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Abstract. Krill herd optimization is a novel bionic swarm intelligence optimization method, but currently it 

is mostly used only in the field of engineering optimization. Since node’s energy is limited and establishing 

effective routing is difficult in wireless sensor networks, in this paper, we try to apply krill herd optimization 

in anycast routing algorithm for wireless sensor networks. The krill are moved to the high fitness area 

(anycast paths with better energy consumption condition) through induced motion, foraging movement and 

random diffusion behaviors. Moreover, crossover and mutation operators in genetic reproduction 

mechanisms are adopted for improving the ability of accelerating optimization speed and breaking away from 

the local optimum. In comparison with ant colony optimization, simulation experiments results show that the 

performances of the proposed algorithm are better in terms of convergence speed, optimization results and 

scalability. 
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1. Introduction  

In wireless sensor networks (WSN), node’ energy is limited and hard to supply, moreover, 

communication and computing ability of sensor nodes is very weak. So, table-driven routing protocols such 

as OSPF (Open Shortest Path traditional table First), are not suitable for WSN. And, on-demand routing 

protocols such as unlimited flooding, have the disadvantage of huge cost for routing query. Therefore, the 

focus for WSN is to design an efficient routing algorithm with less energy consumption.  

Recently, a bio-inspired swarm intelligence optimization algorithm called Krill Herd Optimization (KH) 

was for the first time proposed by Gandomi and Alavi in [1]. This algorithm is based on the simulation of the 

herding of the krill swarms in response to specific biological and environmental processes. The minimum 

distances of each krill individual from food and from highest density of the herd are considered as the 

objective function for the krill movement. The aggregation process of krill is the process of finding the 

optimal solution. 

After the introduction of KH, it received a great deal of attention from some scholars. Wang and 

Gandomi[2] added the crossover and mutation factors of genetic mechanism to KH; for further improving 

KH’ performance, Wang and Gandomi[3] introduced a new krill migration (KM) operator when the krill 

updating to deal with optimization problems more efficiently and applied the improved algorithm for solving 

complex optimization tasks; Bulatovic[4] improved the fitness function, food position and crossover factor in 

KH, and applied the improved algorithm to the optimization design of four-bar linkage; for traditional KH 

has a deficiency which cannot achieve the excellent balance between exploration and exploitation in 

optimization processing, Li[5] proposed an improved KH with linear decreasing step; Sultana[6] applied KH 

to optimal capacitor allocation problem in reconfigured distribution network in order to minimize real power 

loss of radial distribution systems, the author integrated the opposition based learning (OBL) concept with 

KH for improving the convergence speed and simulation results; Deng[7] proposed a mobile service sharing 

community composition approach by utilizing the KH; Rostami [8] proposed an improved KH to moderate 

the charging effect of PHEVs. For practical economic load dispatch problem has non-smooth cost function 

with nonlinear constraints which make it difficult to be effectively solved, Mandal [9] proposed a new and 

efficient KH to solve both convex and non-convex economic load dispatch problems.   
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KH is a novel bio-inspired swarm intelligence optimization algorithm, and the current research results 

are mainly focus on engineering optimization field. This paper attempts to apply KH to WSN anycast routing 

field. 

2. Problem Description 

For saving node’s energy and balancing energy consumption, multiple base stations are often deployed 

in WSN. In this way, sensor nodes can broadcast their monitoring data information to any one or more base 

station (anycast) according to base stations’ circumstances. Therefor, how to find the optimal path between 

the source node and the base station with the best energy consumption efficiency has become a key problem 

of WSN anycast routing algorithm.  
Some scholars have applied genetic algorithm [10], ant colony algorithm [11], and other intelligent 

swarm algorithm to solve WSN routing problem. This paper attempts to apply the novel KH to solve the 

problem.  
In this paper, we model a WSN as an undirected connected graph 𝐆(𝐕, 𝐄) where wireless nodes are 

represented by V and located in a two-dimensional space. Any directed link between nodes is belongs to set 

