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Abstract. In this paper, based on the classic BA scale-free network model, we proposed a new evolution 

model that gives a more realistic description of the people’s behavior on social networks. In the process of 

growth, there are local preferential attachment mechanisms and random attachment or removal between the 

old and new edges. We proved that the extended model follows the power-law distribution and the power 

exponent is between 2 and 3, which provides a theoretical support for analyzing the similar social network. 

Compared with the classic BA model, the extended model has a smaller average path length and a larger 

clustering coefficient, which is more consistent with the real social network. 
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1. Introduction  

As an important tool to study the complexity problem, complex networks have aroused research 

upsurge in recent years. A amount of complex networks exist in the real world, such as aeronautical 

networks, biological networks, social networks and so on. It is found that more and more real networks 

follow the power-law distribution, called scale-free network [1]. The BA scale- free model [2] focuses on 

characterizing the power-law distribution of actual networks. In order to be more in line with the logic of real 

network evolution, it is of great theoretical significance and application value to extend the basic BA scale-

free network model. Albert and Barabasi [3] proposed an extended model (EBA model) of network evolution 

that has more practical significance in the study of local processes. Bianconi and Barabasi [4] assigned a 

fitness parameter to each node and defined the fitness model. The fitness model have such characteristics of 

‘first- mover-wins, fit-gets-richer and winner-takes-all’. 

There are some other extension models. Watts and Strogatz [5] explored a small-world model, which 

has short-path, high clustering features and satisfies the characteristics of the small world networks [6-7] that 

mimic the evolution of a social network process. Barabasi and Albert [8-9] studied the World Wide Web 

(WWW) and proposed a BA scale-free model based on growth and prioritization. Li, Jin and Chen [10] 

studied complexity and synchronization of the World Trade Web (WTW), and investigated some scale-free 

features of the WTW. In [11] , based on the new concept of  local-world connectivity, Li and Chen proposed 

a local-world evolving network model. In the last few years, Wang, Xu and Pang studied the internal 

structure of online social networks and combined the inside growth, outside growth, and edge replacement 

base on those of complex networks, then proposed an evolution model in [12].  

The model we proposed here is grounded on a modification of the model presented by Barabasi (BA 

model) [2]. The mathematical definition of BA model: 

 Growth: start with a network of 
0n nodes. A new node is added at each timestep with m  

0( )n
 

edges that connect the new node to m  existing nodes. 

 Preferential attachment: the probability 
i of the new node connect the existing node i  depends on 

the degree 
ik
 
of node i  as 

                               (1) 

 

where n  is total number of nodes. 
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2. Model description 

Base on BA scale-free network, our algorithm is defined as follows:  

 

Initialization. Start with a network of 
0n nodes. Initial 

1 2 1 2 3 4, , , , , .n n m m m m  

Step 1. Growth: 
1n  nodes are added to the network and each new node connected to 

1m existing nodes by 

preferential attachment probability 
i
 
(as defined in (1)). 

Step 2. Preferential attachment: 
2n  new nodes are added simultaneously. And each new node connected to

 
a 

random existing node, denoted by .j Add 
2 1m  edges between the new node and the neighbor nodes 

of node .j  The edges are selected with probability: 

 '

( )

, ( ),i
i

s

s N j

k
i N j

k


  


         (2) 

where ( )N j  is the set of neighbor nodes of  node j . 

Step 3. Aggregation: break 3m edges randomly, then add 
4m 4 3( )m m edges that selected with equal 

possible probability.  

Output. Repeat step 1 to 3 t  times. The network has  
0 1 2( ) ( )N t n n n t  

  
nodes and 

 
1 1 2 2 4 3( ) ( )M t n m n m m m t     edges. 

 

In the above algorithm, as a widespread social network, Step 2 shows that a node recommended by a 

friend to the network is not only a friend of the recommender, but also a friend of his friend. This is in line 

with our natural situation. Another point is the preferential attachment in this step is only for the range of 

friends around the recommender, it is the local world of the node. The purpose of Step 3  is to make the 

network aggregate and satisfy the characteristics of the small world networks. 

