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Abstract.  In this paper, the problem of asymptotic stability for Takagi-Sugeno (T-S) fuzzy Hopfield neural networks 

with time-varying delays is studied. Based on the Lyapunov functional method, considering the system with 

uncertainties or without uncertainties, new delay-dependent stability criteria are derived in terms of Linear Matrix 

Inequalities (LMIs) that can be calculated easily by the LMI Toolbox in MATLAB. The proposed approach does not 

involve free weighting matrices and can provide less conservative results than some existing ones. Besides, numerical 

examples are given to show the effectiveness of the proposed approach. 
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1. Introduction 

Hopfield neural networks (HNNs) were first introduced by Hopfield [1]. The dynamic behavior of HNNs 

has been widely studied due to their potential applications in signal processing, combinatorial optimization 

and pattern recognition [2-4]. These applications are mostly dependent on the stability of the equilibrium of 

neural networks. Thus, the stability analysis is a necessary step for the design and applications of neural 

networks. Sometimes, neural networks have to be designed such that there is only global stable equilibrium. 

For example, when a neural network is applied to solve the optimization problem, it must have unique 

equilibrium which is globally stable. 

 Both in biological and artificial neural networks, the interactions between neurons are generally 

asynchronous which inevitably result in time delays. Time-delay is often the main factor of instability and poor 

performance of neural network systems [5]. Therefore, lots of efforts have been made on stability analysis of 

neural networks with time-varying delays in recent years [6-9]. The free-weighting matrix method was 

proposed to investigate the delay-dependent stability [10], and some less conservative delay-dependent 

stability criteria for systems with time-varying delay were presented [11-16]. However, Researchers have 

realized that too many slack variables introduced will make the system synthesis complicated, lead to a 

significant increase in the computational burden, and cannot result in less conservative results indeed [17-19]. 

In practical systems, there always are some uncertain elements, and these uncertainties may come from 

unknown internal or external noise, environmental influence, and so on. Hence, it has been the focus of 

intensive research in recent years [10], [12], [20].  

It is well-known that the T-S fuzzy models have been very important in academic research and practical 

applications, and the fuzzy logic theory has shown to be an efficient method to dealing with the analysis and 

synthesis issues for complex nonlinear systems [21-24]. Very recently, some results have been produced in the 

study of stability analysis of T-S fuzzy Hopfield neural networks systems with time-varying delays [25-27], 

To the best of our knowledge, the robust stability problem for uncertain fuzzy HNNs with time-varying interval 

delays has not been fully investigated, which remains as an open and challenging issue. 

In this paper, the problem of stability analysis for T-S fuzzy HNNs with time-varying delays is considered. 

Based on Jensen integral inequality and some important Lemma, new sufficient conditions are derived in terms 

of LMIs. By constructing a Lyapunov-Krasovskii function without free-weighting matrices approach, the 

proposed criteria in this paper are much less conservative than some existing results. Numerical examples are 

given to show the applicability of the obtained results. The rest of this paper is arranged as follows. Section 2 

gives problem statement and some preliminaries used in later sections. Section 3 presents our main results. 

Section 4 provides the numerical examples and Section 5 concludes the paper. 

2. Problem Statement and Preliminaries 
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In this brief, we will consider the following HNNs with uncertainties represented by a T-S fuzzy model, 

and the i th rule of the T-S fuzzy model is of the following form: 

Plant rule i : 

IF  
1 1 2 2( ) ( ) , , ( )i i i

n nz t is M and z t is M and z t is M  

THEN  ( ) ( ( )) ( ) ( ( )) ( ( ))i i i ix t A A t x t B B t f x t     ( ( )) ( ( ( )))i iC C t f x t d t                             (1) 

2( ) ( ), [ ,0], 1,2, ,x t t t h i q     

where ( 1,2, , )i

jM j n  is the fuzzy set, 
1 2( ) [ ( ), ( ), , ( )]nz t z t z t z t  is the premise variable vector, 

( ) nx t R  is the system state variable, the time delay 
1 20 ( )h d t h    is the time-varying delay with an 

upper bound of 2h , ( )d t   and q  is the number of IF-THEN rules. ( )iA t ， ( )iB t  and ( )iC t  are 

unknown matrices that represent the time-varying parameter uncertainties and are assumed to be admissible if 

the following assumption is satisfied. 