E. And, in this paper, we also let A be the anycast address; 𝐺(𝐀) be the set of anycast communication group 

members (i.e. base station sets) sharing the same anycast address A; Ai be the i-th member of 𝐺(𝐀); N be the 

number of nodes; M be the number of 𝐺(𝐀) members.  
Different from traditional wired networks, in WSN, one of the most vital policy for routing algorithm is 

to find the anycast path with the least energy consumption and save the cost for routing queries as possible.  
Suppose there are k paths between the source node s and base station Ai, the energy consumption of the 

path with the least energy consumption is 

                                     𝐸𝑖 = min (𝐸𝑖1, 𝐸𝑖2, ⋯ , 𝐸𝑖𝑘)                                                         (1) 

Where, 𝐸𝑖𝑗 is the total nodes’ energy consumption for receiving and transmitting monitoring data packets of 

all nodes which are belong to path 𝑝𝑖𝑗, and the path 𝑝𝑖𝑗 = 𝑝𝑗(𝑠, 𝐴𝑖), that is the j-th path between the source 

node s and the base station Ai. Thus, we have 

                                                           𝐸𝑖𝑗 = ∑ (𝐸𝑠(𝑡) + 𝐸𝑟(𝑡))𝑡∈𝑝𝑗(𝑠,𝐴𝑖 )                                                   (2) 

Where, 𝐸𝑠 is the energy consumption of node t for transmitting data packets; 𝐸𝑟 is the energy consumption of 

node t for receiving data packets. 

                                                                      𝐸𝑠 = 𝐸𝑎𝑚𝑝 × 𝑑𝑛 × 𝑘 + 𝐸𝑒𝑙𝑒𝑐 × 𝑘                                                     (3) 

                                                             𝐸𝑟 = 𝐸𝑒𝑙𝑒𝑐 × 𝑘                                                                               (4) 

Where, n represents attenuation index; d represents the physical distance between the sender and the receiver. 

When sending packets, the sender needs to amplify the signal for transmitting, and we represent the amplifier 

power parameter 𝐸𝑎𝑚𝑝; in addition to the amplifier, the transmission must also be guaranteed to supply 

power to other circuits, and we let 𝐸𝑒𝑙𝑒𝑐 represent this power. 

Therefore, the minimum energy consumption E of anycast paths (the source node s to any base station) 

is as follows: 

 𝐸 = min (𝐸1, 𝐸2, ⋯ , 𝐸𝑀) (5) 

Finding anycast routes with QoS constraint in multi-base-station multi-path WSN is a NP-complete 

problem [12]. That is, we cannot give a finite polynomial solution. So, in this paper, we attempt to use KH to 

optimize the WSN anycast QoS routing problem.  

3. Problem Description 

We number each node in WSN with 1 to N (the sending node is marked number 1), then create a two-

dimensional adjacency 0-1 matrix W (in W, the element of matrix is either 1 or 0) to represent an anycast 

path of WSN. While the matrix element (𝑖, 𝑗) is 1, that means, in the anycast path there exists the link (𝑖, 𝑗); 

otherwise (𝑖, 𝑗) is 0, there dose not exists the link (𝑖, 𝑗) 

For instance, there are sensor nodes 𝑛1, 𝑛2, 𝑛3, base station 𝐴4, 𝐴5 in WSN connected graph 𝐆. With 

regards to the anycast path 𝑛1 → 𝑛3 → 𝑛2 → 𝐴5, we have matrix W as follows 
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                                                                     𝐖 =

[
 
 
 
 
0, 0, 1, 0, 0
0, 0, 0, 0, 1
0, 1, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 0, 0]

 
 
 
 

                                        (6) 

Starting from the first row of the matrix W, we find 𝑥13 = 1, that means the anycast path there exists 

the link 𝑛1 → 𝑛3; in the 3rd row, 𝑥32 = 1, there exists the link 𝑛3 → 𝑛2; and so on. 

In the KH optimization process, we firstly apply graph depth-first search algorithm to generate 𝑁𝑝 krill 

individuals as the initial population. Each krill individual has its own location (i.e. anycast path). As 

introduced above, the position of the i-th krill individuals can be represented by a two-dimensional matrix of 

𝑁 × 𝑁. So, it also can be considered as a N dimension vector 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑁). 

