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Abstract: Dynamic behavior of the fractional order hyperchaotic Chen system is discussed. According to 

linear system stability judgment method, general projective synchronization method of hyperchaotic system 

with fractional order is introduced. By constructing constant full rank matrix, via designing response system, 

projective synchronization between it and the corresponding drive system can be achieved along with 

sufficient conditions being obtained. The proposed scheme is simple and easy to be implemented. To verify 

the effectiveness of the addressed method, numerical simulations are demonstrated. 
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1. Introduction 

After Carroll and Pecora put forward the conception of chaotic synchronization [1], people have 
carried on much research on chaotic synchronization. Various synchronization methods have been proposed. 

For example, generalized synchronization [2,3], complete synchronization [4,5], lag synchronization [6,7], 

Q-S synchronization [8], phase synchronization [9,10], prediction and lag synchronization [11,12]. In 1999, 
Mainieri et al. observed a novel type of chaos synchronization, namely projective synchronization [13]. 

Since then, projective synchronization has attracted people's attention. Examples are given as follows. In 

Ref. [14], a scheme about secure communication on the basis of projective synchronization was mentioned. 
Projective synchronization relative to complicated factors was discussed in Ref. [15]. 

Recently, the research on fractional calculus has attracted great attention. So far, there have been 

many fractional order synchronization methods. Here are some examples. Fractional order synchronization 
conditions for two Lü systems were calculated [16]; By using linear control strategy, synchronization for 

fractional systems with time delayed was proposed [17]; Active control method was presented to realize 

fractional chaotic synchronization [18]; Qin et al. introduced an adaptive fuzzy controller and realized the 
synchronization of uncertain systems, which were fractional order systems with time delay [19]. Control and 

synchronization for unknown chaotic systems was proposed by utilizing adaptive back stepping tactics, in 

which fractional order system was used [20]. A nonlinear disturbance observer was explored on the basis of 
adaptive sliding mode control scheme [21]. Existing results suggested that fractional order nonlinear system 

can show richer dynamics and reflect more systematic engineering physics phenomena compared with 

integer order system. Therefore, it has wider range of applications. 
In the last few years, various results regarding fractional order projective synchronization have been 

considered. Lag projective synchronization was obtained by utilizing compared principle for linear 
fractional order equation with time delayed [22]. Modified projective synchronization was described for 

chaotic systems in the presence of different dimensions [23].  Combination projective synchronization was 

discussed, which was divided into matrix form and inverse matrix form. When scaling factor was a constant 
full rank matrix, these two synchronization methods can be realized [24]. A robust control method for two 

different chaotic systems with external disturbances was designed to realize modified function projective 
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synchronization [25]. Nowadays, Chaos synchronization has been used in many fields, such as image 
encryption [26-28], parameter estimation [29], secure communications [30,31], electrical circuits systems 

[32], physics and engineering sciences [33-35]. 

Other parts of this manuscript are arranged as follows. Definitions and predictor-corrector algorithm 
are introduced in section 2. In section 3, main results are depicted. Firstly, general projective 

synchronization scheme for hyperchaotic systems is presented. Secondly, dynamic behavior about fractional 

hyperchaotic Chen system is discussed. Thirdly, the proposed scheme was verified through numerical 
simulations. Conclusions are depicted in section 4. 

2. Definitions and algorithm 

In this part, definitions and algorithm are introduced. 

2.1 Definitions 
According to different research backgrounds, three definitions about fractional order derivative are 

introduced. They are Riemann-Liouville, Caputo and Grünwald-Letnikov definitions.  

Definition 1([36]) Riemann-Liouville definition of function 𝑓(𝑡) is described as 

                                                               
𝑑𝛼𝑓(𝑡)

𝑑𝑡𝛼
=

1

𝛤(𝑚−𝛼)

𝑑𝑚

𝑑𝑡𝑚
∫

𝑓(𝜏)

(𝑡−𝜏)𝛼−𝑚+1
𝑑𝜏

𝑡

0
,                                                           (1) 

Where 𝛼 is fractional number that satisfies 𝑚 − 1 < 𝛼 < 𝑚 with 𝑚 ∈ 𝑁 and 𝛤(⋅)is the Gamma function.  