 

Assumption 1 [30]: 

1 2 3[ ( ) ( ) ( )] ( )[ ]i i i i i i i iA t B t C t H t E E E                                                        (2) 

where iH , 1iE ，
2iE  and 3iE  are given real constant matrices. The class of parametric uncertainties ( )i t  

that satisfy  

 ( ) ( ) ( )
T

i i it I F t J F t                                                                          (3) 

is said to be admissible, where J  is also a known matrix satisfying 

                    0TI JJ                                                                                    (4) 

and ( )iF t denotes unknown time-varying matrix functions. It is assumed that all elements ( )iF t  are Lebesgue 

measurable satisfying 

 ( ) ( ) ,T

i iF t F t I t  R                                                                  (5) 

To obtain our main results, we introduce the following lemmas. 

Lemma 1 [28]: Let , ,M P Q  be the given matrices such that 0Q  , then 

10 0
T

TP M
P M Q M

M Q


 

    
 

 

Lemma 2 [17]: For any constant matrix
m mM R , 

TM M 0, 0   is a scalar, : m R R  is a 

vector function, then the following inequality holds: 

0 0 0
( ( ) ) ( ( ) ) ( ) ( )T Ts ds M s ds s M s ds

  

        

Lemma 3 [18] For any scalars 
1 0,W  2 0,W  ( )d t  is a continuous function and satisfies

1 2( )h d t h  , 

then 

1 2 1 2 1 2

1 2 2 1 2 1

3 3
min ,

( ) ( )

W W W W W W

d t h h d t h h h h

  
   

    
 

Lemma 4 [29] Assume that ( )i t is given by (2)-(5). Given matrices
T

i i   , iM  and iE of appropriate 

dimensions, the inequality 

( ) ( ) 0T T T

i i i i i i iM t N N t M                                                                      (6) 

holds for all ( )F t  satisfies ( ) ( )TF t F t I . Then, the following inequality 

( ) ( ( ) ) 0T

i i i i i i iM F t N M F t N                                                                   (7) 

   holds if and only if there exists a scalar 0   satisfying 
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 * 0

* *

T

T

M N

I J

I



 



 
 

  
  

.                                                                            (8) 

Using a standard fuzzy inference method, the system (1) is inferred as follows: 

1

( ) ( ( ))[ ( ( )) ( ) ( ( )) ( ( ))
q

i i i i i

i

x t z t A A t x t B B t f x t


      ( ( )) ( ( ( )))]i iC C t f x t d t                            (9) 

where 

1

1

( ( ))
( ( )) , ( ( )) ( ( )),

( ( ))

n
ii

i i jq
j

j

j

w z t
z t w z t M z t

w z t






 


                                               (10) 

from the fuzzy sets theory, we have ( ( )) 0,i z t   
1

( ( )) 1
q

i

i

z t


 . 

3. Main Results 

3.1. Time-varying delay systems without uncertainties 

Theorem 1[31]. For given scalars 
1 20 h h   and 

12 2 1h h h  , system (9) is asymptotically stable if there 

exist matrices 0P  , 0( 1,2,3)iQ i  , 1 0R  , 2 0R   with appropriate dimensions such that the following 

LMIs hold: 

00 0 12 13

, 1

2

* 0 0, 1,2, , 1, 2,3, 4.

* *

i j i i

i j R i q j

R

    
 

     
 
  

                                               (11) 

where 

00

1

2

00

3

0 0 0

* 0 0 0 0

* * 0 0 0

* * * (1 ) 0 0

* * * * 0 0

* * * * * 0

i i i

i

PB PC

Q

Q

Q

 
 


 
 

   
  

 
 
 

                                                               (12) 

 

00 1 2 3i

T

i iA P PA Q Q Q                                                                          (13) 

 

1 1

12

1 1

1 1

0

0

0

T

i

i

T

i

T

i

h A R

h B R

h C R

 
 
 
 
  
 
 
 
 
 

            

12 2

13

12 12

12 12

0

0

0

T

i

i

T

i

T

i

h A R

h B R

h C R

 
 
 
 
  
 
 
 
 
 

