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Abstract

In this work, we solve a long-standing open problem: Is it true that the convergence

rate of the Lions’ Robin-Robin nonoverlapping domain decomposition (DD) method can

be constant, independent of the mesh size h? We closed this old problem with a positive

answer. Our theory is also verified by numerical tests.
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1. Introduction

Domain decomposition (DD) methods are important tools for solving partial differential

equations, especially by parallel computers. In this paper, we shall study a class of nonoverlap-

ping DD method, which is based on using Robin-Robin boundary conditions as transmission

conditions on the subdomain interface. The idea of employing Robin-Robin coupling conditions

in DD methods was first proposed by P.L. Lions in [24]. In the past twenty years, there have

been many works on the analysis and applications of this DD method: Despres [8], Douglas

and Huang [12,13], Deng [6,7], Du [14], Gander et al. [20,21], Guo and Hou [22], Discacciati [9],

Flauraud and Nataf [16], Gander [17, 19], Qin and Xu [26-28], Discacciati et al. [10], Lui [25],

and Chen et al. [2, 3]. We should say that the list is far from being complete.

By comparison with other DD methods, Lions’ DD method has several advantages. The

iterative procedure is simple and much more highly parallel than others. Because it employs

Robin conditions, the method is specially suitable for solving Helmholtz and time-harmonic

Maxwell equations. There exists a lot of works in this direction, cf. [1, 8, 11, 21] for details.

Lions’ Robin-Robin DD method was proposed in 1990 [24], see Definition 1.1 below (without

Step 5). The convergence (without any rate) is shown in [24, 29]. Later, the convergence was

improved to a geometric convergence [12, 13, 22], i.e, a rate of 1 − O(h). It was first pointed

out by Gander, Halpern and Nataf in [20] that the optimal choice of relaxation parameter is

γ = O(h−1/2) and the convergence rate 1−O(
√
h) could be achieved. Recently, Xu and Qin [30]
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Convergence Rate of a Robin-Robin Domain Decomposition Method 457

give a rigorous analysis on this result and shows that the rate is asymptotically sharp. However,

without enough knowledge on the method, the two parameters γ1 and γ2 in Lions’ DD method

are set equal, see Definition 1.1 below, by researchers in above references. Thus, the rate of

1−O(
√
h) is generally believed optimal for the Lions’ DD method.

This paper answers this long-standing open problem: Is it possible to achieve a rate of

1 − C for some some constant C > 0 independent of the mesh size h? We give a positive

answer. Yes, the constant rate of convergence is achieved by well-choosing three parameters in

the Robin-Robin DD method, γ1, γ2 and θ, in Definition 1.1. Roughly speaking, the optimal

choices are

γ1 = O(1), γ2 = O(h−1), and θ =
2t− 1

2t+ 1
,

where t ≈ 1 is the ratio of spectral radii of two Dirichlet-Neumann operators on two subdomains.

It is shown in this paper, by three types of analysis, that the error reduction rate of the DD

method is optimal, 1− C.

Next, we introduce the Robin-Robin DD method through a simple model problem. We solve

the following model problem in 2D, which is decomposed into two subproblems (cf. Fig. 1.1):







































−∆u = f in Ω1,

u = 0 on ∂Ω ∩ ∂Ω1,

u− w =
∂u

∂n
− ∂w

∂n
= 0 on Γ,

−∆w = f in Ω2,

u = 0 on ∂Ω ∩ ∂Ω2,

(1.1)

where Γ is an interface separating Ω1 and Ω2, and n is an outward normal vector of Ω1 at

Γ. The DD method can be applied to general elliptic PDEs, general domains and multiple

subdomains, cf. [6, 29].

Ω1 Ω2

u w

Γ -n
Ω :

Fig. 1.1. A domain is decomposed into two subdomains.

The Dirichlet and Neumann interface conditions on Γ in (1.1) are combined into two Robin

interface conditions:

γ1u+
∂u

∂n
= γ1w +

∂w

∂n
= g1 on Γ, (1.2)

γ2u− ∂u

∂n
= γ2w − ∂w

∂n
= g2 on Γ. (1.3)

Here we allow γ1, γ2 to be any positive constants. For example, when γ1 is arbitrarily close

to zero and γ2 is close to infinity (but the linear systems would become near singular), the
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method would be reduced to the Dirichlet-Neumann DD method. The past researchers all set

γ1 = γ2 = γ in the Robin interface conditions, i.e., the two parameters are simultaneously

large or small. By selecting two parameters correctly, using the original Lions’ DD method,

this Robin-Robin domain decomposition method should be better than all existing Dirichlet-

Neumann, Neumann-Neumann and Robin-Robin domain decomposition methods.

Let Vi = H1
0 (Ω)|Ωi

. Later, Vi also denotes the restriction of the finite element space of grid

size h on the two subdomains Ωi. By (1.2), we do an integration by parts on Ω1 to get
∫

Γ

g1vds =

∫

Γ

(
∂u

∂n
+ γ1u)vds =

∫

Ω1

(∇u · ∇v +∆uv)dx+ γ1

∫

Γ

uvds

=

∫

Ω1

(∇u · ∇v − fv)dx+ γ1

∫

Γ

uvds.

Thus

a1(u, v) + γ1〈u, v〉 = (f, v)Ω1
+ 〈g1, v〉 ∀v ∈ V1,

where

ai(u, v) =

∫

Ωi

∇u · ∇vdx, i = 1, 2,

(f, v)Ωi
=

∫

Ωi

fvdx, i = 1, 2,

〈u, v〉 =
∫

Γ

uvds.

Similarly, by (1.3) and an integration by parts on Ω2, it follows (noting that n is an inward

normal vector to Ω2) that
∫

Γ

g2vds =

∫

Γ

(γ2w − ∂w

∂n
)vds =

∫

Ω2

(∇w · ∇v +∆wv)dx + γ2

∫

Γ

wvds

=

∫

Ω2

(∇w · ∇v − fv)dx+ γ2

∫

Γ

wvds.