Definition 2 ([36]) Caputo definition of function 𝑓(𝑡) is described as  

                                                                  
𝑑𝛼𝑓(𝑡)

𝑑𝑡𝛼
=

1

𝛤(𝑚−𝛼)
∫

𝑓𝑚(𝜏)

(𝑡−𝜏)𝛼−𝑚+1
𝑑𝜏

𝑡

0
,                                                              (2) 

where 𝛼 is fractional number satisfying 𝑚− 1 < 𝛼 < 𝑚 with 𝑚 ∈ 𝑁. 𝛤(⋅)is the Gamma function.  

Definition 3([36]) Grünwald-Letnikov definition of function 𝑓(𝑡) is described as 

                                                         
𝑑𝛼𝑓(𝑡)

𝑑𝑡𝛼
= 𝑙𝑖𝑚

ℎ→0

1

ℎ
𝛼∑ (−1)𝑗𝑘

𝑗=0 (
𝛼
𝑗
)𝑓(𝑘ℎ− 𝑗ℎ), 𝑡 = 𝑘ℎ,                                         (3) 

Where  

                                                                         (
𝛼
0
) = 1, (

𝛼
𝑗 )

=
𝛼(𝛼−1)⋯(𝛼−𝑗+1)

𝑗!
, 𝑗 ≥ 1.                                                 (4) 

Formula (4) can be rewritten as 

                                                                                  (
𝛼
𝑗 )

=
𝛤(𝛼+1)

𝛤(𝑗+1)𝛤(𝑎−𝑗+1)
,                                                                    (5) 

Aforementioned definitions about fractional order derivatives have their own features. The Riemann-

Liouville definition has good mathematical properties, but it is subject to many restrictions in engineering 
applications. Although the definition of Caputo has a clearer physical meaning in engineering applications, 

it is more difficult to perform discrete calculations on fractional calculus. The Grünwald-Letnikov definition 

is easy to discretize and is convenient for numerical operations. For some functions, above three different 
forms of fractional order derivative definitions are equivalent and can be mutually used. In this manuscript, 

the Caputo definition is utilized. 

2.2 Algorithm 
Predictor-corrector algorithm is a typical method of solving fractional differential equations and 

tonltiterm equations[37]. Differential equation can be discretized based on the following algorithm to get 

numerical solution. 
Consider the following equation 

                                                                     𝐷𝑡
𝑞
𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), 0 ≤ 𝑡 ≤ 𝑇,                                                           (6) 

with initial value 𝑦(𝑘)(0) = 𝑦0
(𝑘)
, 𝑘 = 0,1⋯ ,𝑚 − 1,𝑚 = [𝑞], corresponding Volterra integral form is 

                                                       𝑦(𝑡) = ∑ 𝑦0
(𝑘) 𝑡𝑘

𝑘!

[𝑞]−1
𝑘=0 +

1

𝛤(𝑞)
∫ (𝑡 − 𝑠)
𝑡

0

𝑞−1
𝑓(𝑠, 𝑦(𝑠))𝑑𝑠.                                         (7) 

Let ℎ =
𝑇

𝑁
, 𝑡𝑛 = 𝑛ℎ, 𝑛 = 0,1⋯ ,𝑁 ∈ 𝑍+  performing Adams-Bashforth estimation on formula (7), we can 

obtain the estimation formula as 

                                    𝑦ℎ(𝑡𝑛+1) = ∑ 𝑦0
(𝑘) 𝑡𝑛+1

𝑘

𝑘!

