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Abstract. The pinning hybrid synchronization of time-delay hyperchaotic Lü systems is investigated via 

linear control. Based on Lyapunov stability theory, the coexistence of pinning anti-synchronization and 

complete synchronization of time-delay hyperchaotic Lü systems is obtained via one single controller. 

Sufficient conditions are obtained to achieve the hybrid Pinning synchronization. Numerical simulations are 

presented to demonstrate the effectiveness of the proposed schemes. 
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1. Introduction  

During the last decades, synchronization of chaotic systems, an important topic in nonlinear science, has 

attracted more and more attention and has been explored intensively. Many kinds of  synchronizations, such 

as complete synchronization [1], phase synchronization [2], generalized synchronization [3], lag 

synchronization [4], Q-S synchronization [5], anti-synchronization [6], time-scale synchronization [7], 

functional synchronization [8], projective synchronization [9], cluster synchronization [10], etc., have been 

proposed and successfully applied to the chaos synchronization of chaotic or hyperchaotic systems. 

Many theoretical studies of chaos synchronization have been carried out for coupled systems[11,12]. In 

most cases of drive-response synchronization, all the states of the response system synchronize to the 

corresponding states of drive system in terms of the same synchronization regime. As far as we know, 

complete synchronization is characterized by the equality of state variables while evolving in time. Anti-

synchronization is characterized by the disappearance of the sum of relevant variables [5]. Does the 

phenomenon that some states of the interactive systems are synchronized in terms of one type of 

synchronization regime, and other states synchronized in terms of another type exist in unidirectionally and 

linearly coupled chaotic systems? There is no doubt that it is an interesting problem. Therefore, inspired by 

[13,14], it is invited to investigate the coexistence synchronization problems of time delay chaotic systems 

by using single control input both for theoretical research and practical applications. However, up to our 

knowledge, there have been few (if any) results of an investigation for the delay chaotic systems via a single 

controller with one variable in the literature, especially the time-delay hyperchaotic systems. 

In this paper, we will show that the pinning hybrid synchronization of time-delay hyperchaotic Lü 

systems can be achieved only by a single variable controller. Other parts of this paper are arranged as follows. 

In section 2, dynamical behavior of time delay Hyperchaotic system is explored and 2D overview 

hyperchaotic attractors are given. In section 3, schemes to achieve the pinning hybrid synchronization are 

proposed. Section 4 demonstrates the numerical simulations to verify the theoretical results. Some 

conclusions are drawn in section 4. 

2. Dynamical behavior of time delay Hyperchaotic system 

In this paper, the considered hyperchaotic system with time delay is described as 

( )x a y x  , 

( )y cy xz w t     , 

z xy bz  , 

1 2w x y    ,                                                                   (1) 

where 0  is the time delay. When 0  , system (1) is the hyperchaotic system constructed from the Lü 

system by Pang S, Liu Y in [15]. For convenience, we call it delay Hyperchaotic Lü system. When a = 35, 
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b = 3, c = 20, 1 = 2, 2 = 2 and the time delay  is chosen as 1, by the Galerkin approximation technique, 

an algorithms considered by Ghosh D, Chowdhury R, Saha P for calculating Lyapunov exponents for system 

with time delay[15], system (1) has two positive Lyapunov exponents, i.e., 1 = 1.4523, 2 = 0.3562, and the 

hyperchaotic attractors of system (1) are shown in Fig. 1 (2D overview).  

Furthermore, in real application, smaller number of controller and simpler form of controller are 

practical greatly. In following sections, we will investigate the coexistence of pinning anti- synchronization 

and complete synchronization of time-delay hyperchaotic 4D systems via simple feedback controller. 

3. Pinning Hybrid synchronization of time-delay hyperchaotic systems 

In this section, we describe the synchronization effects in large spatially ordered ensembles of 

oscillators, i.e., the systems are arranged in a regular spatial structure. The simplest example is a chain, 

where each element interacts with its nearest neighbors, if the first and last elements of the chain are also 

coupled, then it becomes a ring structure.  