This way, we get the second variational problem on Ω2:

a2(w, v) + γ2〈w, v〉 = (f, v)Ω2
+ 〈g2, v〉 ∀v ∈ V2.

Definition 1.1. (The Robin-Robin DD method.) Given g01(= 0) on Γ, a serial version do-

main decomposition iteration consists the following five steps (m = 0, 1, . . . ):

1. Solve on Ω1 for um:

a1(u
m, v) + γ1〈um, v〉 = (f, v)Ω1

+ 〈gm1 , v〉 ∀v ∈ V1. (1.4)

2. Update the interface condition on Γ:

gm2 = −gm1 +
(

γ2 + γ1
)

um. (1.5)

3. Solve on Ω2 for wm:

a2(w
m, v) + γ2〈wm, v〉 = (f, v)Ω2

+ 〈gm2 , v〉 ∀v ∈ V2. (1.6)
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4. Update the other interface condition on Γ:

g̃m1 = −gm2 +
(

γ1 + γ2
)

wm. (1.7)

5. Get the next iterate by a relaxation:

gm+1
1 = θgm1 + (1− θ)g̃m1 . (1.8)

The rest of paper is organized as follows. In Section 2, we shall show that although the

Robin-Robin DD method cannot achieve the geometrical convergence rate at the continuous

PDE level, but it does at the discrete level. In Section 3, we shall give an explicit convergence

rate of the DD method on uniform meshes. In Section 4, we shall extend our method to more

general quasi-uniform meshes. Using the Dirichlet-to-Neumann operator, we shall prove that

the Robin-Robin DD method is optimal. Finally, in the last section, we shall present some

numerical results to support our theory. It is seen from our numerical implementation that this

DD method is better than Dirichlet-Neumann DD method and one-parameter Robin-Robin DD

method.

2. A von Neumann Analysis

In this section, through a simple model problem, we shall show that for the new DD method

it is not possible to get the geometrical convergence rate strictly less than one at the continuous

level, but it is possible at the discrete level.

Let us assume that Ω1 = [−π, 0]× [0, π] and Ω2 = [0, π]× [0, π], and it is enough for us to

assume that f ≡ 0 so that the true solutions of Eq. (1.1) vanishes. Now if g1 = ĝ1 sinky on Γ,

from Eqs. (1.1) and (1.2), the solution on Ω1 is

u = û sinh
(

k(x+ 1)
)

sin ky, where û =
ĝ1

γ1 sinh k + k coshk
.

If g2 = ĝ2 sin ky on Γ, from Eqs. (1.1) and (1.3), the solution on Ω2 is

w = ŵ sinh
(

k(x− 1)
)

sin ky, where ŵ = − ĝ2
γ2 sinh k + k coshk

.

By Definition 1.1, if the initial error is gm1 = ĝm1 sin ky on Γ, then

gm2 = ĝm2 sin ky, where ĝm2 = ĝm1

(

γ2 + γ1
γ1 + k coth k

− 1

)

.

Then, by (1.6) and (1.7),

g̃m1 = ˆ̃gm1 sin ky, where ˆ̃gm1 = ĝm2

(

γ2 + γ1
γ2 + k coth k

− 1

)

.

Finally, after the relaxation step (1.8),

gm+1
1 = ĝm+1

1 sin ky,

where

ĝm+1
1 = θĝm1 + (1− θ)ˆ̃gm1 = ρĝm1 ,
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and the factor

ρ = θ + (1− θ)

(

γ2 + γ1
γ2 + k coth k

− 1

)(

γ2 + γ1
γ1 + k coth k

− 1

)

. (2.1)

Now for the fixed parameters 0 < θ < 1, γ1 > 0 and γ2 > 0, if k tends to infinity, then

ρ ≈ 1− 2(1− θ)
γ1 + γ2

k
. (2.2)

Therefore in the continuous case, it is impossible to get the convergence rate independent of

the frequency (or the wave number) k. On the other hand, if k is bounded by 1 ≤ k ≤ K, we

may obtain the convergence rate ρ, which is independent of k (but dependent on K), through

choosing the three parameters γ1, γ2 and θ.

Lemma 2.1. If a and b are two non-negative constants, then the function

ρ(θ) = max {|θ − (1 − θ)a|, |θ − (1− θ)b|} (2.3)

attains the minimum value |b−a|
2+a+b at θ0 = a+b

2+a+b .

-
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� |θ − (1− θ)b|

-|θ − (1 − θ)a|

A

Fig. 2.1. Graphs of |θ − (1− θ)a| and |θ − (1− θ)b|, b > a ≥ 0.

Proof. Without loss of generality, we assume b ≥ a. Both terms in (2.3) are piecewise linear

functions. We plot them in Fig. 2.1. The minimal value is attained at the point A, where two

lines intersect:

θ − (1− θ)a+ θ − (1− θ)b = 0.

That is θ = θ0 = a+b
2+a+b , and

|θ0 − (1− θ0)a| = |θ0 − (1− θ0)b| =
|a− b|

2 + a+ b
.

This completion the proof of the lemma. 2

Lemma 2.2. For any z ≥ 0, the function

ω(z) =
γ2 − z

γ2 + z
· z − γ1
z + γ1

(2.4)

attains the maximum value at z0 =
√
γ1γ2:

max
z>0

ω(z) =
(η − 1)2

(η + 1)2
, where η =

√

γ2
γ1

. (2.5)
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Proof. The derivative of ω(z) is

ω′(z) =
2(γ1 + γ2)(γ1γ2 − z2)

(z + γ1)2(z + γ2)2
. (2.6)

So ω(z) monotonically increases when z < z0 and monotonically decreases when z > z0. In

particular, then the minimum value of ω(z) on an interval [z1, z2] is attained at one of the end

points:

min
z∈[z1,z2]

ω(z) = min
{

ω(z1), ω(z2)
}

. (2.7)

By (2.6), ω(z) attains the only global maximum value at z0 =
√
γ1γ2:

ω(z0) =
γ2 −

√
γ1γ2√

γ1γ2 + γ2

√
γ1γ2 − γ1√
γ1γ2 + γ1

=
(η − 1)2

(η + 1)2
.

