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Abstract

In this paper, we establish a convergence result of the cyclic reduction (CR) algorithm

for a class of weakly overdamped quadratic matrix polynomials without assumption that

the partial multiplicities of the nth largest eigenvalue are all equal to 2. Our result can

be regarded as a complement of that by Guo, Higham and Tisseur [SIAM J. Matrix Anal.

Appl., 30 (2009), pp. 1593-1613]. The numerical example indicates that the convergence

behavior of the CR algorithm is largely dictated by our theory.
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1. Introduction

The quadratic eigenvalue problems (QEPs) are to find scalars λ and nonzero vectors x and

y satisfying Q(λ)x = 0 and y∗Q(λ) = 0, where

Q(λ) = λ2A+ λB + C with A,B,C ∈ C
n×n (1.1)

is a quadratic matrix polynomial (or the quadratic for the brevity). Vectors x and y are right

and left eigenvectors corresponding to the eigenvalue λ. QEPs have extensive applications in

practical engineering problems. We refer to [18] for a good review.

In this paper, we consider the overdamped QEP which belongs to a class of hyperbolic QEPs

with the following definition [6].

Definition 1.1. The quadratic Q(λ) is called hyperbolic if A, B, C are all Hermitian, A is

positive definite, and

(x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all nonzero x ∈ C
n.

A hyperbolic QEP can be transformed into an overdamped one [11], so there is no loss of

generality to consider only overdamped problems.
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Definition 1.2. The quadratic Q(λ) is called overdamped if it is hyperbolic with positive definite

B and positive semidefinite C.

It is known that an overdamped quadratic has 2n real, nonpositive and semisimple eigenvalues

that can be ordered 0 ≥ λ1 ≥ · · · ≥ λn > λn+1 ≥ · · · ≥ λ2n [18]. When the nth largest and the

nth smallest eigenvalues coalesce (i.e. λn = λn+1), the quadratic is called weakly overdamped

(WO) in the terminology of Markus [16] (see also [8, Sec. 5]). The following lemma collects

some properties of a weakly overdamped quadratic [6, 16].

Lemma 1.1. Let Q(λ) be a WO quadratic.

(a) Q(λ) has 2n real eigenvalues that can be ordered 0 ≥ λ1 ≥ · · · ≥ λn = λn+1 ≥ · · · ≥

λ2n. The partial multiplicities1) of λn are at most 2, and the eigenvalues other than λn are

semisimple.

(b) The associated quadratic matrix equation (QME)

Q(S) = AS2 +BS + C = 0 (1.2)

admits two extremal solutions (also called solvents in the matrix polynomial theory) S(1) (the

primary) and S(2) (the secondary), whose eigenvalues are the n largest and the n smallest roots

of Q(λ), respectively.

Recently, Guo, Higham and Tisseur [6] devised an efficient algorithm to detect and solve the

overdamped QEPs. This algorithm was based on the cyclic reduction (CR) (stated in Section

3) with quadratic convergence. They also showed that, for WO QEPs, the convergence of the

CR algorithm became linear with a constant at worst 1/2. We note that their analysis in that

case needs the requirement that the partial multiplicities of the nth largest eigenvalue (i.e. λn)

are all equal to 2. However, we know from Lemma 1.1 that the partial multiplicities of λn are

at most 2. So one may wonder: (i) Are there any WO quadratics with the partial multiplicities

of λn containing both 1 and 2? (ii) If such WO quadratics exist, what is the behavior of the

CR algorithm for them?

The purpose of this paper is to investigate the above two issues. We give an example in

the Section 3 to show that it does exist the WO quadratic with the partial multiplicities of

λn containing both 1 and 2. However, the convergence behavior of the CR algorithm for such

a quadratic is some different with that in [6]. We also try to establish a convergence of the

CR algorithm for general WO quadratics (with no assumption on the partial multiplicities

of λn). Unfortunately, the attempt seems not easy since the structure of the corresponding

eigenspace is indefinite. So we instead construct a canonical diagonal quadratic in which the

partial multiplicities of λn include 1 and 2. Then we extend the diagonal quadratic to a class

of (not all) isospectral2) WO quadratics. Since the structure of eigenspace for such extended

quadratics can be made out, we can obtain the convergence theorem of the CR algorithm by

another equivalent doubling algorithm (see [2, 6, 15, 22]). The derived theorem (unlike that

in [6]) indicates that some matrix sequences generated by the CR algorithm no longer converge

to the zero matrix if the partial multiplicities of λn contain 1. Therefore, our result can be seen

as a complement of convergence for the CR algorithm.

1) The partial multiplicities of an eigenvalue of Q(λ) are the sizes of the Jordan blocks in which it appears in

a Jordan matrix of Q(λ) [5].
2) The term “isospectral” is in the sense that the eigenvalues and all their partial multiplicities are common

to isospectral matrix polynomial [13].
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Convergence of the Cyclic Reduction Algorithm for Overdamped Quadratics 141

The rest of this paper is organized as follows. We give some preliminaries in the next section.

We review the CR algorithm in Section 3 and present a WO quadratic to show some different

convergence of the algorithm if the partial multiplicities of λn are not all 2. In Section 4,

we describe the main convergence theorem of the CR algorithm for a class of WO quadratics

without any assumption on the partial multiplicities of λn. Section 5 is dedicated to the proof

of the main theorem and Section 6 is devoted to the validation of the obtained convergence

theorem via numerical experiments. At last, we conclude the paper by discussion in Section 7.

Throughout this paper, the matrix inequality M1 ≥ M2(M1 > M2) for Hermitian matrices

M1 and M2 means that matrix M1 − M2 is positive semidefinite (definite). The notation

M ⊕N stands for [M 0
0 N ]. In := I and 0n := 0 denote the identity and zero matrices of order n,

respectively. 0k(1 < k < n) and 0m×l denote the zero matrices with the dimension k × k and

m× l, respectively.

2. Preliminaries

In this section, we introduce some required concepts from matrix polynomial theory (see,

e.g., [5, Chap. 1] and [13]).

Definition 2.1. Let L(λ) = λτ In+
∑τ−1

j=0 λ
jAj be a monic matrix polynomial of degree τ . The

nonzero vectors φ0 φ1, · · · , φk determined by

i∑

p=0

1

p!
L(p)(λ0)φi−p = 0 (k ≥ i ≥ 0) (2.1)

are called a Jordan chain of length k + 1 for L(λ) corresponding to λ0, where L(p)(λ) denotes

the pth derivative of L(λ) with respect to λ.

Definition 2.2. A Jordan matrix denotes the block diagonal matrix with diagonal blocks being

Jordan blocks. Given the Jordan matrix J of a quadratic matrix polynomial Q(λ) in (1.1).

