
 

Published by World Academic Press, World Academic Union 

ISSN 1746-7659, England, UK 

Journal of Information and Computing Science 

Vol. 14, No. 2, 2019, pp.149-155 

 

 
 

 

 

Wavelet Based Full Approximation Scheme for the Numerical 

Solution of Burgers’ equation arising in Fluid Dynamics using 

Biorthogonal wavelet 

S. C. Shiralashetti 1, L. M. Angadi 2 and A.B. Deshi3 
1 Department of Mathematics, Karnatak University Dharwad-580003, India 

2 Department of Mathematics, Govt. First Grade College, Chikodi – 591201, India 
3Department of Mathematics, KLECET, Chikodi – 591201, India 

(Received April 26, 2019, accepted May 29, 2019) 

Abstract: Wavelet based methods are the new development in the area of applied mathematics. Wavelets 

are mathematical tools that cut functions or operators into different frequency components, and then study 

each component with a resolution matching to its scale. In this paper, we proposed Biorthogonal wavelet 

based full-approximation scheme for the numerical solution of Burgers’ equation arising in fluid dynamics 

using biorthogonal wavelet filter coefficients as prolongation and restriction operators.   The proposed 

method gives higher accuracy in terms of better convergence with low computational time, which has been 

demonstrated through the illustrative problem.  

Keywords: Biorthogonal wavelet; Multi-resolution analysis; Full approximation scheme; Burgers’ 

equation; Fluid dynamics 

1. Introduction 

 Partial differential equations (PDEs) arise frequently in Mathematical Physics and all branches of 

Engineering and other allied areas.  For this reason the study of such equations is of great important.  In this 

paper, we consider the solution of Burgers’ equation, which is nonlinear Parabolic PDE. These equations are 

time dependent i.e. the solution depends not only on the   spatial variable, but also the time dependent.  The 

one dimensional Burgers’ equation [1] is, 

                                                         𝑢𝑡 + 𝑢𝑢𝑥 = 𝜐𝑢𝑥𝑥 ,                                                                      (1.1) 

where ′𝜐′  is the coefficient of kinematic viscosity. This is the suitable model for considering problems 

associated with nonlinear convective terms, possesses the same form of convective linearity as the inco--

mpressible Navier–Stoke’s equation and has readily evaluated to get exact solutions for many combinations 

of initial and boundary conditions. 

In last two decades, many authors are applied various numerical methods to solve Burgers’ equations, 

some of them are finite element method [2], Least-squares quadratic B-spline finite element method [3] etc. 

For large systems, these methods are inefficient in terms of both computer storage and computational cost.  

In numerical analysis and computational science the development of effective iterative solvers for 

nonlinear systems of algebraic equations has been a significant research topic.  Classical multigrid begins 

with a two-grid process. First, iterative relaxation is applied, whose effect is to smooth the error. In this 

paper, we describe how to apply multigrid to nonlinear problems. Applying multigrid method directly to the 

nonlinear problems by employing the method so-called Full Approximation Scheme (FAS). Nowadays it is 

recognized that FAS iterative solvers are highly efficient for nonlinear differential equations introduced by 

Brandt [4]. Full approximation scheme is suitable for nonlinear problems, which treats directly the nonlinear 

equations on finer and coarser grids.  In FAS, a nonlinear iteration, such as the nonlinear Gauss-Seidel 

method is applied to smooth the error and the residual is passed from the fine grids to the coarser grids. 

Vectors from fine grids are transferred to coarser grids with Restriction operator (R), while vectors are 

transferred from coarse grids to the finer grids with a Prolongation operator (P) respectively.  For a detailed 

treatment of FAS is given in Briggs et al. [5]. An introduction of FAS is found in Hackbusch et al. [6] and 

Wesseling [7]. Many authors applied the FAS for some class of differential equations. The full-

approximation scheme (FAS) is largely applicable in increasing the efficiency of the iterative methods used 

to solve nonlinear system of algebraic equations. FAS are well-founded numerical method for solving 

nonlinear system of equations for approximating given differential equation.  In this paper, we developed 
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the full-approximation scheme (FAS) for the numerical solution of Burgers’ equation.  However, when 

problems with discontinuous or highly oscillatory coefficients, multigrid procedure converge slowly with 

larger computational time or may break down. To overcome this difficulty, wavelet plays a very important 

role. 