The lemma is proved. 2

It follows from Eq. (2.1) that,

ρ = θ − (1 − θ)
γ2 − k coth k

γ2 + k coth k
· k cothk − γ1
γ1 + k coth k

= θ − (1− θ)ω(k coth k).

If γ1 and γ2 are chosen such that γ1 < coth 1 and γ2 > K cothK, then ω(k cothk) > 0. By

Lemma 2.2,

|ρ| ≤ max{|θ|, |θ − (1 − θ)ω(z0)|}.

Applying Lemma 2.1, we may select

θ0 =
ω(z0)

2 + ω(z0)
⇒ |ρ| ≤ |θ0| <

1

3
. (2.8)

Remark 2.1. If η >
√
2+1√
2−1

, we may just set θ = 1
3 , and |ρ| is also less than 1

3 . Moreover, this

bound can be improved further if we carefully estimate the minimum value of ω(z).

Remark 2.2. The constrain γ1 < coth 1 can be relaxed. Actually, if γ1 > coth 1, then

|ρ| ≤ max {|θ + (1− θ)ζ| , |θ − (1− θ)ω(z0)|} ,

where ζ = γ1−coth 1
γ1+coth 1 . Then we set θ = 0 if ω(z0) ≤ ζ and set θ = ω(z0)−ζ

2+ω(z0)−ζ if ω(z0) > ζ, and

|ρ| ≤
{

ζ, if ω(z0) ≤ ζ,
ω(z0)+ζ

2+ω(z0)−ζ , if ω(z0) > ζ.

Note that

ω(z0) < 1,
ω(z0) + ζ

2 + ω(z0)− ζ
≤ 1 + ζ

3− ζ
,

which is also independent of K.

The von Neumann analysis shows that the Robin-Robin DD does have a constant rate

of convergence, independent of the frequency number k or K. But the selection of the two

parameters depends on K. The limit case indicates that the method degenerates into, i.e.,

γ2 = ∞, a Robin-Dirichlet DD method.
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3. Convergence on Uniform Grids

In this section, we analyze the Robin-Robin DD method on uniform grids. In this case, we

give explicit eigenvalues of the iterative matrix, and show the optimal rate of convergence.

For simplicity of anlaysis, we consider the domain Ω = [0, 1]2 in this section, and post a

uniform grid of size h = 1/(2n) on the domain, shown in Fig. 5.1. Then, we subdivide the

domain into two, as shown in Fig. 3.1. We give two numberings of nodal values of the C0-P1

finite element functions. One numbering is on the interface Γ. The other one is within each

subdomain, Ω1 and Ω2. When numbering the nodes in Ω2, we go from right to left so that the

nodal index is symmetric to that on the left domain Ω1.

Γ

Ω1 Ω2

s s s s s

s s s s s

s s s s s

s s s s s

s s s s s

x1

x2

x3

x2n−1

Γ

Ω1 Ω2

s s s s s

s s s s s

s s s s s

s s s s s

s s s s s

1 1

2 2

2n− 1

?
�

�	 � 2n− 1

(2n− 1)n(last)

Fig. 3.1. Nodal basis numberings, on Γ and on Ω1 ∩ Ω2.

Let MΓ and AΓ be two tridiagonal (2n− 1)× (2n− 1) matrices:

MΓ =
h

6













4 1

1 4
. . .

. . .
. . . 1

1 4













, AΓ =
1

2













4 −1

−1 4
. . .

. . .
. . . −1

−1 4













.

Here MΓ is just the mass matrix of the inner product 〈·, ·〉. Let Rh be the (2n− 1)× (2n− 1)n

matrix representing a restriction operator on Γ:

Rh = (02n−1, · · · , 02n−1, I2n−1). (3.1)

The stiffness matrix of the bilinear form a1(·, ·), under nodal basis, (and a2(·, ·) too) is

Ah = A0 −RT
hAΓRh,

where the matrix A0 is the stiffness matrix of size (2n − 1)n, for the Laplace operator on a

(2n)× (n+ 1) uniform grid with zero Dirichlet boundary condition. A0 is same as the matrix

of standard five-point finite difference matrix, which has the eigen-decomposition [5, 23]:

A0 = (Φn ⊗ Φ2n−1)
T (Λn ⊗ I2n−1 + In ⊗ Λ2n−1)(Φn ⊗ Φ2n−1), (3.2)

where Λm denotes an diagonal matrix whose (i, i)-th entry is

λ
(m)
i = 4 sin2

iπ

2(m+ 1)
, (3.3)
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and Φm denotes an orthogonal matrix defined by

Φm =
(

φ
(m)
1 · · · φ

(m)
m

)

, with φ
(m)
i =

√

2

m













sin iπ
m+1

sin 2iπ
m+1
...

sin miπ
m+1













. (3.4)

Here in (3.2), a tensor product matrix Cmk×mk = Am×m ⊗ Bk×k is defined with the (i, j)-th

entry

Cij = Ai′,j′Bi′′,j′′ , where i = (i′ − 1)k + i′′, j = (j′ − 1)k + j′′.

In Definition 1.1, for (1.4), the error emu = u− um satisfies the equation:

a1(e
m
u , v) + γ1〈emu , v〉 = 〈emg1 , v〉 ∀v ∈ V1.

Here emg1 = g1 − gm1 is the error. In the matrix-vector form,

Em
u = (Ah + γ1R

T
hMΓRh)

−1RT
hMΓE

m
g1 .