Denote by X an n×2n matrix whose columns are formed by nonzero eigenvectors associated with

each diagonal entry of J . We call the pair (X, J) forms a Jordan pair if

[
X

XJ

]
is nonsingular.

Definition 2.3. A Jordan triple of a quadratic matrix polynomial Q(λ) in (1.1) is a set of

matrices (X, J, Y ) for which (X, J) is a Jordan pair, Y is a 2n× n matrix, and the matrix

equation [
X

XJ

]
Y =

[
0

A−1

]

holds for the nonsingular leading coefficient matrix A in Q(λ).

The Jordan triple has a close relation with coefficient matrices of Q(λ) [13, Thm. 1].

Lemma 2.1. Let (X, J, Y ) be a Jordan triple of a quadratic matrix polynomial Q(λ) in (1.1).

Denote Γi = XJ iY , i = 1, 2, 3. The coefficient matrices of Q(λ) can be defined recursively:

A = Γ−1
1 , B = −AΓ2A, C = −AΓ3A+BΓ1B.

Moreover, if C is nonsingular, it can also be formulated as C = −(XJ−1Y )−1 =: −Γ−1
−1.
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3. The CR Algorithm for WO QEPs

The cyclic reduction is a very efficient algorithm for solving some nonlinear matrix equa-

tions (see [1, 17]). Attractive properties of the CR algorithm include its quadratic convergence

rate, low computational cost per iteration (compared with Newton’s method [10, 23]) and nice

numerical reliability. The iteration scheme of the CR algorithm for WO QEPs is as follows [6]:





S0 = B, A0 = A, B0 = B, C0 = C,

Sk+1 = Sk −AkB
−1
k Ck,

Ak+1 = −AkB
−1
k Ak,

Bk+1 = Bk −AkB
−1
k Ck − CkB

−1
k Ak,

Ck+1 = −CkB
−1
k Ck.

(3.1)

Guo, Higham and Tisseur [6] showed that the matrix sequences in (3.1) satisfied

Ak < 0, Ck ≤ 0, Bk ≥ µ2kAk + µ−2kCk, k ≥ 0 (3.2)

with some positive real constant µ. So the iterative process (3.1) is well defined for WO QEPs.

The convergence of the CR algorithm in this case is given in [6, Thm 4.6, Cor 4.7]).

Theorem 3.1. Let Q(λ) be weakly overdamped with eigenvalues λ1 ≥ · · · ≥ λn = λn+1 ≥ · · · ≥

λ2n, and the partial multiplicities of λn be all equal to 2. Let S(1) and S(2) be the primary and

secondary solvents of Q(S) = 0, respectively, and λn be a semisimple eigenvalue of S(1) and

S(2) . Then for any matrix norm ‖ · ‖, the iterates {Bk} and {Sk} generated by (3.1) satisfy

lim sup
k→∞

k

√
‖Sk − S̃‖ ≤

1

2
, lim sup

k→∞

k

√
‖Bk − B̃‖ ≤

1

2
,

where S̃ = −S(2)∗A is nonsingular and B̃ = A(S(1) − S(2)) ≥ 0 is singular. Moreover, {Ak}

and {Ck} are both O(2−k) with

lim sup
k→∞

k

√
‖Ak‖‖Ck‖ ≤

1

4
.

Theorem 3.1 shows that the matrix sequences {Sk}, {Ak}, {Bk} and {Ck} are convergent.

In particular, both {Ak} and {Ck} converge to the zero matrix linearly. We note that the

assumption on the partial multiplicities of λn all equaling to 2 is necessary in the above theorem.

On the other hand, when the partial multiplicities of λn are all equal to 1, an example given

in [6, Sec. 4] shows that the matrices sequences defined in (3.1) converge quadratically. However,

in this case, the limit of {Ak} and {Ck} may not be the zero matrix. So what interest us is

the convergence of the CR algorithm when the partial multiplicities of λn include both 1 and

2. The next example shows that such quadratic has some different convergence behavior from

Theorem 3.1.

Example 3.1. Consider the quadratic

Q(λ) = λ2A+ λB + C = λ2

[
1 0

0 1

]
+ λ

[
2 0

0 σ + 1

]
+

[
1 0

0 σ

]
,

where σ > 1 is a real constant. It is easy to see that Q(λ) is weakly overdamped with eigenvalues

{−1,−1,−1,−σ} and the partial multiplicities of −1 are 1 and 2. It is also not difficult to see
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that S(1) = −I2 and S(2) = diag(−1,−σ) are the primary and secondary solvents of Q(S) = 0,

respectively. By direct computation, we get from iterates (3.1)

Ak =

[
1
2k 0

0 1

Πk−1

i=0
(σ2i+1)

]
, Bk =

[ 1
2k−1 0

0 σ2k+1

Πk−1

i=0
(σ2i+1)

]
,

Ck =

[ 1
2k

0

0 σ2k

Πk−1

i=0
(σ2i+1)

]
, Sk =

[
2k+1
2k 0

0 σ + 1

Πk−1

i=0
(σ2i+1)

]
.

It is clear that {Sk} converges with constant 1/2 (i.e. ‖Sk+1−Sk‖1 =
1
2‖Sk−Sk−1‖1 for k ≥ 1).

However, unlike Theorem 3.1, {Ck} does not converge to the zero matrix if σ > 1.

The remainder of the paper is to investigate the convergence of the CR algorithm for WO

QEPs without any assumption on the partial multiplicities of λn. An accustomed idea is to

directly employ some canonical form (such as the Kronecker form in [2]) to the general quadratic

Q(λ) with the partial multiplicities of λn containing both 1 and 2. However, such a strategy

seems ineffectual for our case as the structure of the corresponding eigenspace is indefinite. So

in this paper, we only focus on deriving the convergence of the CR algorithm for a class of WO

quadratics Q̃(λ) isospectral with Q(λ).

4. The Convergence of the CR Algorithm for a Class of WO QEPs

In this section, we first construct a class of WO quadratics Q̃(λ) and then give the main

convergence theorem of the CR algorithm for Q̃(λ).