[𝑞]−1
𝑘=0 +

ℎ
𝑞

𝛤(𝑞+2)
𝑓 (𝑡𝑛+1,𝑦ℎ

𝑝
(𝑡𝑛+1)) +

ℎ
𝑞

𝛤(𝑞+2)
𝑎𝑗,𝑛+1

𝑓 (𝑡𝑗, 𝑦ℎ(𝑡𝑗)),              (8) 

Where 
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                                              𝑎𝑗,𝑛+1 = {

𝑛𝑞+1 − (𝑛 − 𝑞)(𝑛 + 1)𝑞 , 𝑗 = 0,

(𝑛 − 𝑗 + 2)𝑞+1 + (𝑛 − 𝑗)𝑞+1 − 2(𝑛 − 𝑗 + 1)𝑞+1, 1 ≤ 𝑗 ≤ 𝑛,
1, 𝑗 = 𝑛 + 1

                        (9) 

                                                     𝑦ℎ
𝑝
(𝑡𝑛+1) = ∑ 𝑦0

(𝑘)[𝑞]−1
𝑘=0

𝑡𝑛+1
𝑘

𝑘!
+

1

𝛤(𝑞)
∑ 𝑏𝑗,𝑛+1
𝑛
𝑗=0 𝑓 (𝑡𝑗, 𝑦ℎ(𝑡𝑗)),                                 (10) 

                                                                     𝛽𝑗,𝑛+1 =
ℎ
𝑞

𝑞
((𝑛 + 1 − 𝑗)𝑞 − (𝑛 − 𝑗)𝑞).                                                   (11) 

Suppose 𝑞 > 0 satisfying 𝐷𝑡
𝑞
𝑦(𝑡) ∈ 𝐶2, and there is error estimate.  

                                                                         𝑚𝑎𝑥
0≤𝑗≤𝑁

|𝑦(𝑡𝑗) − 𝑦ℎ(𝑡𝑗)| = 0(ℎ𝑞),                                                           (12) 

where 𝑝 = 𝑚𝑖𝑛( 2,1 + 𝑞). 

3 Main results 

3.1 Projective synchronization scheme 
Theorem 1 For fractional order hyperchaotic system, we can construct corresponding response 

system according to the given scaling factor, and make the two systems obtain projective synchronization.  

Proof. To prove the result of Theorem 1, two steps are taken as following. Firstly, the linear part is 

separated from fractional order hyperchaotic system. Secondly, constant full rank matrix B is constructed 
and the real part of all characteristic roots of matrix B is required to be negative. 

Consider fractional order hyperchaotic system 

                                                                                
𝑑𝑞𝑥

𝑑𝑡𝑞
= 𝑓(𝑥(𝑡)),                                                                          (13) 

where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇 ∈ 𝑅𝑛 is state vector，and 𝑓: 𝑅𝑛 → 𝑅𝑛 is non-linear vector function. 

We can decompose function 𝑓(𝑥(𝑡)) as  

                                                                          𝑓(𝑥(𝑡)) = 𝐴𝑥(𝑡) + ℎ(𝑥(𝑡)).
                                                            

(14) 

Where 𝐴𝑥(𝑡) is linear part, and ℎ(𝑥(𝑡)) is non-linear part. 

Furthermore, it is well known that 𝐴𝑥(𝑡) can be depicted as the plus of a matrix of constant full rank 

𝐵 with all its eigenvalues being negative and another matrix 𝐶, namely, 𝐴𝑥(𝑡) = 𝐵𝑥(𝑡) + 𝐶𝑥(𝑡). 
Accordingly, it can be obtained that  

                                                                   𝑓(𝑥(𝑡)) = 𝐵𝑥(𝑡) + 𝐶𝑥(𝑡) + ℎ(𝑥(𝑡)).
                                                      

 (15) 

Let 

                                                                            𝐻(𝑥(𝑡)) = 𝐶𝑥(𝑡) + ℎ(𝑥(𝑡)),
                                                          

 (16) 

then system (13) is written as 

                                                                                
𝑑𝑞𝑥

𝑑𝑡𝑞
= 𝐵𝑥(𝑡) + 𝐻(𝑥(𝑡)).