                                                      (14)  
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1 1

1 1

1 2 1 2

1 12 1 12

2 2

01

12 12

1 2

1 12

0 0 0 0

3 3 3 3
* 0 0 0

* * 0 0

4 4
* * * 0 0

* * * * 0 0

* * * * * 0

R R

h h

R R R R

h h h h

R R

h h

R R

h h

 
 
 
 

   
 
 

   
 
 

  
 
 
 
 

                                                    (15) 

1 1

1 1

1 2 1 2

1 12 1 12

2 2

02

12 12

1 2

1 12

0 0 0 0

3 3
* 0 0 0

3 3
* * 0 0

4 4
* * * 0 0

* * * * 0 0

* * * * * 0

R R

h h

R R R R

h h h h

R R

h h

R R

h h

 
 
 
 

   
 
 

   
 
 

  
 
 
 
 

                                                    (16) 

 

1 1

1 1

1 2 1 2

1 12 1 12

2 2

03

12 12

1 2

1 12

3 3
0 0 0 0

3 3
* 0 0 0

* * 0 0

4 4
* * * 0 0

* * * * 0 0

* * * * * 0

R R

h h

R R R R

h h h h

R R

h h

R R

h h

 
 
 
 

   
 
 

   
 
 

  
 
 
 
 

                                                   (17) 

 

1 1

1 1

1 2 1 2

1 12 1 12

2 2

04

12 12

1 2

1 12

3 3
0 0 0 0

* 0 0 0

3 3
* * 0 0

4 4
* * * 0 0

* * * * 0 0

* * * * * 0

R R

h h

R R R R

h h h h

R R

h h

R R

h h

 
 
 
 

   
 
 

   
 
 

  
 
 
 
 

                                                (18) 

 

Proof. Choose a Lyapunov-Krasovskii functional candidate as follows: 
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1 2 3 4( ) ( ) ( ) ( ) ( )t t t t tV x V x V x V x V x     

where  

1( ) ( ) ( )T

tV x x t Px t  

1 2
2 1 2( ) ( ) ( ) ( ) ( )

t t
T T

t
t h t h

V x x s Q x s ds x s Q x s ds
 

    

3 3
( )

( ) ( ) ( )
t

T

t
t d t

V x x s Q x s ds


   

1

0

4 1( ) ( ) ( )
t

T

t
h t

V x x s R x s dsd





    

1

2
2( ) ( )

h t
T

h t
x s R x s dsd






 
   

Then, the time derivative of ( )tV x  along the trajectory of system (9) yields 

1( ) 2 ( ) ( )T

tV x x t Px t                                                                                                                         (19) 

2 1 2( ) ( )( ) ( )T

tV x x t Q Q x t   1 1 1( ) ( )Tx t h Q x t h   2 2 2( ) ( )Tx t h Q x t h                          (20) 

3 3( ) ( ) ( )T

tV x x t Q x t  3(1 ) ( ( )) ( ( ))Tx t d t Q x t d t                                                              (21) 

4 1 1 12 2( ) ( )( ) ( )T

tV x x t h R h R x t 
1

1( ) ( )
t

T

t h
x s R x s ds




1

2
2( ) ( )

t h
T

t h
x s R x s ds




                        (22) 

By using Lemma 2 and Lemma 3, we have 

1
1( ) ( )

t
T

t h
x s R x s ds


  

= 1
( )

( ) ( )
t

T

t d t
x s R x s ds




1

( )

1( ) ( )
t d t

T

t h
x s R x s ds




  

1
( ) ( )

{[( ( ) ) ( ) ] / ( )
t t

T

t d t t d t
x s ds R x s ds d t

 
     

1 1

( ) ( )

1 1[( ( ) ) ( ) ] / ( ( ))}
t d t t d t

T

t h t h
x s ds R x s ds h d t

 

 
  

1 2 1 2

1 1

3 3
max{ , }

W W W W

h h

 
                               (23) 

where 

1 1

1

1

( ) ( )

*( ( )) ( ( ))

T
R Rx t x t

W
Rx t d t x t d t

    
     

     
 

1 1

2

1 1 1

( ( )) ( ( ))

( ) * ( )

T
x t d t R R x t d t

W
x t h R x t h

       
      

      
 

and 

1

2
2( ) ( )

t h
T

t h
x s R x s ds




  

=
1

2

( )

2 2
( )

( ) ( ) ( ) ( )
t h t d t

T T

t d t t h
x s R x s ds x s R x s ds

 