Our construction of Q̃(λ) starts with the following diagonal quadratic Qd(λ) with λn =

λn+1 = −1 (otherwise, a technique of scaling can always be used to shift the spectrum such

that λn = λn+1 = −1 [6, 8])

Qd(λ) = λ2In + λ [(Σ1 + Im1
)⊕ (Σ2 +∆1)⊕ (∆2 + Im2

)⊕ 2Ir]

+ [Σ1 ⊕ Σ2∆1 ⊕∆2 ⊕ Ir]

=: λ2In + λB̂ + Ĉ, (4.1)

where Σ1 (Σ2) is an m1 ×m1 (l× l) diagonal matrix with its diagonal elements σt (σi) greater

than 1, m1 ≥ t ≥ 0 (m1 + l ≥ i ≥ m1 + 1), ∆2 (∆1) is an m2 × m2 (l × l) diagonal matrix

with its diagonal elements δs (δj) less than 1, m2 ≥ s ≥ 0 (m2 + l ≥ j ≥ m2 + 1)), Ir is an

identity matrix of order r, and n = m1 +m2 + l+ r. To remove the assumption on the partial

multiplicity of λn, we suppose that m1 and m2 do not equal zero simultaneously and r ≥ 1.

It is obvious that the eigenvalues of Qd(λ) form a 2n× 2n matrix

J = [−Σ1 ⊕−Σ2 ⊕−Im2
⊕ J1 ⊕ · · · ⊕ Jr ⊕−Im1

⊕−∆1 ⊕−∆2] ,

where Ji (r ≥ i ≥ 1) are 2× 2 Jordan blocks associated with the eigenvalue −1.

The Jordan chains (see Definition 2.1) of Qd(λ) form an n× 2n matrix

Xd = [φ(−σ1), · · · , φ(−σm1+l), φ
(−1)
1 , · · · , φ(−1)

m2
, φ

(−1)
10 , φ

(−1)
11 ,

· · · , φ
(−1)
r0 , φ

(−1)
r1 , φ̂

(−1)
1 , · · · , φ̂(−1)

m1
, φ(−δ1), · · · , φ(−δm2+l)], (4.2)

where {φ(−σt)}m1+l
t=1 ({φ(−δs)}m2+l

s=1 ) are eigenvectors corresponding to the eigenvalues in −Σ1

and −Σ2 (−∆1 and −∆2), {φ
(−1)
i }m2

i=1, {φ
(−1)
i0 }ri=1 and {φ̂

(−1)
i }m1

i=1 are m1 + m2 + r linearly
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independent eigenvectors corresponding to −1, {φ
(−1)
i1 }ri=1 are r generalized eigenvectors corre-

sponding to −1. It follows from [5, Prop. 1.15] that the columns of Xd form a canonical set of

Jordan chains (see [5, Chap. 1.6]), i.e, (Xd, J) is a Jordan pair of Qd(λ). Let (Xd, J, Yd) be a

Jordan triple of Qd(λ). By Lemma 2.1, the coefficient matrices can be formulated as

In = Γ−1
d1

, B̂ = −Γd2
, Ĉ = −Γd3

+ B̂Γd1
B̂ (4.3)

with Γdi
= XdJ

iYd, i = 1, 2, 3.

To extend Qd(λ) to a class of isospectral WO quadratics, we keep J unchanged and give

the transformation X = P−1Xd and Y = YdP
−T with any nonsingular matrix P ∈ Rn×n. By

Lemma 2.1 again, we can define the quadratic

Q̃(λ) = λ2A+ λB + C, (4.4)

where

A = Γ−1
1 , B = −AΓ2A, C = −AΓ3A+BΓ1B (4.5)

with Γi = XJ iY (i = 1, 2, 3). Since the uniqueness of the Jordan triple of the matrix polynomial

can not be guaranteed (see [3, Chap. 1]), the obtained Q̃(λ) could not cover all WO quadratics

isospectral with Qd(λ). Here we still keep coefficient matrices the same with (1.1) to avoid the

notational clutter. A direct comparison of (4.3) with (4.5) yields the relations

A = PTP, B = PT B̂P, C = PT ĈP. (4.6)

Remark 4.1. The construction process of Q̃(λ) guarantees that two extremal solvents S(1)

and S(2) of Q̃(S) = AS2 +BS+C = 0 have a clear definition and they do exist. Also λn = −1

is semisimple in S(i), i = 1, 2. Indeed, it is clear that

Ŝ(1) = −[Im1
⊕∆1 ⊕∆2 ⊕ Ir] and Ŝ(2) = −[Σ1 ⊕ Σ2 ⊕ Im2

⊕ Ir]

are the extremal solvents of Qd(S) = S2 + B̂S + Ĉ = 0, and λn = −1 is semisimple in Ŝ(i),

i = 1, 2. By (4.6), the two extremal solvents of Q̃(S) = 0 have the form

S(1) = P−1Ŝ(1)P and S(2) = P−1Ŝ(2)P,

and λn = −1 is semisimple in S(i), i = 1, 2.

The convergence theorem of the CR algorithm for Q̃(λ) is as follows:

Theorem 4.1. Let Q̃(λ) be a weakly overdamped quadratic given by (4.4). Let S(1) and S(2)

be the primary and secondary solutions of Q̃(S) = 0, respectively. Then for any matrix norm

‖ · ‖, the CR matrix sequences generated by (3.1) satisfy

lim sup
k→∞

k

√
‖Ak − B̃P−1(0m1+l ⊕ Im2

⊕ 0r)P‖ ≤
1

2
, (4.7)

lim sup
k→∞

k

√
‖Ck − B̃P−1(Im1

⊕ 0n−m1
)P‖ ≤

1

2
, (4.8)

lim sup
k→∞

k

√
‖Sk − S̃‖ ≤

1

2
, lim sup

k→∞

k

√
‖Bk − B̃‖ ≤

1

2
, (4.9)

where P is given by (4.6), B̃ = A(S(1)−S(2)) ≥ 0 is singular and S̃ = −S(2)TA is nonsingular.
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Remark 4.2. Theorem 4.1 shows some different convergence from Theorem 3.1, i.e. the matrix

sequence {Ak} (or {Ck}) no longer converges to the zero matrix unless m2 (or m1) equals zero.

The case m1 = m2 = 0 implies that the partial multiplicities of λn are all 2. In this case,

Theorem 4.1 is reduced to Theorem 3.1. So Theorem 4.1 can be seen as a complement of the

convergence for the CR algorithm. We will also see from the proof of Theorem 4.1 that the

convergence recovers quadratic if the partial multiplicities of λn are all 1. This is also reflected

from the example in [6, Sec. 4].

5. Proof of Theorem 4.1

This section is dedicated to the proof of Theorem 4.1. The key of the proof is to make out

the structure of the eigenspace. We will describe the doubling algorithm in subsection 5.1 and

then explore the structure of the eigenspace in subsection 5.2. The proof of Theorem 4.1 will

be given in subsection 5.3.

5.1. The doubling algorithm

Different structure-preserving doubling algorithms have been studied in [2–4,7,9,12,20–22].