Here Em
u is the vector representation of emu . Therefore, by (1.6),

Em
g2 =

(

−I + (γ2 + γ1)Rh(Ah + γ1R
T
hMΓRh)

−1RT
hMΓ

)

Em
g1 . (3.5)

Symmetrically, by (1.7) and (1.8),

Ẽm
g1 = Cγ2

Em
g2 . (3.6)

Here, for simplicity, we denote the error reduction matrix by

Cγk
=

(

− I + (γ2 + γ1)Rh(Ah + γkR
T
hMΓRh)

−1RT
hMΓ

)

, k = 1, 2. (3.7)

Finally, by (1.8), one Robin-Robin DD iteration reduces the initial error Em
g1 to

Em+1
g1 =

(

θI + (1− θ)Cγ2
Cγ1

)

Em
g1 . (3.8)

We find the eigenvalue range of this error reduction matrix, via common eigenvectors of all

matrices.

Lemma 3.1. The error reduction matrix (3.8) can be diagonalized by Φ2n−1 defined in (3.4).

That is,

Φ2n−1[θI + (1− θ)Cγ2
Cγ1

]ΦT
2n−1 = diag(θ + (1− θ)cj), (3.9)

where in the j-th diagonal element,

cj =
γ1aj − bj
γ1aj + bj

· γ2aj − bj
γ2aj + bj

. (3.10)
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Here in (3.10),

aj = λMΓ,j λ̃j , λMΓ,j = h− h

6
λ
(2n−1)
j , (3.11)

bj = 1− λAΓ,jλ̃j , λAΓ,j = 1 +
1

2
λ
(2n−1)
j , (3.12)

where λ
(2n−1)
j is defined in (3.3) and

λ̃j =
2

n+ 1

n
∑

i=1

sin2
inπ

n+ 1
(λ

(n)
i + λ

(2n−1)
j )−1. (3.13)

Proof. In (3.5), by the Sherman-Morrison-Woodbury formula,

(Ah + γ1R
T
hMΓRh)

−1

= (A0 +RT
h (−AΓ + γ1MΓ)Rh)

−1

= A−1
0 −A−1

0 RT
h

(

(−AΓ + γ1MΓ)
−1 +RhA

−1
0 RT

h

)−1

RhA
−1
0 .

Now letting B0 = RhA
−1
0 RT

h , we have

Rh(Ah + γ1R
T
hMΓRh)

−1RT
h = B0 −B0

(

(−AΓ + γ1MΓ)
−1 +B0

)−1

B0.

By (3.1) and (3.2), notice that (Φn ⊗ Φ2n−1)R
T
h = φ

(n)
n ⊗ Φ2n−1, we can compute B0:

B0 = (φ(n)
n ⊗ Φ2n−1)

T (Λn ⊗ I2n−1 + In ⊗ Λ2n−1)
−1(φ(n)

n ⊗ Φ2n−1)

=

n
∑

i=1

(φ
(n)
n,i )

2ΦT
2n−1(λ

(2n−1)
i I2n−1 + Λ2n−1)

−1Φ2n−1

= ΦT
2n−1

(

n
∑

i=1

(φ
(n)
n,i )

2(λ
(2n−1)
i I2n−1 + Λ2n−1)

−1

)

Φ2n−1

= ΦT
2n−1Λ̃0Φ2n−1,

where φ
(n)
n,i is the i-th entry of vector φ

(n)
n defined in (3.4), and Λ̃0 is a diagonal matrix, whose

(j, j)-th entry is define in (3.13). The matrices on Γ are diagonalized asMΓ = ΦT
2n−1 diag(λMΓ,j)Φ2n−1

and AΓ = ΦT
2n−1 diag(λAΓ,j)Φ2n−1, where λMΓ,j and λAΓ,j are defined in (3.11) and (3.12), re-

spectively. Thus combining last two equalities, we get

Rh(Ah + γ1R
T
hMΓRh)

−1RT
h

= B0 −B0(Φ
T
2n−1(− diag(λAΓ,j) + γ1 diag(λMΓ,j))

−1Φ2n−1 +B0)
−1B0

= ΦT
2n−1

[

Λ̃0 − Λ̃2
0

{

(− diag(λAΓ,j) + γ1 diag(λMΓ,j))
−1 + Λ̃0

}−1
]

Φ2n−1

= ΦT
2n−1

[

Λ̃−1
0 − diag(λAΓ,j) + γ1 diag(λMΓ,j)

]−1

Φ2n−1.

By (3.7),

Cγ1
= ΦT

2n−1

(

− I + (γ2 + γ1)
[

(Λ̃−1
0 − diag(λAΓ,j)) diag(λ

−1
MΓ,j

) + γ1I)
]−1
)

Φ2n−1

= ΦT
2n−1 diag

(−1 + γ2λMΓ,j λ̃j + λAΓ,j λ̃j

1 + γ1λMΓ,j λ̃j − λAΓ,jλ̃j

)

Φ2n−1

= ΦT
2n−1 diag

(

γ2aj − bj
γ1aj + bj

)

Φ2n−1.
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In the same fashion, it follows that

Cγ2
= ΦT

2n−1 diag

(

γ1aj − bj
γ2aj + bj

)

Φ2n−1.

Thus (3.9) follows. 2

In the next lemma, we estimate the eigenvalue cj in the reduction matrix, (3.10).

Lemma 3.2. (3aj − bj) is monotonically decreasing, i.e., j = 1, . . . , 2n− 2,

3aj − bj ≥ 3aj+1 − bj+1. (3.14)

Proof. We rewrite the λ̃j (in aj and bj) in a symmetric form so that each i-term is a

decreasing function of j (the original term is not.)