"Wavelets" have been very popular topic of conversations in many scientific and engineering 

gatherings these days. Some of the researchers have decided that, wavelets as a new basis for representing 

functions, as a technique for time-frequency analysis, and as a new mathematical subject. Of course, 

"wavelets" is a versatile tool with very rich mathematical content and great potential for applications. 

However wavelet analysis is a numerical concept which allows one to represent a function in terms of a set 

of basis functions, called wavelets, which are localized both in location and scale. The development of 

multiresolution analysis and the fast wavelet transforms by Avudainayagam and Vani [8] and Bujurke et al. 

[9-10] led to extensive research in wavelet multigrid schemes to solve certain differential equations arising 

in fluid dynamics. Shiralashetti et al. [11] had proposed Wavelet based multigrid method for the numerical 

solution of poisson equations.  

This paper outspreads the same approach for the numerical solution of Burgers’ equation arising in 

fluid dynamics i.e. Biorthogonal wavelet based full-approximation scheme (BWFAS) for the numerical 

solution of Burgers’ equation. BWFAS is formulated rather than having one scaling and wavelet function, 

there are two scaling functions that may generate different multiresolution analysis, and accordingly two 

different wavelet functions.  

The dual scaling and wavelet functions have the following properties: 

• They are zero outside of a segment.  

• The calculation algorithms are maintained, and thus very simple.  

• The associated filters are symmetrical.  

• The functions used in the calculations are easier to build numerically than those used in the     

Daubechies wavelets. 

 The organization of the paper is as follows.  In section 2, Properties of Biorthogonal wavelets are given. 

Section 3 deals with Biorthogonal spline wavelet operators. Section 4 describes the method of solution.  

Numerical findings and error analysis are presented in section 5. Finally, conclusions of the proposed work 

are given in section 6. 

2. Properties Biorthogonal Wavelets 

The framework of the theory of orthonormal wavelets to the case of biorthogonal wavelets by a 

modification of the approximation space structure is extended by Cohen et al. [12]. In [13], Ruch and Fleet 

build a biorthogonal structure called dual multiresolution analysis that allows for the construction of 

symmetric scaling filters and that can incorporate spline functions. They used instead of scaling {𝑎𝑛} and 

wavelet {𝑏𝑛} filters, the new construct yields scaling {�̃�𝑛} and wavelet {�̃�𝑛} filters as decomposition and 

reconstruction. Instead of a single scaling function 𝜙(𝑥)  and wavelet function 𝜓(𝑥) , the dual 

multiresolution analysis requires a pair of scaling functions 𝜙(𝑥) and �̃�(𝑥) related by a duality condition 

similarly, a pair of wavelet functions 𝜓(𝑥) and �̄�(𝑥). To construct the BDWT matrix, the same thing is 

used in to build the orthogonal discrete wavelet transform matrix. Due to excellent properties of 

biorthogonality and minimum compact support, CDF wavelets can be useful and convenient, providing 

guaranty of convergence and accuracy of the approximation in a wide variety of situations. 

Let’s consider the (5, 3) biorthogonal spline wavelet filter pair, 

We have  �̃� = (�̃�−1, �̃�0, �̃�1) = (
1

2√2
,
1

√2
,

1

2√2
) 

and  𝑎 = (𝑎−2, 𝑎−1, 𝑎0, 𝑎1, 𝑎2) = (
−1

4√2
,

1

2√2
,

3

2√2
,

1

2√2
,
−1

4√2
) 

To form the highpass filters. We have   𝑏𝑘 = (−1)𝑘�̃�1−𝑘and�̃�𝑘 = (−1)𝑘𝑎1−𝑘. 

The highpass filter pair 𝑏𝑘and�̃�𝑘 for the (5, 3) biorthogonal spline filter pair. 

𝑏0 =
1

2√2
, 𝑏1 =

−1

√2
, 𝑏2 =

1

2√2
and �̃�−1 =

1

4√2
, �̃�0 =

1

2√2
, �̃�1 =

−3

2√2
, �̃�2 =

1

2√2
, �̃�3 =

1

4√2
 

In this paper, we use the filter coefficients which are,  
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Low pass filter coefficients: 𝑎−2, 𝑎−1, 𝑎0, 𝑎1, 𝑎2 and High pass filter coefficients: 𝑏0, 𝑏1, 𝑏2  for 

decomposition matrix.  Low pass filter coefficients: �̃�−1 = 𝑏2, �̃�0 = −𝑏1, �̃�1 = 𝑏0 and High pass filter 

coefficients: �̃�−1 = −𝑎2, �̃�0 = 𝑎1, �̃�1 = −𝑎0, �̃�2 = 𝑎−1, �̃�3 = −𝑎−2 for reconstruction matrix.   