For general WO quadratics Q(λ) in (1.1), the doubling algorithm is as follows [6]




A0 = A, H0 = B, D0 = 0, C0 = C,

Ak+1 = Ak(Dk −Hk)
−1Ak,

Hk+1 = Hk + Ck(Dk −Hk)
−1Ak,

Ck+1 = Ck(Dk −Hk)
−1Ck,

Dk+1 = Dk −Ak(Dk −Hk)
−1Ck.

(5.1)

It is clear that the CR algorithm (3.1) can be recovered from the doubling algorithm (5.1) by

letting

Bk = Hk −Dk and Sk = Hk
T . (5.2)

It follows from (3.2) that Bk > 0 for k ≥ 0, thus the doubling algorithm (5.1) for Q(λ) is well

defined. Let

Mk =

[
Ak 0

−Hk −I

]
and Lk =

[
Dk I

Ck 0

]
(5.3)

for k ≥ 0. The doubling algorithm can also be described in block matrices [2, 6]

M−1
k Lk = (M−1

0 L0)
2k (5.4)

for k ≥ 0.

The next lemma shows that the doubling algorithm, when applied to WO quadratics Q̃(λ),

really acts on the diagonal quadratic Qd(λ).

Lemma 5.1. Let

M̂0 =

[
I 0

−B̂ −I

]
and L̂0 =

[
0 In
Ĉ 0

]

be the initial block matrices associated with Qd(λ). Let

M0 =

[
A0 0

−H0 −I

]
and L0 =

[
D0 I

C0 0

]
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146 B. YU, D.H. LI AND N. DONG

be the initial block matrices associated with Q̃(λ). When the doubling algorithm (5.1) is applied

to Qd(λ) and Q̃(λ), we have for k ≥ 0

Ak = PT ÂkP, Ck = PT ĈkP, Dk = PT D̂kP, Hk = PT ĤkP, (5.5)

Mk = DT
P1
M̂kDP2

, Lk = DT
P1
L̂kDP2

, (5.6)

where Mk and Lk are defined by (5.3),

M̂k =

[
Âk 0

−Ĥk −I

]
, L̂k =

[
D̂k I

Ĉk 0

]
, DP1

=

[
P 0

0 P

]
and DP2

=

[
P 0

0 P−T

]

with nonsingular P in (4.6).

Proof. We prove the lemma by induction. It is easy to see from (4.6) and (5.1) that (5.5)

is true for k = 0 with Â0 = In, Ĉ0 = Ĉ, D̂0 = 0 and Ĥ0 = B̂. By the definition of M̂0, L̂0, M0

and L0, (5.6) holds for k = 0.

Suppose that (5.5) and (5.6) are true for k = i ≥ 0. We are going to show that they are

true for i+ 1 too. By the doubling iterates (5.1), we have

Ai+1 = PT Âi(D̂i − Ĥi)
−1ÂiP = PT Âi+1P,

Hi+1 = PT ĤiP + PT Ĉi(D̂i − Ĥi)
−1ÂiP = PT Ĥi+1P,

Ci+1 = PT Ĉi(D̂i − Ĥi)
−1ĈiP = PT Ĉi+1P,

Di+1 = PT D̂iP − PT Âi(D̂i − Ĥi)
−1ĈiP = PT D̂i+1P

and

Mi+1 =

[
Ai+1 0

−Hi+1 −In

]
=

[
PT Âi+1P 0

−PT Ĥi+1P −PTP−T

]
= DT

P1
M̂i+1DP2

,

Li+1 =

[
Di+1 In
Ci+1 0

]
=

[
PT D̂i+1P PTP−T

PT Ĉi+1P 0

]
= DT

P1
L̂i+1DP2

.

So (5.5) and (5.6) hold for all i+ 1 ≥ 0. The proof is complete. �

By the use of (5.4) and (5.6), we have

M−1
k Lk = (M−1

0 L0)
2k = D−1

P2
(M̂−1

0 L̂0)
2kDP2

= D−1
P2

(M̂−1
k L̂k)DP2

, (5.7)

i.e., the doubling algorithm on Q̃(λ) is really on Qd(λ) via a similarity transformation.

To obtain the convergence of the CR algorithm for Q̃(λ), we need to make out the structure

of the eigenspace for M−1
0 L0. To this purpose, let

Jv =

[
−Σ1 ⊕−Σ2 ⊕−Im2

⊕−Ir 0m1
⊕ 0l ⊕ 0m2

⊕ Ir
0 −Im1

⊕−∆1 ⊕−∆2 ⊕−Ir

]
, (5.8)

Jw =

[
−Σ1 ⊕−Σ2 ⊕−Im2

⊕−Ir 0

0m1
⊕ 0l ⊕ 0m2

⊕ Ir −Im1
⊕−∆1 ⊕−∆2 ⊕−Ir

]
(5.9)

and Xv̂ and Xŵ be two n×2n matrices by rearranging columns of Xd (see (4.2)) corresponding

to Jv and Jw, respectively. Since λM̂0−L̂0 is a linearization of Qd(λ) and (Xv̂, Jv) (or (Xŵ, Jv))
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is a Jordan pair of Qd(λ), we then have, by [5, Thm 1.20] and Lemma 5.1, two basic equalities

[
Xv̂

Xv̂Jv

]−1

M̂−1
0 L̂0

[
Xv̂

Xv̂Jv

]
=

[
Xv̂

Xv̂Jv

]−1

DP2
(M−1

0 L0)D
−1
P2

[
Xv̂

Xv̂Jv

]
= Jv,

[
Xŵ

XŵJw

]−1

M̂−1
0 L̂0

[
Xŵ

XŵJw

]
=

[
Xŵ

XŵJw

]−1

DP2
(M−1

0 L0)D
−1
P2

[
Xŵ

XŵJw

]
= Jw.

If we denote

V̂ =

[
Xv̂

Xv̂Jv

]
and Ŵ =

[
Xŵ

XŵJw

]
, (5.10)

the structure of matrices

V = D−1
P2

V̂ and W = D−1
P2

Ŵ (5.11)

(i.e., the structure of the eigenspace for M−1
0 L0) can be derived by exploring the structure of

matrices V̂ and Ŵ .

5.2. The structure of matrices V̂ and Ŵ

We first give the following lemma which reveals the structure of Xv̂ and Xŵ. The proof will

be shown in Appendix A.

Lemma 5.2. Let Φm1
, Φl, Ψl and Ψm2

be m1 × m1, l × l, l × l and m2 × m2 nonsingular

diagonal matrices. Let Φr, Φm2
and Ψm1

be r× r, m2×m2 and m1×m1 nonsingular matrices.