In krill populations, the movement of each krill individual is affected by its adjacent krill individuals, 

the krill individual with the current best position, krill populations, and krill repulsive swarm density. So, we 

have 

                                                                                   
d𝑋𝑖

d𝑡
= 𝑁𝑖 + 𝐹𝑖 + 𝐷𝑖                                                                  (7) 

where, 𝑋𝑖 is the position vector of the i-th krill individual; 𝑁𝑖  is the motion induced by other krill individuals; 

𝐹𝑖 is the foraging motion, and 𝐷𝑖 is the physical diffusion of the i-th krill individuals. 

Next, we discuss krill individual movement below: 

3.1. Motion induced by other krill individuals 

 Krill can luminesce, and luminescence comes from the food the krill get. So, the more food the krill 

gets, the more luminescence it will create, and the more krill it will induced closely. The behavior is called 

phototaxis swarming motion, and the motion keeps krill swarm in highest density.   

In addition to the attractive effect, the swarm density of krill also has some repulsion effects on krill 

individuals. For a krill individual, this movement can be defined as: 

                                                                      𝑉𝑖
𝑛𝑒𝑤 = 𝛼𝑖𝑉

𝑚𝑎𝑥 + 𝜔𝑛𝑉𝑖
𝑜𝑙𝑑                                                 (8) 

where,  𝑉𝑚𝑎𝑥  is the maximum induced speed, 𝜔𝑛 is an inertia weight in the range [0, 1], 𝑉𝑖
𝑜𝑙𝑑  is the last 

change of position of the i-th krill individual. 𝛼𝑖 is the moving direction vector of the i-th krill individual, and 

it is affected by both adjacent krill individuals and the current best krill individual. Thus, we have 

                                                                        𝛼𝑖 = 𝛼𝑖
𝑙𝑜𝑐𝑎𝑙 + 𝛼𝑖

𝑏𝑒𝑠𝑡                                                            (9) 

where, 𝛼𝑖
𝑙𝑜𝑐𝑎𝑙  is the local effect provided by the neighbors and 𝛼𝑖

𝑏𝑒𝑠𝑡 is the target direction effect provided by 

the current best krill individual. According to theoretical arguments, the krill individuals try to maintain a 

high density and move due to their mutual effects. The direction of motion induced, 𝛼𝑖, is estimated from the 

local swarm density (local effect), a target swarm density (target effect), and a repulsive swarm density 

(repulsive effect). 

In KH algorithm, krill within specified radius are considered as neighboring individuals. The individual 

radius 𝑑𝑠,𝑖 of the i-th krill individual is defined as follows: 

                                                                      𝑑𝑠,𝑖 =
1

5𝑁𝑐
∑ ‖𝑋𝑖 − 𝑋𝑗‖

𝑁
𝑗=1                                                (10) 

where, 𝑑𝑠,𝑖 is the sensing distance for the i-th krill individual; 𝑁𝑐 is the total number of the krill individuals; 

𝑋𝑖 and 𝑋𝑗  are the position of the i-th and j-th krill individual, respectively. 

3.2. Foraging motion 

The foraging motion is affected by two main parameters. The first one is the current food location, and 

the second one is the the food location of the last iteration. This foraging motion of the i-th krill individual 

can be expressed as follows:  

                                                               𝐹𝑖 = 𝜔𝑥𝐹𝑖
𝑜𝑙𝑑 + 𝑉𝑓𝛽𝑖                                                            (11) 

where, 𝐹𝑖 is the position change resulted from foraging; 𝜔𝑥 is the inertia weight of the last foraging motion 

and it is in the range [0,1]; 𝑉𝑓  is the foraging speed. 𝛽𝑖  is the foraging direction vector of the i-th krill 

individual, and it is expressed as 𝛽𝑖 = 𝛽𝑖
𝑓

+ 𝛽𝑖
𝑏𝑒𝑠𝑡 . Where, 𝛽𝑖

𝑓
 is the food attractive and 𝛽𝑖

𝑏𝑒𝑠𝑡  is the best 

fitness of the i-th krill individual has experienced so far. 