         

                                                      (17) 

To gain the projective synchronization, system (13) is regarded as drive system and the  
corresponding response system is expressed as 

                                                                            
𝑑𝑞𝑦

𝑑𝑡𝑞
= 𝐵𝑦(𝑡) +

𝐻(𝑥(𝑡))

𝛼
,                                                                  (18) 

where 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛)
𝑇 ∈ 𝑅𝑛 is state vector, 𝛼 is specified projective factor. 

Define synchronization error as 

                                                                                 𝑒(𝑡) = 𝑥(𝑡) − 𝑎𝑦(𝑡),
   

                                                                (19) 

and then error system is obtained as 

                                   
𝑑𝑞𝑒(𝑡)

𝑑𝑡𝑞
=

𝑑𝑞𝑥(𝑡)

𝑑𝑡𝑞
− 𝛼

𝑑𝑞𝑦(𝑡)

𝑑𝑡𝑞
= 𝐵𝑥(𝑡) − 𝛼𝐵𝑦(𝑡) = 𝐵(𝑥(𝑡) − 𝑎𝑦(𝑡)) = 𝐵𝑒(𝑡).

                           

(20) 

All eigenvalues of matrix B can be calculated. Since its real parts are non-positive, system (20) 

gradually stabilizes to zero on the basis of stability judgment theory of linear system. That is, the state 

vector 𝑥(𝑡) of system (13) and the state vector 𝑦(𝑡) of system (18) can achieve projection synchronization. 

3.2 System description 
In this part, to verify main result in section 3.1, we take fractional hyperchaotic Chen system as an 

example, which can be given as 
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{
  
 

  
 
𝑑𝑞𝑥1

𝑑𝑡𝑞
= 𝑎(𝑥2 − 𝑥1) + 𝑥4,

𝑑𝑞𝑥2

𝑑𝑡𝑞
= 𝑑𝑥1 − 𝑥1𝑥3 + 𝑐𝑥2,

𝑑𝑞𝑥3

𝑑𝑡𝑞
= 𝑥1𝑥2 − 𝑏𝑥3,

𝑑𝑞𝑥4

𝑑𝑡𝑞
= 𝑥2𝑥3 + 𝑟𝑥4.

                                                          (21) 

where (𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑅
4 and 𝑎, 𝑏, 𝑐, 𝑑, 𝑟 ∈ 𝑅1  are system parameters, 𝑞 is fractional order. Predictor-

corrector algorithm is adapted in the simulations. We choose system parameters as 𝑞 = 0.95, 𝑟 = 0.5, 𝑎 =
35, 𝑏 = 3, 𝑐 = 12 and 𝑑 = 7, with which system (21) exhibits hyperchaotic behavior (see Fig.1 and Fig.2). 

  

Fig.1 Chaotic attractors of system (21) in 2D space. (a) 𝑥1 − 𝑥2 plane; (b) 𝑥1 − 𝑥3 plane;  

(c) 𝑥1 − 𝑥4 plane; (d) 𝑥2 − 𝑥3 plane; (e) 𝑥2 − 𝑥4 plane; (f) 𝑥3 − 𝑥4 plane. 

 

 

Fig.2 Chaotic attractors of system (21) in 3D space. (a) 𝑥1 − 𝑥2 − 𝑥3 space; (b) 𝑥1 − 𝑥2 − 𝑥4 space; (c) 𝑥1 − 𝑥3 − 𝑥4 
space; (d) 𝑥2 − 𝑥3 − 𝑥4 space. 

Fig.1 shows two-dimensional phase diagram of system (21) on different plane, and Fig.2 depicts 
attractors of system (21) in three-dimensional space. From these two figures, we can see that fractional order 

hyperchaotic Chen system is hyperchaotic. 