λ̃j =
2

n+ 1

1

2

n
∑

i=1

sin2
(

iπ/(n+ 1)
)

4 sin2
(

jπ/(4n)
)

+ 4 sin2
(

iπ/(2n+ 2)
)

+
sin2

(

(n+ 1− i)π/(n+ 1)
)

4 sin2
(

jπ/(4n)
)

+ 4 sin2
(

(n+ 1− i)π/(2n+ 2)
)

=
1

n+ 1

n
∑

i=1

sin2
(

iπ/(n+ 1)
)

(

2 sin2
(

jπ/(4n)
)

+ 1
)

4 sin4
(

jπ/(4n)
)

+ 4 sin2
(

jπ/(4n)
)

+ sin2
(

iπ/(n+ 1)
) .

To shorten expression, we introduce two more notations

ξj = sin2
jπ

4n
, (3.15)

θj = (1 + 2ξj)(1 + 3h+ 2ξj − 2hξj). (3.16)

By (3.11) and (3.12), we have

3aj − bj + 1 =
1

n+ 1

n
∑

i=1

sin2
(

iπ/(n+ 1)
)

θj

4ξ2j + 4ξj + sin2
(

iπ/(n+ 1)
) . (3.17)

We show that each term is a decreasing function of ξj . That is, each term

fi(ξ) =
(2ξ + 1)

(

2(1 + h)− (1− h)(1 − 2ξ)
)

4ξ2 + 4ξ + sin2
(

iπ/(n+ 1)
)

is a decrease function of ξ, for ξ ∈ (0, 1). By the quotient rule,

f ′
i(ξ) =

(

4(1 + h) + 8(1− h)ξ
)

(

4ξ2 + 4ξ + sin2
(

iπ/(n+ 1)
)

)

(

4ξ2 + 4ξ + sin2
(

iπ/(n+ 1)
)

)2

−
(

(1 + 3h) + 4(1 + h)ξ + 4(1− h)ξ2
)

(8ξ + 4)
(

4ξ2 + 4ξ + sin2
(

iπ/(n+ 1)
)

)2 .

The combined numerator is

−
(

4(1 + h) cos2
iπ

n+ 1
+ 8h

)

−
(

8(1− h) cos2
iπ

n+ 1
+ 16h

)

ξ − (32h)ξ2 < 0.
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As each term fi(ξj) is desecrating with respect to j, the sum is a desecrating function of j. We

prove the lemma. 2

We will find a bound for the biggest term (3a1− b1), among all (3aj − bj), in order to bound

the cj in (3.10). One can prove that, for all n ≥ 1,

3a1 − b1 < −7h2/16, (3.18)

where a1 and b1 are defined in (3.11) and (3.12), respectively, and h = 1/(2n). But our proof for

(3.18) is lengthy and tedious. In this paper, we prove a worse bound only, in the next lemma.

Lemma 3.3. If n ≥ 11, then (cf. (3.18))

3a1 − b1 < −0.049h < −7h2/16, (3.19)

where a1 and b1 are defined in (3.11) and (3.12), respectively.

Proof. By (3.17), with the notations defined in (3.11), (3.12) and (3.13),

3a1 − b1 + 1 =

(

1 + 3h+
1− h

2
λ
(2n−1)
1

)

λ̃1. (3.20)

We estimate an upper bound for

λ̃1 =
2

n+ 1

n
∑

i=1

cos2
iπ

2(n+ 1)
− 2

n+ 1

n
∑

i=1

cos2 iπ
2(n+1) sin

2 π
4n

sin2 iπ
2(n+1) + sin2 π

4n

=
n

n+ 1
− 2 sin2 π

4n

n+ 1

n
∑

i=1

(

1 + sin2 π
4n

sin2 iπ
2(n+1) + sin2 π

4n

− 1

)

= 1− 1− 2n sin2 π
4n

n+ 1
− 2(1 + sin2 π

4n )

n+ 1

n
∑

i=1

sin2 π
4n

sin2 iπ
2(n+1) + sin2 π

4n

. (3.21)

As (sinx/x) is a decreasing function of x on (0, π/2), we have

n
∑

i=1

sin2 π
4n

sin2 iπ
2(n+1) + sin2 π

4n

>

n
∑

i=1

1
(

iπ
2(n+1)

/

π
4n

)2

+ 1
>

n
∑

i=1

1

1 + 4i2

≥
11
∑

i=1

1

1 + 4i2
> 0.33462.

Substituting the estimate into the expression of λ̃1,

λ̃1 < 1− 1 + 2(1 + 2 sin2 π
4n ) · 0.33462− 2n sin2 π

4n

n+ 1
< 1− 1.55726

n+ 1
.

By (3.20), if n ≥ 11,

3a1 − b1 + 1 <

(

1 +
3

2n
+

π2

8n2

)(

1− 1.55726

n+ 1

)

< 1− 0.049h ≤ 1− 0.98h2 < 1− 7h2/16.

We proved the lemma. 2

With the explicit eigenvalues of the reduction matrix and their bounds, we can easily choose

a set of parameters γ1, γ2 and θ, to get a constant rate of reduction, independent of mesh size

h.
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Theorem 3.1. Let γ1 = 1, γ2 = 64h−1 and θ = 3/7 in Definition 1.1. The error reduc-

tion factor (for the P1 finite element on uniform grids shown in Fig. 5.1) is bounded by 1/7,

independent of the grid size h,

‖em+1
g1 ‖L2(Γ) ≤

1

7
‖emg1‖L2(Γ).

Proof. We will apply Lemma 2.2. By (3.11) and (3.3), aj > 0. It follows from (3.14), (3.18)

and (3.12) that

3aj − bj ≤ 3a1 − b1 ≤ −7h2/16, (3.22a)

bj ≥ 3aj + 7h2/16 > 0. (3.22b)

By (3.10),

cj =
1− bj/aj
1 + bj/aj

· 64h
−1 − bj/aj

64h−1 + bj/aj
.