Discrete wavelet transforms (DWT):  

A DWT is a linear transformation that transforms vectors from the standard basis to a wavelet basis. 

Certain classes of linear operators that correspond to dense matrices in the standard basis can be 

approximated by sparse matrices in a suitably chosen wavelet basis. The matrix formulation of the discrete 

biorthogonal spline wavelet transforms (DBSWT) plays an important role in the biorthogonal Spline 

wavelet full-approximation transform method for the numerical computations. As we already know about 

the DBSWT matrix and its applications in the wavelet method and is given in [14] as, 

Decomposition matrix:                                            Reconstruction matrix: 

1 0 1 2 2

1 2 0

2 1 0 1 2

0 1 2

1 2 2 1 0

0 1 2

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0

0 0 . . . 0

0 0 0 0 . . . 0
N N

a a a a a

b b b

a a a a a

DM b b b

a a a a a

b b b

− −

− −

− −



 
 
 
 
 

=  
 
 
 
 
 

B

  

  and             

0 1 1

0 1 2 3 1

1 0 1

1 0 1 2 3

1 0 1

2 3 1 0 1

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0

0 0 0 0 . . . 0

0 0 . . . 0

B

N N

a a a

b b b b b

a a a

RW b b b b b

a a a

b b b b b

−

−

−

−

−

−


 
 
 
 
 
 =
 
 
 
 
 
   

Using these matrices, we introduced restriction and prolongation operators respectively similar to 

multigrid restriction and prolongation operators and the detailed procedure is explained in section 4. 

3. Biorthogonal Spline Wavelet Operators 

Using these matrices, we introduced biorthogonal spline wavelet restriction and biorthogonal spline 

wavelet prolongation operators respectively. i.e.,  

          

1 0 1 2 2

0 1 1

2 1 0 1 2

1 0 1

1 0 1
2

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0

0 0 0 0 0 0

− −

−

− −

−

− 

 
 
 
 

=  
 
 
 
 
 

R

N N

a a a a a

b b b

a a a a a
BSW

b b b

b b b
    

and   

  

0 1 1

0 1 2 3 1

1 0 1

1 0 1 2 3

1 0 1 2 3
2

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

−

−

−

−

− 

 
 
 
 
 =
 
 
 
 
 

T

P

N N

a a a

b b b b b

a a a
BSW

b b b b b

b b b b b

 

4. Method of solution 

Consider the Burgers’ equation,   

, 0 1, 0u uu u x tx xxt + =                                                     (4.1) 

subject to initial condition (IC) and boundary conditions (BCs).  

Where 𝑢 the real valued function and that is is assumed to be in L2(R) in the interval 0 ≤ 𝑥, 𝑡 ≤ 1.  We 

assume that Eq. (4.1) has a unique solution i.e. 𝑢 to be determined.  

Now discretizing the Eq. (4.1) by using finite difference scheme, we get the system of nonlinear 

equations of the form,  

                                                                                 ( ), ,i j i jF u b=                                                                           (4.2) 

where  𝑖, 𝑗 = 1,2, . . . . . 𝑁 , which have 𝑁 × 𝑁 equations with  𝑁 × 𝑁 unknowns.       

Solving Eq. (4.2) through the iterative method, we get approximate solution 𝑣 for 𝑢. 

Approximate solution contains some errors, and therefore required solution equals to sum of 

approximate solution and error. There are many methods to minimize such error to get the accurate solution. 
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Some of them are FAS, WFAS etc. Now we are discussing the method of solution of the above mentioned 

methods as below. 

4.1. Full-Approximation Scheme (FAS) 

From the system Eq. (4.2), we get the approximate solution v  for u . Now we find the residual as 

                                                          
   ( )

N N N NN N
r b A v

 
  = − .

                                                      
(4.3) 

Reduce the matrices in the finer level to coarsest level using Restriction operator and then construct 

the matrices back to finer level from the coarsest level using Prolongation operator.  

/2

1 2 1 0 0 0 0

0 0 1 2 1 0 01

0 04

0 0 1 2

O

N N

R



 
 
 =
 
 
 

 

and then construct the matrices back to finer level from the coarsest level using Prolongation operator as. 