3.3. Physical diffusion 
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In addition to swarm movements and foraging behavior, every krill individual also has itself random 

motion. This motion can be express in terms of a maximum diffusion speed and a random directional vector. 

It can be defined as follows: 

                                                                              𝐷𝑖 = 𝐷𝑚𝑎𝑥𝛿                                                                     (12) 

where, 𝐷𝑚𝑎𝑥 is the maximum diffusion speed of krill individual, and 𝛿 is a random directional vector. 

3.4. Position updating 

After the above 3 processes, during the interval[𝑡, 𝑡 + ∆𝑡], the position of the i-th krill individual is 

updated as follow 

                                                        𝑍𝑖(𝑡 + ∆𝑡) = 𝑍𝑖(𝑡) +
𝑑𝑍𝑖

𝑑𝑡
∆𝑡                                                 (13) 

3.5. Natural selection 

The krill individual with poor fitness and less food will be prey. This eliminating process keep each 

generation of krill in a good search space. In our optimization process, the path with energy consumption 

exceeds the prescribed threshold will be discarded through this optimization step.  

For further improving performance, genetic reproduction mechanisms are incorporated into the 

algorithm. The introduced adaptive genetic reproduction mechanisms are crossover and mutation. This 

improvement can maintain the population diversity, improve the ability of accelerating optimization speed 

and breaking away from the local optimum. 

 Crossover 

The cross operation process is as follows: according to crossover rate α, we randomly select two krill 

individuals(two anycast paths) from the krill population, and find all the conjunct nodes in the two krill 

individuals(two anycast paths); choose one conjunct node as the intersection point at random, create a new 

krill individuals by exchanging the sub-paths behind the intersection of the two anycast paths; If a loop 

occurs in the new krill individual, we need to do loop eliminating operation. 

 Mutation 

The mutation plays an important role in evolutionary algorithms for keeping the diversity of krill 

populations and avoiding falling into local optima. The mutation operation process is as follows: according 

to mutation rate β, we randomly select a krill individual (anycast path) in the krill population, then select a 

sub-path randomly such as 𝑖 → 𝑗 from the krill individual (anycast path), generate a new sub-path 𝑖 → 𝑗 
instead of the original sub-path by depth first search algorithm. If a loop occurs in the new krill individual, 

we need to do a loop eliminating operation. 

It can be seen that, the krill individual movement is influenced by many factors, such as the density of 

neighbors, the current best krill individual, food location and the krill individual itself location. Moreover, 

genetic reproduction mechanisms are incorporated into the algorithm. Thus, the proposed algorithm has a 

powerful global optimization ability and fast convergence speed. 

the proposed algorithm can be introduced by the following steps: 

Algorithm 1 Krill herd optimization 

Begin 

Initialization: Network diagram 𝑮 = (𝑽, 𝑬); maximum iteration times 𝐼𝑚𝑎𝑥; initial population size 𝑁𝑝; 

the energy consumption of sending and receiving k bit data is 𝐸𝑠 and 𝐸𝑟, respectively; the 

threshold T 

Step1：Create 𝑁𝑝 path {𝑝1, 𝑝2, ⋯ , 𝑝𝑁𝑝
} as the initial population by graph depth first search algorithm 

Step2：Evaluate the fitness of krill individual, and select the current best krill individual position 𝑋𝑏𝑒𝑠𝑡   

Step3：Perform the induced movement according to the neighborhood density, food location and 

current best krill individual position (formula 8) 

Step4：Perform foraging motion and random motion, then calculate the position changes (formula 11, 

12) 

Step5：If a krill individual fitness value < threshold T, perform predatory operations 
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Step6：Perform crossover and mutation operations according to probability α and β, respectively 

Step7：If a new krill individual (new anycast path) has a routing loop, eliminate the routing loop 

Step8：Calculate the fitness values of newly generated krill individuals; update the krill individual 

position in the search space; calculate the new fitness value (formula 13) 

Step9： If 𝐼 < 𝐼𝑚𝑎𝑥   𝐼 = 𝐼 + 1; goto Step 2 

End 

4. Simulation experiment and analysis 

We use ant colony optimization (ACO) [12] as a comparison algorithm to experimentally evaluate our 

KH algorithm. Randomly generate N=150 nodes, and these nodes randomly distributed in the 150m × 150m 

rectangular area. Base stations randomly arranged and its number M=4; the maximum transmission radius of 

a sensor node is set to be 30m; every node can adjust its transmit power for communication according to its 

actual demand, but its maximum transmission radius is set to be 30m; every monitoring data size is 2kB, the 

data packet size is 512B; crossover rate α=0.6; mutation rate β=0.08; create the initial population by graph 

depth first traversal algorithm; population size 𝑁𝑝=20. 

