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Abstract: The dynamical behaviors of the novel four-dimensional memristor self-oscillated system with 
periodic excitation are discussed. With the change of amplitude and angular frequency of external periodic 
excitation, the proposed system can generate various dynamics including chaotic, periodic and bursting 
oscillations. Using the numerical simulation method, the phase trajectory and time series are employed to verify 
the behavior of the considered system. 
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1. Introduction 

Distinct from classical attractors, such as Lorenz attractor [1], Chen attractor [2], Lü attractor [3], and 
others [4-6], hidden attractor is a new type of attractor [7-11]. It was found that some chaotic systems without 
equilibrium or stable equilibrium can appear chaotic attractor. The hidden attractor has attracted much 
attention [12-15]. Additionally, the hidden attractor is often unwanted in many cases of practical application. 
To avoid or utilize the hidden attractor, it is meaningful and important to investigate the characteristic of it 
[16-21]. 

In recent years, a variety of chaotic systems with memristor have attracted much attention [22-26]. Bao 
et al. presented a new type of four-dimensional self-oscillated system with no equilibrium[22]. The 
coexistence of various hidden attractors including periodic solution, quasi-periodic periodic solution, chaotic 
attractors was studied. The Chaotic system could also display abundant dynamical behaviors under external 
stimulation. Wang et al. described a time-delay memristive Hindmarsh-Rose neuron model, and the transition 
of electrical activities of the neuron was investigated with the change of noise intensity[27]. Li et al. presented 
a Duffing system with periodic excitation and theoretically analyzed the dynamic phenomena of the system 
under different parameters [28]. For chaotic system with periodic excitation, abundant dynamical behaviors 
were investigated because of extra periodic excitation [29-31]. It is useful to explore the dynamics under 
periodic excitation. In this paper, variety of dynamical behaviors of the novel four-dimensional memristor 
self-oscillated system is discussed under external periodic excitation. With the change of amplitude and 
angular frequency of periodic excitation, the dynamics of proposed system is discussed, including chaotic, 
periodic, and bursting oscillations as well as coexistence of different dynamics. Other parts of this paper are 
arranged as follows. Section 2 presents a chaotic system with periodic ex-citation. The various dynamics of 
system are revealed in Sections 3. Conclusion are given in Section 4. 

 

2. System description 

A four-dimensional chaotic system is presented in Ref.1, including two linearly coupled term, one 
constant term and four nonlinear terms. The equations are described as 

{

�̇� = 𝑦

�̇� = (𝑧 + 𝑥2 − 𝛽𝑥4)𝑦 − 𝜔0
2𝑊(𝑤)𝑥

�̇� = 𝜇 − 𝑥2

�̇� = 𝑥 − 𝑤

,                                                                  (1) 
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where 𝛽, 𝜇 and 𝜔0 are parameters controlling the dynamics of system (1),  𝑊(𝑤) = 𝑎 + 𝑏|𝑤| is non-ideal 
voltage-controlled memristor with 𝑎,𝑏 being intrinsic parameter [22]. To investigate the dynamics of system 
(1) under periodic excitation, system (1) can be revised as  

{

�̇� = 𝑦 + Asin(𝜔t)
�̇� = (𝑧 + 𝑥2 − 𝛽𝑥4)𝑦 − 𝜔0

2𝑊(𝑤)𝑥

�̇� = 𝜇 − 𝑥2

�̇� = 𝑥 − 𝑤

,                                                          (2) 

 where A and ω are the amplitude and angular frequency of periodic excitation, respectively. It is 
obvious that system (2) is a nonautonomous system. 

 

3. Dynamics analysis of the proposed system 

With appropriate parameters, system (1) can exhibit chaotic attractors or periodic solution. In this section, 
the dynamics of system (2), namely, system (1) under periodic excitation, is to be explored with the change of 
amplitude and angular frequency of periodic excitation. For this end, we suppose that 𝜔0  and A change, 
respectively, while other parameters are fixed as 𝛽=0.5, 𝜇=0.9, 𝑎=1, 𝑏=0.1, 𝜔 = 𝜔0. 

As the parameter 𝜔0 is chosen as 1.68, chaotic attractor of system (1) is generated under initial values (-
2,0,0,0) [22]. The phase portraits in 𝑥 − 𝑦 plane is displayed in Fig.1.  

Keeping other parameters and initial condition constant, the dynamic of system (2) is calculated via choosing 
differen value of stimulus amplitude and depicted in Fig.2. From Fig.2, it can be obtained that period-3 
behavior is presented when 𝐴 = 0.4; when 𝐴 = 0.6, the period-1 behavior will appear. Thus, the system 
presents different dynamics as the amplitude changing. To better illustrate this, we also discuss other scenarios. 

 

 
Fig.1. Phase portrait of system (1) in 𝒙 − 𝒚 plane with initial condition (-2,0,0,0) and 𝝎𝟎=1.68. 
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Fig.2. Phase portraits in 𝒙 − 𝒚 plane and time series for variable 𝒙 of system (2) with initial condition (-2,0,0,0) 
and 𝝎𝟎 = 𝟏. 𝟔𝟖. (a1) Phase portrait in 𝒙 − 𝒚 plane for 𝑨 = 𝟎. 𝟒, (a2) Time series of variable x  for 𝑨 = 𝟎. 𝟒, 
(b1) Phase portrait in 𝒙 − 𝒚 plane for  𝑨 = 𝟎. 𝟔, (b2) Time series of variable x  for  𝑨 = 𝟎. 𝟔.  
 