/2

1 0 0 0

2 0 0 0

1 1 0

0 21

0 12

0 0 0 1

0 0 0 2

O

N N

P



 
 
 
 
 
 =
 
 
 
 
 
 
 

 

From Eq. (4.3),                          
2 2 2 2

rN N N NO ON N N N
r R P

   
= . 

Similarly,                                            
2 2 2 2

N N N NO ON N N N
v R v P

   
=

 
and                                                  

2 2 2 2 2 2 2 2

( ) ( )N N N N N N N NA v e A v r
   

+ − = .                               (4.4) 

Solve Eq. (4.4) with initial guess ‘0’, we get [𝑒]𝑁
2
×
𝑁

2

. 

From Eq. (4.4),                       
4 4 4 2 2 2 2 4

N N N N N N N NO Or R r P
   

=  

Similarly,                                   
4 4 4 2 2 2 2 4

N N N N N N N NO Ov R v P
   

=  

and                                              
4 4 4 4 4 4 4 4

( ) ( )N N N N N N N NA v e A v r
   

+ − = .                                   (4.5) 

Solve Eq. (4.5) with initial guess ‘0’, we get [𝑒]𝑁
4
×
𝑁

4

. 

Then the procedure is continue up to the coarsest level, we have, 

       
1 1 1 2 2 2 2 1O Or R r P
   
= . 

Similarly,                                          
1 1 1 2 2 2 2 1O Ov R v P
   
=  

and                                             
1 1 1 1 1 1 1 1

( ) ( )A v e A v r
   
+ − = .                                                (4.6) 

Solve Eq. (4.6) we get, [𝑒]1×1. 

Now correct the solution to the finer level, i.e.   

       
2 2 2 1 1 1 1 2O Oe P e R
   
= , 

       
4 4 4 2 2 2 2 4O Oe P e R
   
=  

and so on we have,                                
2 2 2 2

N N N NO ON N N N
e P e R

   
= . 

Correct the solution with error. [𝑢]𝑁×𝑁 = [𝑣]𝑁×𝑁 + [𝑒]𝑁×𝑁. 

This is the required solution of the given Eq. (4.1). 
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Fig. 1. Physical behavior of numerical solutions of illustrative problem with 𝑡 = 0.01. 

 

Table 1: Comparison of numerical solutions with exact solution of illustrative problem. 

x t 
Numerical solution 

Exact solution 
FDM FAS BWFAS 

0.2 0.2 0.012954 0.012954 0.012954 0.012964 

0.4 0.2 0.025390 0.025390 0.025390 0.025440 

0.6 0.2 0.034358 0.034358 0.034358 0.034524 

0.8 0.2 0.029874 0.029874 0.029874 0.030005 

0.2 0.4 0.012760 0.012760 0.012760 0.012781 

0.4 0.4 0.024906 0.024906 0.024906 0.025007 

0.6 0.4 0.033417 0.033417 0.033417 0.033732 

0.8 0.4 0.028798 0.028798 0.028798 0.029045 

0.2 0.6 0.012567 0.012567 0.012567 0.012600 

0.4 0.6 0.024428 0.024428 0.024428 0.024581 

0.6 0.6 0.032513 0.032513 0.032513 0.032960 

0.8 0.6 0.027777 0.027777 0.027777 0.028128 

0.2 0.8 0.012374 0.012374 0.012374 0.012421 

0.4 0.8 0.023956 0.023956 0.023956 0.024160 

0.6 0.8 0.031644 0.031644 0.031644 0.032209 

0.8 0.8 0.026808 0.026808 0.026808 0.027250 

4.2. Wavelet Full Approximation Scheme (WFAS) 
The same procedure is applied as explained the FAS (Section 4.1) in which replacing operators 

𝐵𝑆𝑊𝑅and 𝐵𝑆𝑊𝑃 in place of  𝑅𝑂 and 𝑃𝑂 respectively. 

5. Numerical Implimentation 

In this section, we applied FAS and WFAS for the numerical solution of Burgers’ equation and 

subsequently presented the efficiency of the methods in the form of tables and figures. The error analysis is 

considered as 𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥|𝑢𝑒 − 𝑢𝑎|, where 𝑢𝑒 and 𝑢𝑎 are exact and approximate solutions respectively.  