Suppose that Φjr(j = 1, 2, 3), Φk and Ψk(k = 0, 1) are all arbitrary real matrices with the

respective dimension m1 × r, m2 × r, r × r, m1 × m1, r × m2, m2 × m1 and r × m1. The

structure of Xv̂ and Xŵ are as follows:

Xv̂ =




Φm1
Φ0 Ψm1

Φ1r

Φl Ψl

Φm2
Ψ0 Ψm2

Φ2r

Φ1 Φr Ψ1 Φ3r


 , (5.12)

Xŵ =




Φm1
Φ0 Φ1r Ψm1

Φl Ψl

Φm2
Φ2r Ψ0 Ψm2

Φ1 Φ3r Ψ1 Φr


 . (5.13)

The next lemma indicates that Xv̂ and Xŵ have more concise structure, i.e. the blocks Φ0

and Ψ0 in (5.12) and (5.13) are really zero matrices. It also gives the inverse structure of the

nonsingular sub-block .

Lemma 5.3. Matrices V̂ and Ŵ in (5.10) have the following block forms:

V̂ =

[
V̂1 V̂3

V̂2 V̂4

]
, Ŵ =

[
Ŵ1 Ŵ3

Ŵ2 Ŵ4

]
,
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where V̂1 and Ŵ3 are nonsingular n× n matrices with

V̂ −1
1 =




Φ−1
m1

Φ−1
l

Φ−1
m2

−Φ−1
r Φ1Φ

−1
m2

Φ−1
r


 , (5.14)

Ŵ−1
3 =




Ψ−1
m1

Ψ−1
l

Ψ−1
m2

−Ψ−1
r Ψ1Ψ

−1
m1

Φ−1
r


 . (5.15)

Proof. Since Φm1
, Φl, Φm2

, Ψm1
, Ψl, Ψm2

and Φr in (5.12) and (5.13) are all nonsingular

block matrices , we can define

Ṽ1 =




Φ−1
m1

−Φ−1
m1

Φ0Φ
−1
m2

Φ−1
l

Φ−1
m2

−Φ−1
r Φ1Φ

−1
m2

Φ−1
r


 ,

W̃3 =




Ψ−1
m1

Ψ−1
l

−Ψ−1
m2

Ψ0Ψ
−1
m1

Ψ−1
m2

−Ψ−1
r Ψ1Ψ

−1
m1

Φ−1
r


 .

Since Ṽ1V̂1 = V̂1Ṽ1 = In and W̃3Ŵ3 = Ŵ3W̃3 = In. So V̂1 and Ŵ3 are nonsingular with

inverses Ṽ1 and W̃3, respectively. It then suffices to show that Φ0 and Ψ0 are zero matrices. As

mentioned in Remark 4.1, Ŝ(1) = −[Im1
⊕∆1 ⊕∆2 ⊕ Ir] and Ŝ(2) = −[Σ1 ⊕Σ2 ⊕ Im2

⊕ Ir ] are

the extremal solvents of Qd(S) = 0. By the proof of Theorem 4.6 in [6], we also have

Ŵ4Ŵ
−1
3 = Ŝ(1), V̂2V̂

−1
1 = Ŝ(2). (5.16)

However, a direct computation shows

V̂2Ṽ1 = −




Σ1 (Im1
− Σ1)Φ0Φ

−1
m2

Σ2

Im2

Ir


 ,

Ŵ4W̃3 = −




Im1

∆1

(Im2
−∆2)Ψ0Ψ

−1
m1

∆2

Ir


 ,

where

V̂2 = −




Φm1
Σ1 Φ0

ΦlΣ2

Φm2

Φ1 Φr


 , Ŵ4 = −




Ψm1

Ψl∆1

Ψ0 Ψm2
∆2

Ψ1 Φr


 .

Hence by the nonsingularity of Im1
− Σ1 and Im2

−∆2, Φ0 and Ψ0 are zero matrices. So the

inverses of V̂1 and Ŵ3 have the form (5.14) and (5.15). �
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Based on Lemma 5.3, we can describe the structure of V̂ and Ŵ as follows:

V̂ =

[
V̂1 V̂3

V̂2 V̂4

]
(5.17)

=




Φm1
Ψm1

Φ1r

Φl Ψl

Φm2
Ψm2

Φ2r

Φ1 Φr Ψ1 Φ3r

−Φm1
Σ1 −Ψm1

−Φ1r

−ΦlΣ2 −Ψl∆1

−Φm2
−Ψm2

∆2 −Φ2r

−Φ1 −Φr −Ψ1 Φr − Φ3r




,

Ŵ =

[
Ŵ1 Ŵ3

Ŵ2 Ŵ4

]
(5.18)

=




Φm1
Φ1r Ψm1

Φl Ψl

Φm2
Φ2r Ψm2

Φ1 Φ3r Ψ1 Φr

−Φm1
Σ1 −Φ1r −Ψm1

−ΦlΣ2 −Ψl∆1

−Φm2
−Φ2r −Ψm2

∆2

−Φ1 Φr − Φ3r −Ψ1 −Φr




.

Moreover, (5.17) and (5.18) help to yield the following lemma that is useful in the proof of

Theorem 4.1.

Lemma 5.4. Let V̂ and Ŵ be partitioned as in (5.17) and (5.18), respectively. Let Ξ(1,k) =

Ŵ3(Im1
⊕∆2k ⊕ Ir)Ŵ

−1
3 , Ξ(2,k) = V̂1(Σ

−2k ⊕ Im2
⊕ 0r)V̂

−1
1 , Ξ(3,k) = V̂1(Σ

−2k ⊕ Im2
⊕ Ir)V̂

−1
1

and Ξ(4,k) = Ŵ3(Im1
⊕∆2k ⊕0r)Ŵ

−1
3 with Σ = Σ1⊕Σ2 and ∆ = ∆1⊕∆2. Then for sufficiently

large k, matrices

I − Ξ(1,k)Ξ(2,k) + (In − Ξ(1,k))V̂3(0n−r ⊕ (−2)−kIr)V̂
−1
1 , (5.19)

I − Ξ(3,k)Ξ(4,k) + (Ξ(3,k) − In)Ŵ1(0n−r ⊕ (−2)−kIr)Ŵ
−1
3 , (5.20)

are both nonsingular. Moreover, we have

lim
k→∞

Ξ(2,k)(I − Ξ(1,k)Ξ(2,k))
−1 = V̂1(0m1+l ⊕ Im2

⊕ 0r)V̂
−1
1 =: Ξ2, (5.21)

lim
k→∞

Ξ(4,k)(I − Ξ(3,k)Ξ(4,k))
−1 = Ŵ3(Im1

⊕ 0n−m1
)Ŵ−1

3 =: Ξ4. (5.22)