 
    

1 1

2 1
( ) ( )

{[ ( ) ) ( ) ] / ( ( ) )
t h t h

T

t d t t d t
x s ds R x s ds d t h

 

 
     

2 2

( ) ( )

2 2[ ( ) ) ( ) ] / ( ( ))}
t d t t d t

T

t h t h
x s ds R x s ds h d t

 

 
  

3 4 3 4

12 12

3 3
max{ , }

W W W W

h h

 
                             (24) 

where 

2 21 1

3

2

( ) ( )

*( ( )) ( ( ))

T
R Rx t h x t h

W
Rx t d t x t d t

     
     

     
   

2 2

4

2 2 2

( ( )) ( ( ))

( ) * ( )

T
x t d t R R x t d t

W
x t h R x t h

       
      

      
 

It can be shown from (11),(19)-(24) and Lemma 1 that 
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1 2 3 4( ) ( ) ( ) ( ) ( )t t t t tV x V x V x V x V x     ,

1

( ( )) ( ) ( )
q

T

i i j

i

z t t t  


 0 ， 1,2,3,4.j                  (25) 

where ( )T t =
1 2[ ( ) ( ) ( ) ( ( ) ( ( )) ( ( ( )))]x t x t h x t h x t d t f x t f x t d t     

Hence, system (9) is asymptotically stable. This completes the proof. When there is no fuzzy and no 

uncertainties in (9), the system is reduced to 

( ) ( ) ( ( )) ( ( ( )))x t Ax t Bf x t Cf x t d t                                                      (26) 

Corollary 1 For given scalars 
1 20 h h   and 12 2 1h h h  , system (26) is asymptotically stable if there 

exist matrices 0P  , 0( 1,2,3)iQ i  , 1 0R  , 2 0R   with appropriate dimensions such that the following 

LMIs hold: 

00 0 12 13

1

2

* 0 0, 1, 2,3,4.

* *

j

j R j

R

    
 

    
 
  

                                                 (27) 

where 

00

1

2

00

3

0 0 0

* 0 0 0 0

* * 0 0 0

* * * (1 ) 0 0

* * * * 0 0

* * * * * 0

PB PC

Q

Q

Q

 
 


 
 

   
  

 
 
 

, 00 1 2 3

TA P PA Q Q Q       , and 0 j  are 

defined as in Theorem 1. 

3.2. Time-varying delay systems with uncertainties 
Now, we shall discuss the feasible robust stability criteria for time-varying delay systems with uncertainty. 

Theorem 2.  For given scalars 2 1 0h h   ( 12 2 1h h h  ) and 0  , the system(9) is robust stability if 

there exist matrices 0,P  0( 1,2,3),iQ i  1 0,R  2 0R  and J  of appropriate dimensions and scalar 

0   such that the following LMIs hold: 

,

* 0,

* *

T

i j i i

T

M N

I J

I



 



 
 

  
  

1,2, , ,i q        1,2,3,4j                                      (28) 

where ,i j  is defined in (11), and 

T

1 1 12 20 0 0 0 0 
 

T T T T

i i i iM PH h H R h H R ,           

1 2 30 0 0 0 0   
T T T

i i i iN E E E  

Proof. Assume that inequalities (28) hold, from Lemma 1 and Lemma 4, 

, ( ) [ ( ) ] 0T

i j i i i i i iM F t N M F t N            ( 1,2, , ;i q 1,2,3,4)j   

hold.  From (26), it can be verified that  

 ,

1

( ( )) ( ) ( ) [ ( ) ] ( ) 0.
q

T T T

i i j i i i i i i

i

z t t M t N M t N t  


       

Hence, system (9) is robust stability from theorem 2. When there is no fuzzy in (9), the system is reduced 

to 

( ) ( ) ( ) ( ) ( ( ))x t A A x t B B f x t     ( ) ( ( ( )))C C f x t d t                                      (29) 

Corollary 2 For given scalars 
1 20 h h   and 12 2 1h h h  , system (29) is asymptotically stable if there 

exist matrices 0P  , 0( 1,2,3)iQ i  , 1 0R  , 2 0R   and J  with appropriate dimensions and scalar 
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0   such that the following LMIs hold: 

* 0,

* *

T

j

T

M N

I J

I



 



 
 

  
  

1,2,3,4j  ,                                                         (30) 

where j  is defined in (27), and 

 
T

1 1 12 20 0 0 0 0 
 

T T T TM PH h H R h H R ,          

  1 2 30 0 0 0 0   
T T TN E E E  

Remark 1:  when 0J  , it will reduced to the system in [30]. 