We let z = bj/aj > 0 in Lemma 2.2. The critical point is (may be outside the bj/aj range)

z0 =
√
γ1γ2 = 8h−1/2.

We find the two end points of possible z. First, by (3.13),

λ̃j ≥
2

n+ 1

n
∑

i=1

1

8
sin2

inπ

n+ 1
=

n

8(n+ 1)
>

1

8
.

Thus, by (3.11), (3.12) and (3.3),

aj ≤ (h− h

6
· 0) · 1 = h,

aj ≥ (h− h

6
· 4) · 1

8
=

h

12
,

bj ≤ 1− (1 +
1

2
· 0) · 1

8
=

7

8
.

In the first inequality, we used (3.21) that λ̃j < 1. We find one end point for z:

bj
aj

≤ 7/8

h/12
=

21

2h
≡ zr.

For the other end point, by (3.22),

bj
aj

≥ 3 +
7h2/16

aj
≥ 3 +

7h2/16

h
= 3 +

7h

16
≡ zl.

By Lemma 2.2, the range of cj is between its values at z = zl, z0, zr. We note that zl < z0 < zr
here. At each point, we need to apply Lemma 2.2 again for h varying. But we can find some

rough (but good enough) bounds at each point, directly.

At z = zr: − 0.718... = −107

149
< cj ≤ −1070

1639
= −0.65...

At z = zl: − 0.50098... = −2184975

4361329
≤ cj < −1

2
= −0.5.

At z = z0: − 1 < cj ≤
32− 129

√
2

32− 129
√
2
= −0.7015...
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Hence the value of cj is always strictly between −1 and −1/2. When θ = 3/7, we get,

θ + (1 − θ)cj >
3

7
+

4

7
(−1) = −1

7
, (3.23)

θ + (1 − θ)cj <
3

7
+

4

7
(−1

2
) =

1

7
. (3.24)

This gives the error reduction factor. 2

By (3.23) and (3.24), we can get the following result for a general relaxation parameter θ.

Corollary 3.1. Let γ1 = 1 and γ2 = 64h−1 in Definition 1.1. The error reduction factor ρ for

the P1 finite element on uniform grids (shown in Fig. 5.1) is

ρ =

{

1− 2θ, 0 ≤ θ ≤ 3/7,

(3θ − 1)/2, 3/7 < θ ≤ 1.

That is,

‖em+1
g1 ‖L2(Γ) ≤ ρ‖emg1‖L2(Γ).

4. Convergence on General Grids

In this section, we consider the convergence behavior of the Robin-Robin DD method on

general quasi-uniform meshes. By the algorithm in Definition 1.1, for i = 1, 2,

ai(e
m
i , v) + γi〈emi , v〉 = 〈εmi , v〉, ∀v ∈ Vi

, where the errors are defined by

εmi = gi − gmi , em1 = u− um, and em2 = w − wm.

Let S1 and S2 be the standard Dirichlet-to-Neumann operators, cf. [29, 30]. The error εni
(i = 1, 2), restricted to the interface Γ, satisfies the relation

εmi = (γi + Si)e
m
i |Γ. (4.1)

Using the first interface update (1.5), we have

εm2 = −εm1 + (γ1 + γ2)e
m
1 |Γ. (4.2)

For the second one, by (1.7) and (1.8),

εm+1
1 = θεm1 + (1− θ)[−εm2 + (γ1 + γ2)e

m
2 |Γ]

= θεm1 + (1− θ)[−(γ2 + S2)e
m
2 |Γ + (γ1 + γ2)e

m
2 |Γ]

= θεm1 + (1− θ)(γ1 − S2)e
m
2 |Γ.

By (4.1), (4.2), we have

εm+1
1 = θεm1 + (1− θ)(γ1 − S2)(γ2 + S2)

−1εm2

= θεm1 + (1− θ)(γ1 − S2)(γ2 + S2)
−1(γ2 − S1)e

m
1 |Γ

= [θ + (1 − θ)(γ1 − S2)(γ2 + S2)
−1(γ2 − S1)(γ1 + S1)

−1]εm1 .
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Let us represent the iteration by

εm+1
1 = Rεm1 ,

where

R = θ − (1− θ)T, (4.3)

T = (S2 − γ1)(γ2 + S2)
−1(γ2 − S1)(γ1 + S1)

−1. (4.4)

Next, we give an convergence analysis for this DD operator R.

4.1. Symmetric case: S1 = S2(:= S)

Let z be an eigenvector of the symmetric operator S (cf. [29, 30]) corresponding to the

eigenvalue λs. By (4.4), z is also an eigenvector of the symmetric operator T .

[θ + (1− θ)T ]z =
[

θ + (1− θ)
(γ1 − λs)(γ2 − λs)

(γ1 + λs)(γ2 + λs)

]

z

= [θ − (1 − θ)ω(λs)]z.

It is known [30] that

λs ∈ [c0, C0h
−1].

Now if we choose

0 < γ1 ≤ c0, and γ2 ≥ C0h
−1, (4.5)

by Lemma 2.2, we get

0 ≤ ω(λs) ≤
(η − 1)2

(η + 1)2
, η =

√

γ2
γ1

.

Then we bound the spectrum of the symmetric operator R, σ(R), as

σ(R) ⊂ [θ − (1− θ)
(η − 1)2

(η + 1)2
, θ] ⊂ [−1

3
,
1

3
],

when choosing the parameter θ = 1/3, cf. Remark 2.1. That is, the convergence rate is bounded

by 1/3, independent of the mesh size h, when choosing parameters by (4.5).