Proof. Note that Σ is a diagonal matrix with nonzero entries greater than 1 while ∆ is a

diagonal matrix with nonzero entries less than 1. Therefore, matrices Ξ(j,k)(j = 1, 2, 3, 4) have

the limits Ξj(j = 1, 2, 3, 4) with Ξ1 = Ŵ3(Im1
⊕0l+m2

⊕Ir)Ŵ
−1
3 , Ξ2 = V̂1(0m1+l⊕Im2

⊕0r)V̂
−1
1 ,

Ξ3 = V̂1(0m1+l ⊕ Im2
⊕ Ir)V̂

−1
1 and Ξ4 = Ŵ3(Im1

⊕ 0n−m1
)Ŵ−1

3 . Observing (5.14) and (5.15),
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the matrix sequences defined by (5.19) and (5.20) converge to nonsingular matrices

I − Ξ1Ξ2 =




Im1

Il
Im2

−Φ1Φ
−1
m2

Ir


 , I − Ξ3Ξ4 =




Im1

Il
Im2

−Φ1Φ
−1
m2

Ir.


 .

Relations (5.21) and (5.22) can be obtained by (5.14), (5.15), (5.17) and (5.18). �

5.3. The proof of Theorem 4.1

We prove the convergence for the diagonal quadratic Qd(λ) by doubling algorithm, then the

results in Theorem 4.1 can be obtained via the relation (5.5). By (5.7), we have M̂−1
k L̂k =

(M̂−1
0 L̂0)

2k . This together with V̂ −1(M̂−1
0 L̂0)V̂ = Jv and Ŵ−1(M̂−1

0 L̂0)Ŵ = Jw yield

L̂kV̂ = M̂kV̂ J2k

v , L̂kŴ = M̂kŴJ2k

w . (5.23)

Equating (5.23) by 2× 2 blocks of M̂k, L̂k in Lemma 5.1 and V̂ , Ŵ in Lemma 5.3, we obtain

D̂kV̂1 + V̂2 = ÂkV̂1(Σ
2k ⊕ Im2

⊕ Ir) (5.24)

ĈkV̂1 = −(ĤkV̂1 + V̂2)(Σ
2k ⊕ Im2

⊕ Ir) (5.25)

D̂kV̂3 + V̂4 = ÂkV̂1(0n−r ⊕ (−2)kIr) + ÂkV̂3(Im1
⊕∆2k ⊕ Ir) (5.26)

ĈkV̂3 = −(ĤkV̂1 + V̂2)(0n−r ⊕ (−2)kIr)− (ĤkV̂3 + V̂4)(Im1
⊕∆2k ⊕ Ir) (5.27)

and

D̂kŴ1 + Ŵ2 = ÂkŴ1(Σ
2k ⊕ Im2

⊕ Ir) + ÂkŴ3(0n−r ⊕ (−2)kIr) (5.28)

ĈkŴ1 = −(ĤkŴ1 + Ŵ2)(Σ
2k ⊕ Im2

⊕ Ir)− (ĤkŴ3 + Ŵ4)(0n−r ⊕ (−2)kIr) (5.29)

D̂kŴ3 + Ŵ4 = ÂkŴ3(Im1
⊕∆2k ⊕ Ir) (5.30)

ĈkŴ3 = −(ĤkŴ3 + Ŵ4)(Im1
⊕∆2k ⊕ Ir), (5.31)

where Σ and ∆ are both diagonal matrices with Σ = Σ1 ⊕ Σ2 and ∆ = ∆1 ⊕∆2.

Post-multiplying (5.24) and (5.26) by Σ−2k ⊕ Im2
⊕ 0r and 0n−r ⊕ (−2)−kIr respectively

and then adding the resulting equalities yields

ÂkV̂1 + ÂkV̂3(0n−r ⊕ (−2)−kIr)

= (D̂kV̂1 + V̂2)(Σ
−2k ⊕ Im2

⊕ 0r) + (D̂kV̂3 + V̂4)(0n−r ⊕ (−2)−kIr). (5.32)

By (5.30), we have

D̂k =
(
ÂkŴ3(Im1

⊕∆2k ⊕ Ir)− Ŵ4

)
Ŵ−1

3 . (5.33)

Inserting (5.33) into (5.32) and then post-multiplying it by V̂ −1
1 gives

Âk

(
In − Ξ(1,k)Ξ(2,k) + (In − Ξ(1,k))V̂3(0n−r ⊕ (−2)−kIr)V̂

−1
1

)

= (V̂2 − Ŵ4Ŵ
−1
3 V̂1)(Σ

−2k ⊕ Im2
⊕ 0r)V̂

−1
1

+(V̂4 − Ŵ4Ŵ
−1
3 V̂3)(0n−r ⊕ (−2)−kIr)V̂

−1
1 ,
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where Ξ(1,k) and Ξ(2,k) are defined by Lemma 5.4. By (5.16) and (5.21), we get

Âk − (V̂2V̂
−1
1 − Ŵ4Ŵ

−1
3 )Ξ(2,k)(In − Ξ(1,k)Ξ(2,k))

−1

= Âk − (Ŝ(2) − Ŝ(1))Ξ2 = O((−2)−k). (5.34)

It then follows from (5.33) that

D̂k + Ŵ4Ŵ
−1
3 = ÂkΞ(1,k) = O((−2)−k), (5.35)

here we have used the fact Ξ2(In − Ξ1Ξ2)
−1Ξ1 = Ξ2Ξ1 = 0. Post-multiplying (5.29) by

0n−r ⊕ (−2)−kIr and then subtracting it from (5.31) gives

ĈkŴ3 − ĈkŴ1(0n−r ⊕ (−2)−kIr)

= (ĤkŴ1 + Ŵ2)(0n−r ⊕ (−2)−kIr)− (ĤkŴ3 + Ŵ4)(Im1
⊕∆2k ⊕ 0r). (5.36)

From (5.25), we have

Ĥk = −
(
ĈkV̂1(Σ

−2k ⊕ Im2
⊕ Ir) + V̂2

)
V̂ −1
1 . (5.37)

Inserting (5.37) into (5.36) and then post-multiplying the result by Ŵ−1
3 , we get

Ĉk

(
In − Ξ(3,k)Ξ(4,k) + (Ξ(3,k) − In)Ŵ1(0n−r ⊕ (−2)−kIr)Ŵ

−1
3

)