4. Numerical Examples  

In this section, three numerical examples are given to illustrate the effectiveness of the proposed methods. 

Example 1 In this example, we consider the DNNs (9) with 

1

3 0

0 2
A

 
  
 

, 
1

0.4 0.3

0.4 0.6
B

 
  

 
, 

1

0.5 0.1

0.2 0.5
C

 
  

  
2

2 0

0 3
A

 
  
 

,
2

0.9 0.4

0.5 0.7
B

 
  

 
,

2

0.7 0.6

0.3 0.1
C

 
  

  
 

2  , 0i i iA B C      , 1,2,i   

The time-varying delays are taken as ( )d t  20.1 sin t  and the activation function is described by 

( )f x   

x x

x x

e e

e e








 , the membership function is

2

1 1( ( )) sinz t x  ,
2

2 1( ( )) cosz t x  , using MATLAB LMI 

Toolbox to solve the LMIs in theorem 1, some positive definite feasible matrices are given as follows 

0.3777 -0.1747

-0.1747 1.2997
P

 
  
 

,
1

0.3915 -0.2512

-0.2512 0.9871
Q

 
  
 

, 

2

0.3077 -0.2371

-0.2371 1.0812
Q

 
  
 

,
3

0.0263 -0.0238

-0.0238 0.1124
Q

 
  
 

 

1

0.5338 -0.2606

-0.2606 0.5518
R

 
  
 

,
2

0.1196 -0.0438

-0.0438 0.4276
R

 
  
 

 

and the state trajectories of the systems with different initial conditions are showed as follows (Figs. 1-3) 

Figs.1-3 show that the state trajectories of the systems are converging to zero with different initial state, 

that is to say, system (9) is asymptotically stable when theorem 1 holds. 

Example 2  In this example, we consider the DNNs (27) and  corollary 1 with 

2 0
,

0 2
A

 
  
 

0.7 0.8
,

0.5 0.3
B

 
  

 

0.2 0.2

0.1 0.2
C

 
  

 
, 2  . 

The activation function is described by ( )
x x

x x

e e
f x

e e









, the maximum allowable upper bound of 2h  

with given 1h  is showed in Table 1. 

Table 1: Maximum allowable upper bound of 2h  with given 1h  

1h  0.0001 0.001 0.01 0.05 0.1 

Muralisankar et al. [15] <16.17 <16.17 <16.17 <16.17 16.1614 

Wu et al.[20] <11.08 <11.08 <11.08 <11.08 11.0727 

Corollary 1 16.4021 15.8384 14.1293 11.3221 9.4548 
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Fig. 1: The state trajectories with  (0) 2 2
T

x      Fig. 2: The state trajectories with  (0) 2 4
T

x    

 

Fig. 3: The state trajectories with  (0) 2 4
T

x    

According to the Table 1, this example shows that our results are better than those results discussed in 

[15,20] when 1h  is small enough, although free-weighting matrix approach is adopted in [15,20]. 

Example 3 In this example, we consider the DNNs (11) and Theorem 2 with 

1 2

2 0 3 0
, ,

0 3 0 2
A A

   
    
   

1

0.7 0.8
,

0.5 0.3
B

 
  

 
2

0.9 0.4
,

0.5 0.7
B

 
  

 
1

0.2 0.2

0.1 0.2
C

 
  

 
，

2

0.3 0.6

0.2 0.4
C

 
  

 
,

sin 0
( )

0 cos
i

t
F t

t

 
  
 

, ,iH I
1 2 3

0.02 0
,

0 0.02
i i iE E E

 
    

 
1,2.i  2  . 

The activation function is described by ( )
x x

x x

e e
f x

e e









, the membership function is

2

1 1( ( )) sinz t x  , 

2

2 1( ( )) cosz t x  , and we choose the parameter J with different values, the maximum allowable upper bound 

of 2h  with given 1h  is showed in Table 2. 

