is clear that

the approximation converged away from µ̂. For the initial guess u
(0)
h = Ph (0.75µ̂+ 0.25u), the

solver does not find a root after 106 iterations. Instead, fsolve appears to be trapped in a small-

residual well. After the 100th iteration, the residual is about 0.007. Thus, the discretization
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does not appear to have a numerical solution that corresponds to µ̂ when r = 1. In contrast,

when we set α = 0, we clearly converge to a numerical artifact that corresponds to µ̂. One last

observation from Fig. 5.14 is that p1h − 2p2h + p3h is nonzero in all three plots, as expected

when using r = 1 paired with the lower regularity of µ̂. The same tests using Algorithm 5.1 all

converged to the viscosity solution.

6. Conclusion

In this paper we present a general framework for constructing high order interior penalty

discontinuous Galerkin methods for approximating viscosity solutions of fully nonlinear second

order elliptic and parabolic PDEs. The proposed framework extends the (second order) finite

difference framework developed by the authors in [9] to a more flexible DG framework, allowing

for the approximation of fully nonlinear PDEs using high order polynomials and non-uniform

meshes. Various numerical experiments are provided to show the performance of the proposed

methodology. The proposed DG framework is based on a nonstandard mixed formulation of

the underlying fully nonlinear PDE. In order to capture discontinuities of the second order

derivative uxx of the solution u, three independent functions p1, p2 and p3 are introduced

to accomplish the goal, where p1 and p3 measure the left and right limits of u′′. If u′′ is

discontinuous, p1 and p3 can be used to gain insight into the discontinuity upon convergence.

Thus, the methodology has the ability to capture some of the more interesting aspects of the

viscosity solutions. The proposed mIP-DG methodology takes the most important aspects of

the companion finite difference framework of [9] and extends them in multiple directions. For

example, by adopting and expanding the idea of numerical operators, the mIP-DG formulation

allows for even more flexibility than finite difference methods in construction.

The proposed mIP-DG discretizations touch the inner core and make use of the full potential

of the DG methodology. This is because there is a natural match among the three choices of

possible numerical fluxes and the three numerical second order derivatives p1, p2, and p3. The

flexibility of DG methods allows the implantation of this connection into the formulation of the

proposed mIP-DG methods.

As in the finite difference framework, the g-monotonicity (generalized monotonicity) and the

numerical moment play a central role in the proposed mIP-DG framework. The g-monotonicity

gives the mIP-DG methods the ability to select the mathematically “correct” solution (i.e., the

viscosity solution) among all possible solutions, and the numerical moment is the catalyst which

facilitates the g-monotonicity of the proposed mIP-DG methods. Moreover, the g-monotonicity

allows for the possible development of more efficient/selective (than generic Newton) solvers.

The special nonlinearity of the algebraic systems can be explored to decouple the equations as

seen in Algorithm 5.1. We believe that one of the main strengths of the mIP-DG formulation

presented in this paper lies in the way in which the discretization handles the nonlinearity. The

discretization takes a nonlinear problem and embeds it into a mostly linear system of equations

where the nonlinearity has been modified to ensure g-monotonicity. The added monotonicity

can theoretically enlarge the domain of valid initial guesses over which a solver will converge.

Thus, the weak coupling with linear equations is only a small penalty for the added structure

in the nonlinearity.

We also remark that the role and benefit of the symmetrizing parameter is unclear for non-

linear systems of equations. When γ0 is sufficiently large, we observe that numerical results

seem independent of the choice for ε. However, when the penalty constant γ0 is not sufficiently
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large, the inclusion of ε can be detrimental to the approximation. For small γ0, the approxima-

tion is allowed to have larger jumps occur. When the jumps become too large, the effect from

having ε present becomes exaggerated, and the overall accuracy of the approximation begins

to suffer beyond just the presence of jumps. For elliptic problems, we can see the formation of

a boundary layer. For dynamic problems, we see the approximation actually diverging (almost

instantaneously) along the interior of the domain even with small timesteps. As expected, when

γ0 increases and becomes sufficiently large, these phenomena disappear. Thus, at a numeri-

cal level, the presence of the symmetrizing constant ε seems important, even though at the

continuous level for the PDE, the symmetrization terms all become zero.

Conceptually, the mIP-DG framework presented in this paper can be easily extended to

the high dimensional fully nonlinear PDE problems, the detailed exposition will be given in a

forthcoming paper [11]. On the other hand, the proposed mIP-DG framework may not work

in the case when the viscosity solution does not belong to H1(Ω). In such a case, a more

involved mixed local discontinuous Galerkin (mLDG) framework must be invoked. We refer

the interested reader to [12] for a detailed exposition.
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