3. Main result 

In this section, we prove that the extended network model follows the power-law distribution which is 

the property of scale-free networks. And we obtain some statistical properties of the extended model. 

We present some numerical results to performance of the extended model that is better than BA model. 

Degree distribution 

Let ( )ik t denote the degree of node i  at time step t . Node i  is added to the network at timestep 
it , we 

suppose that 

 
                                                               

(3) 

where 
0c  is a constant. The rate at which the node i  acquires new edges is given by our algorithm: 

1 1 2 2 2 4 3

( ) 1 1 1 1
( 1)(1 ) ( ) ,

( ) ( ) ( )

i
i

nn

dk t
n m n n m m m

dt N t N t k N t
       

 
        (4) 

 

where 
nnk  denotes the residual average degree of node i  (that is the average degree of the 

neighbors of node i ) [13]. According to [14], we suppose that ( )nn ik k t b    and b  is a small constant.  

The network has 
1 1 2 2 4 3( ) ( )M t n m n m m m t     edges after t  time steps. Then we have 

0( ) ,i ik t c
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1 1 2 4 3 2 2

2 4 3 0 1 2

0 1 2 0 1 2

( ) ( ) ( 1)( ( ) 1) 1

2 ( ) ( ) ( ) ( )

( ) ([ ( ) ] 1)
,

( ) [ ( ) ]( ( ) )

i i

i

i

i

dk t n m k t n m m n m N t

dt M t N t N t k t b

Ak t n m m C n n n t

t n n n t n n n t k t b

   
   



    
  

    

              (5) 

where  

                                                           (6) 

 

Let  ,t   it follows from (3) and(5) that  

                                                                                                                                                                    

 

(7) 

                                                        
 

We  solve (7) by using Euler method. The form of solution is as following, 

 

                                                                  (8) 

 

where 1,A    and  
1 2,c c  are two constants. When 

2 2 3 4 0,n m m m     we can get 0.5A   , 
1 1c m ,  

and 
2 0c  . 

Then we obtain the probability distribution function 

 

 

 

                                       (9) 

 

 

 

 

Since the evolution of the network nodes are added at equal intervals, the probability density of it  
is 

 

                                                                    (10) 

 

Substituting (10) into (9), we get 

1

2

0 1
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                        (11) 

So, the distribution of node degree is 

1
1

2

0 1
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Let t  , we obtain the node degree distribution when the network is stable, 
1

1
2

1

1
( ) lim ( , ) ( ) .

t
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p k p k t

c




 




                        (13) 
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By calculation we can see that the degree of each node increases following a power-law. Note that 

1,A  then the power exponent 

1
1 2.


  

                                                                     
(14)

                                                       
 

Set 
2 2 3 4 0,n m m m     we can note that the network is BA scale-free network and compute the power 

exponent 3BA  . 

Initial 
0 1 1 2 2 3 43, 5, 3, 8, 5, 5, 10.n n m n m m m       We can obtain  several networks  under 

different network scales by using R software. In Fig 1(a), We can know that the networks follow the power-

law distribution and appear fat-tail phenomenon. As it can be seen in Fig 1(b), We adjusted the parameters of 

our model and obtain degree distribution under network scale 1498.N  We have calculated the power 

exponents by using regression fitting respectively (they are shown in Table 1). 

   
 Fig 1: Power-law distribution in double logarithmic coordinate system 

 

Table 1: Power exponent under different parameter values. 

case 0n  
1n  

1m  
2n  

2m  
3m  

4m    

1 3 5 3 0 0 0 0 2.8350 

2 3 5 3 8 5 5 10 2.7553 

3 3 8 3 5 3 7 10 2.3959 

 

3.1. Average path length 
The definition of  average path length (APL)  is the average of the distance between any two nodes, 

denoted by .L  i.e. 