4.2. Nonsymmetric case: S1 ≈ S2

In this case, there exist two positive constant 0 < s ≤ 1 and t ≥ 1, independent of the grid

size h, such that for all v ∈ Vi|Γ (cf. [29] for details):

s(S1v, v) ≤ (S2v, v) ≤ t(S1v, v). (A1)

Si(i = 1, 2) are symmetric and positive definite(SPD). Let λi be the minimum eigenvalue,

and λi the maximum eigenvalue of Si. In this subsection, we assume that the parameters are

chosen to satisfy

0 < γ1 ≤ min{λ1, λ2}, and γ2 ≥ 3max{λ1, λ2}. (A2)

The parameter selection is similar to that in the symmetric case, (4.5).
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Lemma 4.1. The condition (A1) has another version

1

t
(S−1

1 v, v) ≤ (S−1
2 v, v) ≤ 1

s
(S−1

1 v, v). (4.6)

Proof. Replacing v by S
− 1

2

1 v in (A1),

s(v, v) ≤ (S
− 1

2

1 S2S
− 1

2

1 v, v) ≤ t(v, v).

This inequality implies that the spectrum of the SPD operator S
− 1

2

1 S2S
− 1

2

1 is within [s, t]. So

the spectrum of its inverse, S
1

2

1 S
−1
2 S

1

2

1 is inside [t−1, s−1], i.e.,

1

t
(v, v) ≤ (S

1

2

1 S
−1
2 S

1

2

1 v, v) ≤
1

s
(v, v).

Eq. (4.6) follows after replacing v by S− 1

2 v. 2

To find the spectrum of DD operator T in (4.4), we introduce a symmetric operator

T̃ = (γ1 + S1)
− 1

2 (γ2 − S1)
1

2 (S2 − γ1)(γ2 + S2)
−1(γ2 − S1)

1

2 (γ1 + S1)
− 1

2 . (4.7)

This operator is similar to the nonsymmetric operator T , defined in (4.4).

Lemma 4.2. If Assumption (A2) is satisfied, then T̃ is SPD.

Proof. T̃ is symmetric because

T̃ T = (γ1 + ST
1 )

− 1

2 (γ2 − ST
1 )

1

2 (γ2 + ST
2 )

−1(ST
2 − γ1)(γ2 − ST

1 )
1

2 (γ1 + ST
1 )

− 1

2

= T̃ .

Notice that (S2 − γ1)(γ2 + S2)
−1 = I − (γ1 + γ2)(γ2 + S2)

−1. Its minimum eigenvalue is

1− (γ1 + γ2)(γ2 + λ2)
−1 =

λ2 − γ1
γ2 + λ2

,

which is positive by Assumption (A2). Similarly, the minimum eigenvalue of (γ2−S1)(γ1+S1)
−1

is (γ2 − λ1)/(γ1 + λ1), which is also positive by Assumption (A2). Now for any v ∈ Vi|Γ, we
have, denoting ṽ = (γ2 − S1)

1

2 (γ1 + S1)
− 1

2 v,

(T̃ v, v) =
(

(S2 − γ1)(γ2 + S2)
−1ṽ, ṽ

)

≥ λ2 − γ1
γ2 + λ2

(ṽ, ṽ)

=
λ2 − γ1
γ2 + λ2

(

(γ2 − S1)(γ1 + S1)
−1v, v

)

=
λ2 − γ1
γ2 + λ2

· γ2 − λ1

γ1 + λ1

(v, v).

It means that the minimum eigenvalue of T̃ is greater than
λ
2
−γ1

γ2+λ
2

γ2−λ1

γ1+λ1

> 0. That is to say,

the symmetric operator T̃ is also positive definite. 2

We find an upper bound of the spectrum of SPD operator T̃ next. To this end, we rewrite

T̃ as

T̃ = T̃ T
2 T̃1T̃2, (4.8)
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where

T̃1 = (S2 − γ1)(γ2 + S2)
−1(γ2 − S2)(γ1 + S2)

−1, (4.9)

T̃2 = (γ1 + S2)
1

2 (γ2 − S2)
− 1

2 (γ1 + S1)
− 1

2 (γ2 − S1)
1

2 . (4.10)

Lemma 4.3. If (A1) and (A2) hold, then, for the t defined in (A1),

(

(γ2 − S2)
−1(γ1 + S2)v, v

)

≤ (2t− 1)
(

(γ2 − S1)
−1(γ1 + S1)v, v

)

. (4.11)

Proof. By (A1) and (4.6),

(

(γ2 − S1)(γ1 + S1)
−1v, v

)

=
(

(γ1 + γ2)(γ1 + S1)
−1v, v

)

− (v, v)

≤ t
(

(γ1 + γ2)(γ1 + S2)
−1v, v

)

− (v, v)

= t
(

(γ2 − S2)(γ1 + S2)
−1v, v

)

+ (t− 1)(v, v).

We bound the second term next. By the assumption (A2),

(

(γ2 − S2)(γ1 + S2)
−1v, v

)

≥ γ2 − λ2

γ1 + λ2

(v, v) ≥ 2λ2

2λ2

(v, v) = (v, v).

Combining above two inequalities,

(

(γ2 − S1)(γ1 + S1)
−1v, v

)

≤ (2t− 1)
(

(γ2 − S2)(γ1 + S2)
−1v, v

)

. (4.12)

Applying Lemma 4.1, replacing S2 there by (γ2−S1)(γ1+S1)
−1 and S1 by (γ2−S2)(γ1+S2)

−1,

by (4.12),

1

2t− 1

(

(γ2 − S2)
−1(γ1 + S2)v, v

)

≤
(

(γ2 − S1)
−1(γ1 + S1)v, v

)

.

Hence (4.11) is proved. 2

Lemma 4.4. If assumptions (A1) and (A2) hold, then the spectrum of the SPD operator T̃ is

bounded by

σ(T̃ ) ⊂ (0, 2t− 1]. (4.13)

Proof. T̃1 is SPD, cf. (4.9). The eigenvalues of T̃1 are

λ̃j =
λ2,j − γ1
γ2 + λ2,j

γ2 − λ2,j

γ1 + λ2,j
,

where {λ2,j} are all eigenvalues of S2. By (A2),

λ̃j >
λ2,j − λ2

γ2 + λ2,j

4λ2 − λ2,j

γ1 + λ2,j
≥ 0,

λ̃j <
λ2,j

γ1 + λ2,j

λ2

γ2 + λ2,j
< 1.