= (Ŵ2 − V̂2V̂
−1
1 Ŵ1)(0n−r ⊕ (−2)−kIr)Ŵ

−1
3 + (V̂2V̂

−1
1 − Ŵ4Ŵ

−1
3 )Ξ(4,k),

where Ξ(3,k) and Ξ(4,k) are defined by Lemma 5.4. By (5.16) and (5.22), we have

Ĉk − (V̂2V̂
−1
1 − Ŵ4Ŵ

−1
3 )Ξ(4,k)(In − Ξ(3,k)Ξ(4,k))

−1

= Ĉk − (Ŝ(2) − Ŝ(1))Ξ4 = O((−2)−k). (5.38)

This together with (5.37) implies

Ĥk + V̂2V̂
−1
1 = ĈkΞ3 = O((−2)−k), (5.39)

here we have used the fact Ξ4(In−Ξ3Ξ4)
−1Ξ3 = Ξ4Ξ3 = 0. In view of (5.5), we get from (5.34),

(5.35), (5.38) and (5.39)

Ak − PT (Ŝ(2) − Ŝ(1))Ξ2P = O((−2)−k), (5.40)

Dk + PT Ŝ(1)P = O((−2)−k), (5.41)

Ck − PT (Ŝ(2) − Ŝ(1))Ξ4P = O((−2)−k), (5.42)

Hk + PT Ŝ(2)P = O((−2)−k). (5.43)

Since (Ŝ(2)− Ŝ(1))Ξ2 = (Ŝ(2)− Ŝ(1))(0m1+l⊕Im2
⊕0r) and (Ŝ(2)− Ŝ(1))Ξ4 = (Ŝ(2)− Ŝ(1))(Im1

⊕

0n−m1
), (5.40) and (5.42) together with S(i) = P−1Ŝ(i)P (i = 1, 2) and A = PTP imply (4.7)

and (4.8). Note that Bk = Hk−Dk, Sk = HT
k . Following a similar way to the proof of Corollary

4.7 in [6], we obtain (4.9). �

Remark 5.1. When the constant r equals zero, we know from (5.34), (5.35), (5.38) and (5.39)

in Theorem 4.1 that the r × r block matrices disappear. In this case, the convergence rate

is quadratic, which is also reflected from the example in [6, Sec. 4]. When the constant r is
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greater than zero, Theorem 4.1 shows that the iterate sequences {Bk} and {Sk} have the same

limit with that in Theorem 3.1. However, sequences {Ak} and {Ck} no longer converge to the

zero matrix unless m1 and m2 are both zero.

Remark 5.2. We prove Theorem 4.1 by using the same tool in [6]. This result can also be

derived by directly applying the Kronecker form to Q̃(S) = 0 and its dual equation (as in [2]).

Once the structure of V and W is clear, there is no difference in essence of the two methods.

However, our proof can not cover all quadratics isospectral with Qd(λ), even for those in which

the two extremal solvents have a semisimple λn.

6. Numerical Experiments

In this section, we test the convergence behavior of the CR algorithm in Theorem 4.1. We

first provide a way to generate a class of WO quadratics Q̃(λ) (see also in [13] and [14]). Let

Xv̂ = [Xm1
, Xl, Xm2

, Xr, Xm1
Θ1, XlΘ2, Xm2

Θ3, 0n×r] (6.1)

with

Xm1
= [(Σ1 − Im1

)−
1
2 , 0(n−m1)×m1

]T ,

Xl = [0m1×l, (Σ2 −Θ2∆2Θ
T
2 )

−
1
2 , 0(m2+r)×l]

T ,

Xm2
= [0(m1+l)×m2

, (Im2
−∆2)

−
1
2 , 0r×m2

]T ,

Xr = [0(n−r)×r, Ir]
T ,

where Θi, i = 1, 2, 3 are real orthogonal matrices. Let

Pv̂ =

[
−Im1

⊕−Il ⊕−Im2
⊕ 0r 0m1

⊕ 0l ⊕ 0m2
⊕ Ir

0m1
⊕ 0l ⊕ 0m2

⊕ Ir Im1
⊕ Il ⊕ Im2

⊕ 0r

]

be a standard involuntary permutation matrix [5, Chap. 10] and Yv̂ = Pv̂X
T
v̂ . Then we have

[
Xv̂

Xv̂Jv

]
Yv̂ =

[
0n
In

]
.

Such a triple (Xv̂, Jv, Yv̂) is called a self-adjoint Jordan triple [5] for the monic quadratic matrix

polynomial. If Jv is stable (i.e. all eigenvalues of Jv are in the open left half of the complex

plane), we define the moments

Γi = Xv̂J
i
vYv̂, i = −1, 1, 2

from the triple (Xv̂, Jv, Yv̂). The next lemma describes how to generate weakly overdamped

quadratics Q̃(λ).

Lemma 6.1. Given a nonsingular real n × n matrix P and a choice of Xv̂ by (6.1). If Jv is

stable, then the coefficient matrices A, B and C of Q̃(λ) defined by

A = PPT , B = −PΓ2P
T , C = −PΓ−1

−1P
T (6.2)

are all symmetric and positive definite.

OPEN ACCESS

DOI https://doi.org/10.4208/jcm.1110-m3395 | Generated on 2024-11-19 20:38:32



Convergence of the Cyclic Reduction Algorithm for Overdamped Quadratics 153

Proof. By the nonsingularity of P , it is clear that A is symmetric and positive definite. By

the definition of Γi, we have

Γ2 = Xv̂J
2
vYv̂

= Xm1
(I − Σ2

1)Xm1

T +Xl(Θ2∆
2
1Θ

T
2 − Σ2

2)Xl
T

+Xm2
((∆2

2 − I)Xm2

T − 2X(−1)
r X(−1)

r

T
,

Γ−1 = Xv̂J
−1
v Yv̂

= Xm1
(Σ−1

1 − I)Xm1

T +Xl(Σ
−1
2 −Θ2∆

−1
1 ΘT

2 )Xl
T

+Xm2
(I −∆−1

2 )Xm2

T −X(−1)
r X(−1)

r

T
.

Since Σj and ∆j(j = 1, 2) are diagonal matrices with diagonal elements greater than 1 and less

than 1, respectively, we deduce from Weyl’s theorem and the fact λ(MN) = λ(NM) (see [19]

for example) that

λ(Θ2∆
2
1Θ

T
2 − Σ2

2) ≤ λ(∆2
1)− λmin(Σ

2
2) < 0,

Thus Θ2∆
2
1Θ

T
2 −Σ2

2 is negative definite, and so is Σ−1
2 −Θ2∆

−1
1 ΘT

2 . By the choice of Xv̂ in (6.1),

Γ2 and Γ−1 are both symmetric and negative definite. The required symmetry and definiteness

of B and C then follows from (6.2). �

Example 6.1. Take −2i(i = ±1,±2,±3,±4) and −1 with r = m1 = m2 = 2 as eigenvalues.