1
,

( 1) / 2
ij

i j

L d
N N 




                                                            (15) 

where N  is the number of network nodes, and ijd
 
is the distance between node i  and node .j  
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It can be seen from Fig 2 that the average path length of the extended model is obviously smaller than 

that the classical BA model, which shows the characteristics of the small world networks. 

   Fig 2: The APL of two models under different network scale. 

3.2. Clustering coefficient 
The clustering coefficient quantifies the characteristics of small groups in networks. In the network 

( , ),G V E  where V  is the set of nodes and E  is the set of edges. We suppose that the degree of node i  is 

.ik  The actual number of edges between these 
ik  nodes is .ie  And the largest possible number of edges is 

( 1) / 2.i ik k  Then the clustering coefficient of node i : 

2 / ( ( 1)).i i i iC e k k                                                        (16) 

The clustering coefficient of the network is defined as the average of the clustering coefficients of all 

the nodes, i.e. 

1
.i

i V

C C
V 

                                                               (17) 

It can be seen from Fig 3 that the clustering coefficient of the extended model is significantly larger 

than the classical BA, which is due to the extended model to join the idea of local preferential attachment, 

making the network more ‘small groups’. Our model has a lager clustering coefficient, which is more in line 

with the real network. 

 

                Fig 3: The clustering coefficient of two models under different network scale. 
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4. Conclusion 

Base on BA scale-free network model, we consider the formation process of social network and propose 

a scale-free network evolution model. In the extended model, local preferential attachment mechanisms and 

random attachment or removal between the old and new edges are taken into account. When some of the 

initial parameters in the model are set as 0, the extended model is the classical BA model, so BA scale-free 

network model is a special case of the extended network model. In addition, we obtain some statistical 

properties of the extended model. And we use R software to simulate the model, the results prove the 

correctness of theoretical analysis. Compared with the classical BA model, the scale-free network based on 

the growth of social networks has characteristics of small average path length and large clustering coefficient, 

which is more in line with the realistic network. 

 

5. Reference 

 A. L. Barabasi, Scale-Free Networks: A Decade and Beyond, Science, 325: 412-413  (2009). 

 A. L.Barabasi, The Barabasi-Albert Model, Network Science (2014). 

 R. Albert, A. L. Barabasi, Topology of evolving networks: Local events and universality, Phys. Rev. E, 85(24):  

 G. Bianconi,  A. L. Barabasi, Bose-Einstein condensation in complex networks, Phys. Rev. Lett, 86(24): 5632-

5635 (2001) 

 D. J. Watts, S.H. Strogatz, Collective Dynamics of ‘Small-World’ Network. Nature, 393(6684): 440-442 (1998). 

 M. Kochen, The Small World, Norwood, N.J (1989). 

 S. Milgram, The Small World Problem, Psychol, Today 2, 60-67 (1967). 

 A. L. Barabasi, R. Albert, H. Jeong, Diameter of the World Wide Web, Nature, 401(6749): 130-131 (1999). 

 A. L. Barabasi, R. Albert, Emergence of scaling in random network, Science, 286(5439): 509-512 (1999). 

 X. Li, Y.Y. Jin, G. Chen, Complexity and Synchronization of the World Trade Web, Physica A, 328: 287-296 

(2003). 

 X. Li, G. Chen, A local world evolving network model, Physica A, 328: 274-286 (2003). 

 J. L. Wang, L. B. Xu, Y.C. Pang, Evolution Model of  Online Social Networks Based on Complex Networks. 

Journal of Intelligent Systems,10(06): 949-953 (2015). 

 X. F. Wang, X. LI, G. R. Chen, Introduction to network science, Higher Education Press (2012). 

 S. Feld, Why your friends have more friends than you do, Amer. J. of Sociology, 96(6): 1464-1477 (1991). 

 

 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22454 | Generated on 2025-04-09 08:25:40