Then, by (4.10), (4.8) and (4.11),

0 < (T̃ v, v) < (T̃2v, T̃2v) =
(

(γ1 + S2)(γ2 − S2)
−1ṽ, ṽ

)

≤ (2t− 1)
(

(γ1 + S1)(γ2 − S1)
−1ṽ, ṽ

)

= (2t− 1)(v, v),
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where

ṽ = (γ1 + S1)
− 1

2 (γ2 − S1)
1

2 v.

The proof is complete. 2

Theorem 4.1. If the assumptions (A1) and (A2) hold, then the spectrum of DD reduction

operator R, defined in (4.3), is bounded, independent of the grid size h:

σ(R) ⊂
[

− 2t− 1

2t+ 1
,
2t− 1

2t+ 1

]

, (4.14)

when θ is selected by

θ =
2t− 1

2t+ 1
. (4.15)

Proof. By (4.13) and (4.3),

σ(R) ⊂ [θ − (1− θ)(2t− 1), θ],

where t is defined in (A1), independent of h. Similar to the idea in Lemma 2.1, (4.14) follows

after we choose the optimal θ by (4.15). 2

5. A Numerical Test

For numerical test, we solve the Poisson Eq. (1.1) on the unit square [0, 1]. The exact

solution is chosen

u(x, y) = 26(x3 − x4)(y − y2).

We choose x = 1/2 as the domain decomposition interface. We use P1 conforming finite element

on uniform criss grids, shown in Fig. 5.1.
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Fig. 5.1. A uniform criss grid of size h = 1/8.

First, we do the Robin-Robin iteration (Definition 1.1) for problems with different grid

sizes. The parameters used are γ1 = 1, γ2 = 64/h and θ = 3/7. The iteration stops when

|gm+1
1 − gm1 |l∞ < 10−11. The number of iteration, the error and the order of convergence for
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Table 5.1: The errors and the iteration numbers, by Definition 1.1.

h ‖uI − uh‖L2 hn |uI − uh|H1 hn #DD

1/4 0.0027120 0.203663 14

1/12 0.0000716 1.65 0.004456 1.74 14

1/20 0.0000098 1.93 0.000605 1.95 14

1/28 0.0000026 1.97 0.000159 1.98 14

1/36 0.0000009 1.99 0.000058 1.99 14

1/44 0.0000004 1.99 0.000026 1.99 14

1/52 0.0000002 1.99 0.000013 2.00 14

the finite element solution are listed in Table 5.1. We note that there is a superconvergence for

the finite element solution in semi-H1 norm.

Next, we check our theoretic bounds in Theorem 3.1. In (3.23) and (3.24), if we vary θ from

0/7 to 6/7, we can get the following theoretic bounds:
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We compute the real bounds for these θ on various meshes, and list them in Table 5.2. We note

that, when θ = 0/7 = 0, the method is reduced to the traditional Robin-Robin DD method (by

other researchers, where γ1 = γ2), which converges at a rate of 1− C
√
h, cf. [30]. This can be

seen in the first column of Table 5.2.

Table 5.2: The reduction rate with different θ in Definition 1.1.

h \ θ 0 1/7 2/7 3/7 4/7 5/7 6/7

1/4 0.764 0.512 0.260 0.096 0.322 0.548 0.774

1/12 0.865 0.598 0.332 0.115 0.336 0.557 0.779

1/20 0.894 0.624 0.353 0.116 0.337 0.558 0.779

1/28 0.910 0.637 0.364 0.116 0.337 0.558 0.779

1/36 0.920 0.646 0.371 0.116 0.337 0.558 0.779

1/44 0.927 0.652 0.377 0.116 0.337 0.558 0.779

1/72 0.943 0.665 0.388 0.116 0.337 0.558 0.779

1/288 0.971 0.689 0.408 0.126 0.337 0.558 0.779

1/1152 0.985 0.702 0.418 0.134 0.337 0.558 0.779

Corollary 3.1 1.000 0.714 0.428 0.143 0.357 0.571 0.786

Finally, we compare the Robin-Robin domain decomposition method with the traditional

Dirichlet-Neumann domain decomposition method. We code directly the Dirichlet-Neumann

domain decomposition method, defined as follows.

Definition 5.1. (The Dirichlet-Neumann domain decomposition method.)

Given w0(= 0) on Γ, find um ∈ V1, u
m|Γ = wm:

a1(u
m, v) = (f, v)Ω1

∀v ∈ V1 ∩H1
0 (Ω1).

Find w̃m+1 ∈ V2:

a2(w̃
m+1, v) = (f, v)Ω2

− a1(u
m, v) ∀v ∈ V2,
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Table 5.3: The iteration number for Dirichlet-Neumann DD (Definition 5.1.)

h \ θ 0 0.25 0.35 0.4 0.45 0.5 0.55 0.75

1/4 59 20 20 23 26 30 35 74

1/12 207 33 20 20 23 27 31 66

1/20 362 36 22 19 22 26 30 63

1/28 519 38 23 18 22 25 29 60

1/36 675 39 23 18 21 24 28 59

1/44 833 40 24 18 21 24 28 58

1/52 991 40 24 18 20 23 27 57

where v is extended into Ω1 with 0 nodal values. Then

wm+1 = θwm + (1− θ)w̃m+1.

In Table 5.3, we list the number of Dirichlet-Neumann domain decomposition iterations for

the above test problem, for various θ. It seems that no matter how to choose θ, the Dirichlet-

Neumann domain decomposition method (18 iterations) is worse than the new Robin-Robin

domain decomposition method (14 iterations).
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