3.3 Implementation of projective synchronization scheme 
In this section, a constant full-rank matrix 𝐵 and response system is constructed according to system 

(21) for given scaling factor. 
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Firstly, system (21) is decomposed into two parts 𝐴𝑥(𝑡) and ℎ(𝑥(𝑡)) with 

                                                             𝐴𝑥(𝑡) = (

−𝑎 𝑎 0 1
𝑑 𝑐 0 0
0 0 −𝑏 0
0 0 0 𝑟

)(

𝑥1
𝑥2
𝑥3
𝑥4

),                                                          (22) 

and 

                                                                                ℎ(𝑥(𝑡)) = (

0
−𝑥1𝑥3
𝑥1𝑥2
𝑥2𝑥3

).                                                                   (23) 

Secondly, 𝐴𝑥(𝑡) can be decomposed into 𝐵𝑥(𝑡) and 𝐶𝑥(𝑡) with  

                                                                  𝐵𝑥(𝑡) = (

−𝑎 𝑎 0 1
𝑑 𝑢 0 0
0 0 −𝑏 0
0 0 0 𝑣

)(

𝑥1
𝑥2
𝑥3
𝑥4

),                                                         (24) 

                                                                𝐶𝑥(𝑡) = (

0 0 0 0
0 𝑐 − 𝑢 0 0
0 0 0 0
0 0 0 𝑟 − 𝑣

)(

𝑥1
𝑥2
𝑥3
𝑥4

),                                                    (25) 

Let 𝐻(𝑥(𝑡)) = 𝐶𝑥(𝑡) + ℎ(𝑥(𝑡)), then 

                               𝐻(𝑥(𝑡)) = (

0 0 0 0
0 𝑐 − 𝑢 0 0
0 0 0 0
0 0 0 𝑟 − 𝑣

)(

𝑥1
𝑥2
𝑥3
𝑥4

)+(

0
−𝑥1𝑥3
𝑥1𝑥2
𝑥2𝑥3

) = (

0
(𝑐 − 𝑢)𝑥2 − 𝑥1𝑥3

𝑥1𝑥2
(𝑟 − 𝑣)𝑥4 + 𝑥2𝑥3

).                    (26) 

Therefore, system (21) is regarded as drive system. Which can be rewritten as 

                                      𝐵𝑥(𝑡) + 𝐻(𝑥(𝑡)) = (

−𝑎 𝑎 0 1
𝑑 𝑢 0 0
0 0 −𝑏 0
0 0 0 𝑣

)(

𝑥1
𝑥2
𝑥3
𝑥4

)+ (

0
(𝑐 − 𝑢)𝑥2 − 𝑥1𝑥3

𝑥1𝑥2
(𝑟 − 𝑣)𝑥4 + 𝑥2𝑥3

).                           (27) 

Then response system can be constructed as 

                              𝐵𝑦(𝑡) +
𝐻(𝑥(𝑡))

𝛼
= (

−𝑎 𝑎 0 1
𝑑 𝑢 0 0
0 0 −𝑏 0
0 0 0 𝑣

)(

𝑦1
𝑦2
𝑦3
𝑦4

) +
1

𝛼
(

0
(𝑐 − 𝑢)𝑥2 − 𝑥1𝑥3

𝑥1𝑥2
(𝑟 − 𝑣)𝑥4 + 𝑥2𝑥3

),                                    (28) 

which is 

                                                                       

{
  
 

  
 
𝑑𝑞𝑦1

𝑑𝑡𝑞
= 𝑎(𝑦2 − 𝑦1) + 𝑦4 ,

𝑑𝑞𝑦2

𝑑𝑡𝑞
= 𝑑𝑦1 + 𝑢𝑦2 +

1

𝛼
((𝑐 − 𝑢)𝑥2 − 𝑥1𝑥3),

𝑑𝑞𝑦3

𝑑𝑡𝑞
= −𝑏𝑦3 +

1

𝛼
𝑥1𝑥2,

𝑑𝑞𝑦4

𝑑𝑡𝑞
= 𝑣𝑦4 +

1

𝛼
((𝑟 − 𝑣)𝑥4 + 𝑥2𝑥3).

                                       (29) 

3.4 Numerical simulation 
In numerical simulations, system parameters are set to 𝑎 = 35, 𝑏 = 3, 𝑐 = 12, 𝑑 = 7and 𝑟 = 0.5. 