Illustrative Problem: Consider the Burgers equation (4.1) with initial and boundary conditions    

subject to the I.C.:         ( )
2 sin ( )

,0 , 0 1
2 cos ( )

x
u x x

x

 


=  

+
                                            (5.1) 
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and             B.C.s:                  ( ) ( )0 , 0 1 ,u t u t= =  ,     0 1t                                    (5.2) 

Which has the exact solution    

2
2 sin ( )

( , )
2

2 cos ( )

t
e x

u x t
t

e x

 
  

 


−

=
−

+

 [15].        

By applying the method explained in the section 4.1. and 4.2. for different values of 𝜐 i.e. 𝑣 =
0.1,0.05,0.025,0.0125(with 𝑡 = 0.01), we obtain the numerical solutions of the problem are compared with 

exact solution is presented in figure 1 and in table 1(for 𝜐 = 0.01).  Also, Physical behavior of numerical 

solutions of problem in 3D are presented in figures 2 and 3 for 𝑁 × 𝑁 = 8 × 8 & 16 × 16. The maximum 

absolute errors with CPU time of the method for 𝜐 = 0.01 and 𝜐 = 0.0001are presented in table 2. 
 

 
                                 8 8N N =                                                     16 16N N =   

Fig. 2 . Comparison of numerical solutions with exact solution of illustrative problem for 𝑁 × 𝑁 = 8 × 8 

           & 16 × 16 when 𝜐 = 0.1.             

 

                                       8 8N N =                                                                   16 16N N =   

 Fig. 3. Comparison of numerical solutions with exact solution of illustrative problem for 𝑁 × 𝑁 = 8 × 8  

            & 16 × 16when 𝜐 = 0.01 . 

6. Conclusions 

In this paper, we proposed Wavelet based full approximation scheme (BWFAS) for the numerical 

solution of Burgers’ equation arising in fluid dynamics using Biorthogonal wavelets.  From the above 

figures and table shows numerical solutions obtained by BWFAS agree with the exact solution and also 

gives higher accuracy in terms of better convergence with low computational time than the existing methods 

for different values of  the coefficient of kinematic viscosity (𝑖. 𝑒. ′𝜐′) .  Also from the table the error analysis, 
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the convergence of the presented method is observed i.e. the error decreases when the level of resolution N 

increases and also for smaller values of  𝜐 .   Hence BWFAS is capable of reducing the volume of the 

computational work as compared to the classical methods and is very effective for solving non-linear partial 

differential equations. 
 

Table 2: Maximum error and CPU time (in seconds) of the method of illustrative problem 

               for values  𝜐 = 0.01 and 𝜐 = 0.0001. 

N N  Method 

For 0.01=  For 0.0001=  

maxE  
Setup 

time 

Running 

time 

Total 

time maxE  
Setup 

time 

Running 

time 

Total 

time 

8 8  

FDM 6.0965e-04 15.4870 0.0008 15.4878 6.3383e-08 14.2900 0.0015 14.2915 

FAS 6.0965e-04 0.0084 0.0006 0.0090 6.3383e-08 0.0129 0.0005 0.0134 

BWFAS 6.0965e-04 0.0074 0.0002 0.0076 6.3383e-08 0.0072 0.0002 0.0074 

16 16  

FDM 1.1573e-04 7.6945 0.0008 7.6953 1.1696e-08 3.4785 0.0015 3.4800 

FAS 1.1573e-04 0.0085 0.0005 0.0090 1.1696e-08 0.0120 0.0005 0.0125 

BWFAS 1.1573e-04 0.0073 0.0001 0.0074 1.1696e-08 0.0070 0.0002 0.0072 

32 32  
FDM 3.0804e-05 7.0325 0.0009 7.0334 3.1054e-09 6.9178 0.0013 6.9181 

FAS 3.0804e-05 0.0091 0.0005 0.0096 3.1054e-09 0.0126 0.0005 0.0131 

BWFAS 3.0804e-05 0.0071 0.0002 0.0073 3.1054e-09 0.0076 0.0002 0.0078 

64 64  
FDM 1.1117e-05 6.9844 0.0009 6.9852 1.1101e-09 7.9157 0.0009 7.9166 

FAS 1.1117e-05 0.0160 0.0005 0.0165 1.1101e-09 0.0098 0.0005 0.0103 

BWFAS 1.1117e-05 0.0071 0.0002 0.0073 1.1101e-09 0.0075 0.0003 0.0078 
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