In the multiple structure coupled in a ring with hyperchaotic 4D systems, only the second variable of 

each chaotic system interacts with its nearest neighbors, the first and last systems of the chain are also 

coupled, which can be given as the following forms: 

( )i i ix a y x  , 

( )i i i i iy cy x z w t     +  iv , 

i i i iz x y bz  , 

1 2i i iw x y    ,                                                                  (2) 

where 1,2,...,i n , iv = 1( )i iy y  ( i n ), nv = 1( )ny y  and   is the coupling coefficient. 

We choose the states x , y , z and w  of an isolated node dynamical system (1) as a synchronous solution 

of the controlled complex dynamical network (2) because it is a diffusive coupling network. The target of 

this paper is to find a single controller, which makes the states variable ix , iy  and iw  in response system 

pinning anti-synchronize x , y and w  in drive system, respectively, while the third state variable iz  in 

response system is pinning complete -synchronized  to z  in drive system. For this purpose, let 

ix ie x x  , iy ie y y  , iz ie z z  , iw ie w w  .                                            (3) 

The aim is to propose simple input controller such that the state errors in (3) satisfy 

lim ( ) 0ix
t

e t


 , lim ( ) 0iy
t

e t


 , lim ( ) 0iz
t

e t


 , lim ( ) 0iw
t

e t


 .                              (4) 

Firstly, we will show the coexistence of anti-synchronization and complete-synchronization via single 

linear controller. The controller are imposed on the second formula to change the dynamics of the nonlinear 

response system as shown in Eq. (2). The result is given in Theorem 1. 

Theorem 1. For suitable value of  , the state variables ix , iy  and iw  in the following controlled 

complex dynamical network (5) are anti-synchronized to the synchronous solutions x , y and w , while the 

third state variable iz  in (5) is complete-synchronized to z . 

( )i i ix a y x  , 

( )i i i i iy cy x z w t     +  iv + iu , 

i i i iz x y bz  , 

1 2i i iw x y    ,                                                                   (5) 

where 1u = 1ye , iu =0 ( 2,3,...,i n ). 

Proof. The error system of (5) and (1) can be governed by the following dynamical system 

( )ix iy ixe a e e  , 

( )iy iy i ix iz iwe ce z e xe e t      +  i + iu , 

iz i ix iy ize y e xe be   , 
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1 2iw ix iye e e    ,                                                                 (6)  

where i = ( 1) ,i y iye e  ( i n ), n = 1y nye e . 

  

 

 

Fig.1. 2D overview hyperchaotic attractor of Eq. (1) with a = 20, b = 10.6, c = 2.8, 

1
2  , 2

2  , 1  ,  (a) ( x , y ),  (b) ( x , z ),  (c) ( y , z ). 
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The positive definite Lyapunov function is constructed as  

2 2 2 2 2

1 1

exp[ ( ) / 2
n n t

ix iy iz iw iw
t

i i

V e e e e e dt





 

      -
2

1

n

iw

i

e dt


  

1

( )
n

i ix iy

i

a z e e dt


 
1

n

i ix iz

i

y e e dt


 1

1

n

ix iw

i

e e dt


   

2

1

n

iy iw

i

e e dt


 
1

( 1)

1

n

iy i y

i

e e dt






   1 ]y nye e dt  .                                      (7) 

Calculate the time derivative of the Lyapunov function (7), and we can obtain 

V =V {
1

( )
n

ix ix iy iy iz iz iw iw

i

e e e e e e e e


   2

1

( )
n

iw

i

e t 


 
1

( )
n

i ix iy

i

a z e e


   

1

n

i ix iz

i

y e e


 1

1

n

ix iw

i

e e


  2

1

n

iy iw

i

e e


 
1

( 1)

1

n

iy i y

i

e e






  1y nye e } 

=V {
2 2

1

[ ( )
n

ix iy

i

ae c e


   2 ]izbe -
2

1ye +
1

( )
n

iy iw

i

e e t 


 2

1

( )
n

iw

i

e t 


  } 

 V {
2 2

1

[ ( 0.5 / )
n

ix iy

i

ae c e 


    2 ]izbe -
2

1ye 2

1

( 2 ) ( )
n

iw

i

e t  


   }.                  (8) 

With suitable values of positive  , ,  and the coupling intensity  , we can get  

V V {
2 2

1

[ ( 0.5 / )
n

ix iy

i

ae c e 


    2 ]izbe -
2

1ye 2

1

( 2 ) ( )
n

iw

i

e t  


   } 0 .                (9) 

According to the Lyapunov stability theory, the zero solution of the error system (6) is globally 

asymptotically stable. It means that the hybrid synchronization of systems (1) and (5) can be obtained.  
The single linear feedback controller proposed in Theorem 1 must have a sufficiently large feedback 

gain   for any initial values, which often induces a kind of waste in practice. To overcome these difficulties, 

an effectively adaptive synchronization approach is proposed based on adaptive control technology. 