Then the matrix 𝐵 can be gained as 

                                                       𝐵 = (

−𝑎 𝑎 0 1
𝑑 𝑢 0 0
0 0 −𝑏 0
0 0 0 𝑣

) = (

−35 35 0 1
7 𝑢 0 0
0 0 −3 0
0 0 0 𝑣

).                                       (30) 

When we choose 𝑢 = −10  and 𝑣 = −2 , characteristic root of matrix 𝐵  is calculated as 𝜆1 =
−42.5312, 𝜆2 = −2.4688, 𝜆3 = −3 and 𝜆4 = −2, which are all negative.  

We Set the initial value to 𝑥1(0) = 6, 𝑥2(0) = 8, 𝑥3(0) = 10 and 𝑥4(0) = 15, while those of system 

(29) are set to 𝑦1(0) = 1, 𝑦2(0) = 10, 𝑦3(0) = 15 and 𝑦4(0) = −5. For scaling factor 𝛼 = 2, attractors of 

two systems are displayed in Fig.3. It can be shown from Fig.3 that projection synchronization can be 

reached. 
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Fig.3 When 𝑢 = −10, 𝑣 = −2 and 𝛼 = 2, attractors of system (21) and system (29), where blue diagram represents 

attractor of drive system (21) and red one represents that of response system (29). 

 

Fig.4 When 𝑢 = −10, 𝑣 = −2 and 𝛼 = 2, error curves of system (21) and system (29). 

When 𝛼 = 2，synchronization error curve of two systems are displayed in Fig.4, from which it can 

be known that the errors of system (21) and system (29) are asymptotically stable at zero, that is to say, 
system (21) and system (29) are projective synchronized. 

 

Fig.5 When 𝑢 = −10, 𝑣 = −2 and 𝛼 = 0.5, attractor diagrams of system (21) and system (29), where blue diagram 

represents attractor of drive system (21) and red one represents that of response system (29). 
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Fig.6 When 𝑢 = −10, 𝑣 = −2 and 𝛼 = 0.5, error curves of system (21) and system (29). 

When 𝑢 = −10, 𝑣 = −2 and 𝛼 = 0.5, attractors of system (21) and system (29) are shown in Fig.5, 

and error curves of projection synchronization of system (21) and system (29) are shown in Fig.6.  

 

Fig.7 When 𝑢 = −10, 𝑣 = −2 and 𝛼 = −0.5, attractors of system (21) and system (29), where blue diagram represents 

attractor of drive system (21) and red one represents that of response system (29). 

 

Fig.8 When 𝑢 = −10, 𝑣 = −2 and 𝛼 = −0.5, error curves of system (21) and system (29). 

For scaling factor 𝛼 = −0.5 , attractors of system (21) and system (29) are expressed in Fig.7. 

Projection synchronization error are pictured in Fig.8. Figs.3-8 indicates that, for different scaling factors, 

projection synchronization between systems (21) and (29) can be obtained. 

   

Fig.9 For different values of 𝛼, the attractors of system (21) and system (29), 

 (a) 𝛼 = 2; (b) 𝛼 = 0.5; (c) 𝛼 = −0.5 
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Fig.9 shows the attractors when system (21) and system (29) reach the projection synchronization for 
scale factors 2, 0.5, and -0.5, respectively. It can be known from Fig.9 that, for different scale factors, two 

systems can realize projection synchronization. 

4. Conclusions 

Dynamic behavior is investigated for fractional order hyperchaotic Chen system, and a general 
projective synchronization scheme is designed. A response system is designed on the basis of the linear 

system stability judgment theory. By constructing a constant full-rank matrix, a general projective 

synchronization scheme is presented. The correctness of the presented scheme is theoretically proved, and 

then its effectiveness is verified. Results suggest that, when scaling factor 𝛼 is chosen as different values, 

such as 𝛼 = 2, 𝛼 = 0.5 and 𝛼 = −0.5, the projection synchronizations for system (21) and the constructed 

system have been realized. 
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