Let Xv̂ be of the form in (6.1) with Θi = I2(i = 1, 2, 3) and P be the real random orthogonal

matrix (gallery(’randsvd’,8) in MATLAB). As suggested in [2], it would be reasonable to

stop the iteration of the CR when ‖Sk −Sk−1‖/‖Sk‖ < 10−7, and take Sk as an approximation

to the exact −S(2)A. Further iterations may not be able to improve the accuracy significantly

in view of that Bk are nearly singular for large k. Table 6.1 shows the average iterations and

the maximum, minimum 1-norm of Ak and Ck over 20 quadratics for which the stop criterion

is satisfied. The third row in Table 6.1 listed the corresponding results of a version of the CR

algorithm to balance ‖Ak‖ and ‖Ck‖ (BCR) [8].

Table 6.1 Average iterations and the maximum, minimum 1-norm of Ak and Ck performed by the

CR and its balanced version BCR
averiter maxnormA minnormA maxnormC minnormC

CR 20.5 30.1370 4.2443 222.5990 79.1581

BCR 20.8 67.1519 22.9727 67.1519 22.9727

We note from Table 6.1 that minimum 1-norm of Ak and Ck does not converge to zero. In

fact, they are found between 4.2518 and 4.2443 for Ak and 79.3675 and 79.1581 for Ck from

k = 5 to the termination. This shows that for WO quadratics Q̃(λ) in (4.4), the convergence

behavior of the CR is largely dictated by the results in Theorem 4.1.

7. Concluding Remarks

We have established the convergence of the CR algorithm for a class of weakly overdamped

quadratics. This convergence theory does not require the assumption that the partial multiplic-

ities of λn are all equal to 2. Also, the matrices sequences {Ak} and {Ck} generated by the CR

algorithm, unlike Guo, Higham and Tisseur’s convergence theorem in [6], no longer converge to

the zero matrix if the partial multiplicities of λn include 1. Therefore, our derived result can

be seen as a complement to the convergence of the CR algorithm. However, the behavior of
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the CR algorithm for general weakly overdamped quadratics without any assumption on the

partial multiplicity of λn still deserves more research.
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Appendix

Proof of Lemma 5.2

We can utilize Definition 2.1 to find Jordan chains of the diagonal quadratic Qd(λ) corre-

sponding to each eigenvalue. Let λ0 = −σt for m1 + l ≥ t ≥ 1. In view of (2.1) for k = 0, we

have Qd(−σt)φ
(−σt) = 0. Solving the system for φ(−σt), we have

φ(−σt) = [

t−1︷ ︸︸ ︷
0, · · · , 0, φ

(−σt)
(0,t) , 0, · · · , 0]T , (A1)

where φ
(−σt)
(0,t) can be an arbitrary nonzero real scalar. A further computation by (2.1) for k = 1

shows that φ(−σt) = 0. Hence the length of the Jordan chain corresponding to −σt(m1 + l ≥

t ≥ 1) is 1. Similarly, we can obtain the Jordan chain

φ(−δs) = [

m1+s−1︷ ︸︸ ︷
0, · · · , 0, φ

(−δs)
(0,s) , 0, · · · , 0]T (A2)

with the length 1 corresponding to −δs(m2 + l ≥ s ≥ 1), where φ
(−δs)
(0,s) can be an arbitrary

nonzero real scalar. Finally we find the Jordan chains of Qd(λ) corresponding to −1. From the

equation Qd(−1)φ
(−1)
0 = 0, we get

φ
(−1)
0 = [φ

(−1)
(0,1), · · · , φ

(−1)
(0,m1)

,

l︷ ︸︸ ︷
0, · · · , 0, φ

(−1)
(0,m1+l+1), · · · , φ

(−1)
(0,m1+l+m2)

,

φ
(−1)
(0,m1+l+m2+1), · · · , φ

(−1)
(0,n)]

T (A3)

with arbitrary real constants φ
(−1)
(0,j) not all equal zero for j = 1, · · · ,m1,m1+ l+1, · · · , n. Note

that φ
(−1)
0 in (A3) indeed includes m1 +m2 + r linearly independent vectors (see also in (4.2))

corresponding to −1. Let k = 1 in (2.1) and solve the system Q′

d(−1)φ
(−1)
0 +Qd(−1)φ

(−1)
1 = 0

for φ
(−1)
0 (based on (A3)) and φ

(−1)
1 . We obtain

φ
(−1)
0 = [

m1+l+m2︷ ︸︸ ︷
0, · · · , 0 , φ

(−1)
(0,m1+l+m2+1), · · · , φ

(−1)
(0,n)]

T , (A4)

and

φ
(−1)
1 = [φ

(−1)
(1,1), · · · , φ

(−1)
(1,m1)

,

l︷ ︸︸ ︷
0, · · · , 0, φ

(−1)
(1,m1+l+1), · · · , φ

(−1)
(1,m1+l+m2)

,

φ
(−1)
(1,m1+l+m2+1), · · · , φ

(−1)
(1,n)]

T (A5)
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with arbitrary real constants φ
(−1)
(1,j) for j = 1, · · · ,m1,m1 + l+ 1, · · · , n. An analogous compu-

tations to
1

2
Q′′

d(−1)φ
(−1)
0 +Q′

d(−1)φ
(−1)
1 +Qd(−1)φ

(−1)
2 = 0

gives φ
(−1)
0 = 0. Thus the Jordan chain of the eigenvalue −1 terminated at the length 2.

Arranging the vectors (A1)−(A5) according to Jv, we obtain the structure of Xv̂ as in

(5.12), where Φm1
, Φl, Ψl and Ψm2

are m1 ×m1, l× l, l× l and m2 ×m2 nonsingular diagonal

matrices, respectively, with nonzero entries corresponding to (A1) and (A2). Note that φ
(−1)
0

in (A4) includes r linearly independent eigenvectors corresponding to −1. Thus Φr is an r × r

nonsingular matrix. Φjr(j = 1, 2, 3), Φk and Ψk(k = 0, 1) are all arbitrary real matrices with

the respective dimension m1 × r, m2 × r, r × r, m1 × m1, r × m2, m2 × m1 and r × m1.

Without loss of the generality, we can assume that Φm2
and Ψm1

are m2 ×m2 and m1 ×m1

nonsingular matrices. In fact, an appropriate permutation to vectors formed by (A3) always

gives such nonsingular Φm2
and Ψm1

, since we have mentioned that (A3) includes m1 +m2 + r

linearly independent vectors corresponding to −1. Similarly, rearranging the vectors (A1)−(A5)

according to Jw can yield (5.13). �
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