Table 2: Maximum allowable upper bound of 2h  with given 1h  

1h  0.005 0.01 0.05 0.1 0.15 0.2 

J  

0  0.2550 0.1662 0.1377 0.1291 0.1502 - 

0.1I  0.1624 0.1667 0.1475 0.1389 0.1548 - 

0.5I  0.0342 0.0392 0.0505 - - - 

 

The time-varying delays are taken as ( )d t  0.01+ 
20.15sin t and 0.1 ,J I using MATLAB LMI 

Toolbox to solve the LMIs in Theorem 2, some positive definite feasible matrices are given as follows: 

0.0356 0.0365

0.0365 0.0376
P

 
  
 

, 1

0.0123 0.0118

0.0118 0.0433
Q

 
  
 

, 2

0.0123 0.0118

0.0118 0.0433
Q

 
  
 

, 3

0.0007 0.0011

0.0011 0.0036
Q

 
  
 

, 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22447 | Generated on 2025-04-05 21:50:22



Qifeng Xun et al.：Stability Analysis of Fuzzy Hopfield Neural Networks with Time-varying Delays 

 

 

JIC email for contribution: editor@jic.org.uk 

220 

1

0.0598 0.0061

0.0061 0.0737
R

 
  
 

,
2

2.0506 0.0543

0.0543 2.2905
R

 
  
 

, 

and the state trajectories of the systems with different initial conditions are showed as follows(Figs. 4-6) 

                                

Fig. 4 The state trajectories with  (0) 2 4
T

x             Fig. 5 The state trajectories with  (0) 2 2
T

x    

 

Fig. 6 The state trajectories with  (0) 2 4
T

x    

Table 2 shows the maximum allowable upper bound of time-delay with given the allowable lower bound. 

From Figs.4-6, it can be seen that the state trajectories of the systems are converging to zero with different initial 

state, that is to say, system (9) is robust stable when Theorem 2 holds. 

Example 4 In this example, we consider the DNNs (30) and corollary 2 with 

2 0
,

0 2
A

 
  
 

0.7 0.8
,

0.5 0.3
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, 1 2 3
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E E E

 
    

 

sin 0
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0 cos

t
F t

t

 
  
 

, 

,H I  2  , 

the activation function is described by ( )
x x

x x

e e
f x

e e









, and we choose the parameter J with different values, 

the maximum allowable upper bound of 2h  with given 1h  is showed in Table 3. 

Tab. 3: Maximum allowable upper bound of 2h  with given 1h  

1h  0.005 0.01 0.05 0.1 0.2 0.3 

J  

0  0.3175 0.3224 0.2255 0.2168 0.2194 - 

0.1I  0.1543 0.1593 0.1553 0.1350 - - 

0.5I  0.0401 0.0412 0.0504 - - - 

The time-varying delays are taken as ( )d t  0.05  
20.1sin t and 0.1 ,J I  using MATLAB LMI 

Toolbox to solve the LMIs in corollary 2, some positive definite feasible matrices are given as follows: 

0.0322 0.0012

0.0012 0.0383
P

 
  
 

, 1

0.0463 0.0025

0.0025 0.0542
Q

 
  
 

,
2

0.0463 0.0025

0.0025 0.0542
Q

 
  
 

, 3

0.0050 0.0002

0.0002 0.0057
Q

 
  
 

, 
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1

0.0629 0.0046

0.0046 0.0781
R

 
  
 

, 2

0.4790 0.0335

0.0335 0.4719
R

 
  
 

, 

and the state trajectories of the systems with different initial conditions are showed as follows(Figs. 7-9) 

                              

Fig. 7 The state trajectories with  (0) 2 4
T

x                  Fig. 8 The state trajectories with  (0) 2 2
T

x    

 

Fig. 9 The state trajectories with  (0) 2 4
T

x    

Table 3 shows the maximum allowable upper bound of time-delay with given the allowable lower bound. 

From Figs.7-9, it can be seen that the state trajectories of the systems are converging to zero with different 

initial state, that is to say, system (30) is robust stable when corollary 2 holds. 

5. Conclusions 

We present improved criteria of robust stability for HNNs with time-varying delay and uncertainties in 

this paper. The obtained stability conditions are expressed with LMIs. By comparing the experimental results 

from numerical examples, it is demonstrated the improvement of our proposed criteria over some existing ones. 
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