 
Fig.3. Phase portrait and time series for variable 𝒙 of system (1) with initial condition (-2,0,0,0) and 𝝎𝟎 = 𝟏, 
(a1) Phase portrait in 𝒙 − 𝒚 plane; (a2) Time series of variable x . 
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Fig.4. Phase portraits and time series for variable 𝒙 of system (2) with initial condition (-2,0,0,0) and 𝝎𝟎 = 𝟏. 
(a1) Phase portrait in 𝒙 − 𝒚 plane for 𝑨 = 𝟎. 𝟓;(a2) Time series of variable x  for 𝑨 = 𝟎. 𝟓; (b1) Phase portrait 
in 𝒙 − 𝒚 plane for  𝑨 = 𝟏; (b2) Time series of variable x  for  𝑨 = 𝟏.  
 

The system (1) appears period-1 behavior under initial conditions (-2,0,0,0) while 𝜔0 = 1[22]. The phase 
portrait in 𝑥 − 𝑦 plane and time series for variable 𝑥 are plotted in Fig.3. The bursting oscillations emerge 
when the amplitude of external stimulation is selected as 0.5, as shown in Fig.4. Fig.4(b1, b2) suggests that 
the system (2) presents period-1 but with different phase trajectories from Fig.3. 

System (1) shows period-2 behavior under initial conditions (-2,0,0,0) as 𝜔0 = 2.11 [22]. The numerical 
simulated trajectories of phase portraits are plotted in Fig.5. Under the influence of external periodic excitation, 
the trajectory of phase portraits converts from periodic solution to chaotic attractor. With the stimulus 
amplitude further increasing, the trajectory of phase portraits converts from chaotic attractor to the period-
1behavior. As shown in Fig.6, chaotic attractor is presented for 𝐴 = 0.1, and the period-1 behavior for 𝐴 =
0.3. 

In addition to all of the above, let the parameters 𝛽=0.5, 𝜇=0.9, 𝑎=1, 𝑏=0.1, 𝜔0 = 1.68, and system (1) 
produces coexisting chaotic attractors [22]. Fig.7 (a-b) show that different chaotic attractors can coexist for 
different initial values (2,0,0,0) and (-2,0,0,0).  

When 𝐴 = 0.7, coexisting attractors of the period-3 and the period-1 can be found in system (2) for initial 
values (2,0,0,0) and (-2,0,0,0). The phase portraits are plotted in Fig.8. It is worth mentioning that the 
coexisting phenomenon disappears when 𝐴 = 0.8. It shows that coexisting behaviors are affected by the 
amplitude of periodic excitation in system (2).  
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Fig.5. Phase portrait and time series of system (1) with initial conditions (-2,0,0,0) and 𝝎𝟎 = 𝟐. 𝟏𝟏, (a1) Phase 
portrait in 𝒙 − 𝒚 plane; (a2) Time series of variable x . 

  

Fig.6. Phase portraits and time series of system (2) with initial value (-2,0,0,0) and 𝝎𝟎 = 𝟐. 𝟏𝟏.  (a1) Phase portrait in 
𝒙 − 𝒚 plane for 𝑨 = 𝟎. 𝟏;(a2) Time series of variable x  for 𝑨 = 𝟎. 𝟏;  (b1) Phase portrait in 𝒙 − 𝒚 plane for  𝑨 = 𝟎. 𝟑; 
(b2) Time series of variable x  for  𝑨 = 𝟎. 𝟑.  
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Fig. 7. Coexistence of different chaotic attractors of system (1) with 𝝎𝟎 = 𝟏. 𝟔𝟖, (a) Phase portrait in 𝒙 − 𝒚 plane for 
initial value (2,0,0,0); (b) Phase portrait 𝒙 − 𝒚 plane for initial value (-2,0,0,0). 

 
Fig. 8. Coexistence of different attractors of system (2) with 𝝎𝟎 = 𝟏. 𝟔𝟖, 𝑨 = 𝟎. 𝟕, (a) Phase portrait in 𝒙 − 𝒚 plane for 
initial value (2,0,0,0);  (b) Phase portrait in 𝒙 − 𝒚 plane for initial value (-2,0,0,0).  

 

4. Conclusions 

The dynamical behaviors of the system with external periodic excitation are discussed in this paper. 
When the external periodic excitation is added into the system, the addressed system shows various dynamics 
with the change of amplitude A. When 𝜔0 = 1.68, the dynamics of the system can convert to period from 
chaots. When 𝜔0 = 1, the dynamics of system can convert to bursting oscillations from period. When 𝜔0 =
2.11, the dynamics of system can convert to chaotic from multicycle. In addition, the coexisting dynamics are 
also influenced by the amplitude. When 𝜔0 = 1.68, the original system displays two coexisting chaotic 
attractors. However, when the external periodic excitation is considered as 𝐴 = 0.7, the system emerges 
coexisting attractors of period-3 and period-1. Conclusions above may have applications in many fields, such 
as image encryption, secure communications. 
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