Theorem 2. If the control input is generated by a simple adaptive feedback law  

1u = 1ye , iu =0 ( 2,3,...,i n ),                                                     (10) 

where the adaptive gains   satisfies 

 =
2

1ye ,                                                                         (11) 

then the state variables ix , iy  and iw  in the controlled complex dynamical network (5) can anti-synchronize 

to the synchronous solutions x , y and w , while the third state variable iz  in (5) is complete-synchronized to 

z . 

Proof. The positive definite Lyapunov function is constructed as following: 

2 2 2 2

1

exp[ ( ) / 2
n

ix iy iz iw

i

V e e e e


    +
2ˆ( ) / 2 

2

1

n t

iw
t

i

e dt







  -
2

1

n

iw

i

e dt


  

1

( )
n

i ix iy

i

a z e e dt


 
1

n

i ix iz

i

y e e dt


 1

1

n

ix iw

i

e e dt


   

2

1

n

iy iw

i

e e dt


 
1

( 1)

1

n

iy i y

i

e e dt






   1 ]y nye e dt  ,                                    (12) 

where ̂  is a positive constant to be determined. If the values of positive  ,  , ̂  and the coupling intensity

 are chosen correctly, then we have 

V V {
2 2

1

[ ( 0.5 / )
n

ix iy

i

ae c e 


    2 ]izbe - ̂
2

1ye 2

1

( 2 ) ( )
n

iw

i

e t  


   } 0 .            (13) 

According to the Lyapunov stability theory, the pinning hybrid synchronization in Theorem 2 can be 

obtained. 
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4. Numerical simulations 

In this section, some numerical simulations are presented to illustrate the theoretical results. In the 

following numerical simulations, the system parameters are selected as above mentioned.    

When the controller is taken as in Theorem 1, time evolution curves of system (1) and system (5) 

(where 300  ) are depicted in Fig.2 and the synchronization errors are shown in Fig.3. From Figs.2-3, it is 

obvious to see that the synchronization errors converge asymptotically to zero, which suggests that the 

coexistence of pinning anti-synchronization and complete synchronization of system (1) and system (5) can 

be obtained under the condition of Theorem 1. 

When the controller is chosen as in Theorem 2, the time evolution curves of system (1) and system (5) 

are shown in Fig. 4 and the synchronization errors dynamics are shown in Fig.5. The estimation of feedback 

gain   is shown in Fig.6. From the numerical simulation results, it is obvious to see that the pinning hybrid 

synchronization of the hyperchaotic systems can be achieved and the unknown feedback gain can be 

estimated via numerical simulation. 

5. Conclusion 

In this paper, we investigate the pinning hybrid synchronization of the network with time-delay 

hyperchaotic systems via linear feedback control methods. Furthermore, adaptive linear feedback control 

scheme is given to estimate the feedback gain. The proposed methods are simple, efficient, and easy to 

implement in practical applications. The correctness of the proposed methods is verified not only by 

theoretical analysis, but also by numerical simulations. 

 

 

Fig.2. Time evolution curves of system (1) and system (5) with the controller 

in Theorem 1, (a) ( x , 1x ), (b) ( y , 1y ), (c) ( z , 1z ), (d) ( w , 1w ). 
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Fig.3. Dynamics of synchronization error states ixe , iye , ize  and iwe ( 1,2,...,5)i   

with the controller in Theorem 1. 

 

 

Fig.4. Time evolution curves of system (1) and system (5) with controller in Theorem 2, 

 (a) ( x , 1x ), (b) ( y , 1y ), (c) ( z , 1z ), (d) ( w , 1w ). 
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Fig.5. Dynamics of synchronization error states ixe , iye , ize  and iwe ( 1,2,...,5)i   

with the controller in Theorem 2. 

 

      Fig.6. The estimation of feedback gain  . 
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