For a routing algorithm, the ability to build an efficient route is the first issue to be considered. In this 

paper, the performance of each algorithm is evaluated by analyzing the time delay from start until monitoring 

data packets arrival to any base station. The experimental result is shown in Fig. 1: 

 

Fig.1 Iterations number and total time delay 

As shown in Fig. 1, ACO tends to be stable at about 30 iterations, while KH at about 20 iterations, and 

the time delay of KH is less. It shows that the performance of KH’s searching ability is better, and KH’s 

convergence speed is faster. This is due to, compared with ACO, the designed movement rules in KH are 

more complex (movement induced by the presence of other krill individuals, foraging activity, and random 

diffusion) and these movement well express the real movement of krill swarm and krill individuals. 

Moreover, the crossover and mutation genetic mechanism applied by KH improve the ability of accelerating 

optimization speed and breaking away from the local optimum [1]. And, KH’s fast search convergence 

ability can greatly reduce routing delay in WSN routing. 

In WSN, the most important indicator is energy consumption. Taking the total energy consumption of 

each node as a measure, and using unlimited flooding and ACO as comparison algorithms, we evaluate the 

energy consumption performance of KH. The experimental result is shown in Fig. 2. 

As in Fig. 2, we can see that, as time elapse, energy consumption of the unlimited flooding has a steep 

growth; although the energy consumption ACO and KH is growing rapidly at first, they grow slowly in late 

period. This is because, in early period of this simulation experiment, ACO and KH need to find the optimal 

path; but in late period, the optimal base station and the optimal anycast path to each node has already been 

found, and along the found route, ACO and KH only need to transmit monitoring data packets to a base 

station, maintain nodes’ routing information periodically. Moreover, compared to ACO, the energy 

consumption of ACO are less in any period. Because the optimization ability of KH is stronger than ACO, 

KH is not easy to fall into the local optimum. Thus, the energy consumption performance of KH is the best 

of the three. 
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Fig.2 Running time and energy consumption 

The monitoring area of WSN is often very large. Therefore, the scalability of routing algorithms is also 

important for WSN. Adjust network nodes number N (150-300), network area and base station number M are 

increased correspondingly according to N. The optimization performance of each algorithm under different 

network sizes are shown in Fig. 3. 

 

Fig.3 Nodes number and fitness E 

As shown in Fig. 3, with WSN network size increases, the fitness values of both ACO and KH 

thereupon increase. This is mainly due to the corresponding increase in the distance of found anycast paths, 

and it leads to an increase in energy consumption. However, with the increase of network size, compared 

with ACO, the optimization result of KH is more satisfactory. The reason is, compared with traditional ACO, 

KH has a better global optimization ability to solve complex problems [1]; while, traditional ACO is easier 

to fall into local optimization, thus it affects its optimization performance. 

5. Conclusion 

KH is a swarm intelligence algorithm and it is often applied in engineering problem and so on. In this 

paper, we try to apply KH to anycast routing problem and propose a WSN anycast routing algorithm. The 

algorithm uses the bionic features of krill to guide krill to the highest fitness region (anycast path with high 

energy efficiency) so as to find the optimal anycast path. Since the designed movement rules in KH are more 

complex and these movement rules well express the real movement of krill swarm and krill individuals. 

Moreover, crossover and mutation genetic mechanism applied by KH improve the ability a of accelerating 

optimization speed and breaking away from the local optimum. Experiments data show that, compared to 

ACO, KH has better performances in terms of search convergence ability, optimization results and 

scalability. 
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