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Abstract. In order to keep stable in reinforcement learning process, a novel robust reinforcement learning 

decoupling control (RRLDC) based on integral quadratic constraints（IQC）is presented in this paper. It 

composes of a linear model to approximate the nonlinear plant, a state feedback K controller to generate  the 

basic control law, and an adaptive critic unit to evaluate decoupling performance, which tunes an actor unit to 

compensate decoupling action and model uncertainty as well as system nonlinearity. By replacing nonlinear 

and time-varying aspects of a neural network  and model uncertainty with IQC, the stability of the control 

loop is analyzed. As a result, the range of the adjusted parameters is found within which the stability is 

guaranteed, the control system performance is improved through learning and the algorithm convergence 

speed is accelerated. The proposed RRLDC is applied to gas collector pressure control of coke ovens. The 

simulation results show the proposed control strategy can not only obtain the good performance, but also 

avoid  unstable behavior in learning process. It is an effective  multivariable decoupling control method for a 

class of strong coupling systems such as the gas collector pressure control of coke ovens.the effectiveness of 

proposed control strategy for the  collector gas pressure of coke ovens 

Keywords: reinforcement learning, decoupling control,  integral 

1. Introduction  

Reinforcement learning (RL) is a kind of machine learning method which can be applied to solve optimal 
control problems[1]. 
        Although classical reinforcement learning algorithm does not need environment models such as Sutten’s 
TD (temporal difference) algorithm, Watkin’s Q-learning algorithm and AHC (adaptive heuristic critic), there 
exist problems of slow convergence speed and low convergence precision. Environment models added can 
increase convergence speed. The nature of reinforcement learning is exploration and exploitation. Successful 
applications often allow systems to accumulate experience, learn from failures, and eventually succeed. 
However, it is difficult to ensure system stability and tracking performance in reinforcement learning process, 
which may greatly limit its applications in complex industrial process control.  
        Robust control theory is applied to uncertain systems to analyze their stability and design a controller 
with certain performance[2]. It has a unified framework including gain margin, phase margin, tracking, noise 
disturbance poise and calm concept. Most control system design methods based on robust control theory 
provide strong stability guarantees and certain performances. Hence, Reinforcement learning combining with 
robust control theory has become a hotspot in the past decades. Kretchmar et al combined robust control 
theory with reinforcement learning[3]. Morimoto and Doya[4] applied robust control theory to improve the 
performance of a reinforcement learning system under certain disturbances. Perkins and Barto[5] used 
Lyapunov principles to design stable controllers and achieved a level of desired performance. Jose[6] 
presented a series of reinforcement learning algorithms which could learn quickly, generalize properly over 
continuous state spaces and be robust to a high degree of environmental noise. Dong[7] proposed a novel 
quantum-inspired reinforcement learning algorithm for navigation control of autonomous mobile robots. This 
approach was then applied to navigation control of a real mobile robot. The simulation and experimental 
results show its effectiveness.  
        In the coking process, the stability of gas collector pressure has influence on coke ovens’ quality, life-
time and their production environment. Also, its control has a direct impact on the operating conditions of the 
whole coke oven system. However, the control system of gas collector pressure is a complicated multivariable, 
nonlinear, time-varying and big time-delay control object, which has many disturbance factors and the 
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coupling phenomenon is serious. Therefore, it is difficult to establish a mathematical model to reflect collector 
gas pressure accurately and obtain desired control effect using traditional control methods[8]. 

        In this paper, a novel intelligent decoupling control method based on IQC reinforcement learning is 

proposed and an actor-critic architecture is adopted in the RRLC, which uses a neural network to generate the 

decoupling control compensation and a reinforcement learning automata (RLA) to learn the neural network 

parameters. Meanwhile, reinforcement learning to find the optimal solution is integrated with domain 

knowledge available to analyze the system stability. The strategy is used for decoupling control of coke ovens 

plant. The simulation results show its effectiveness for gas pressure control of coke ovens. 

 

2. The methods 

A  reinforcement learning algorithm 

        The essence of reinforcement learning is how an agent takes actions in environment so as to maximize 

long-term reward. The Agent consists in critic unit and actor unit. In the process of information interaction, 

the Agent receives environment state s and reward signal r. At the same time, the critic unit evaluates the 

control performance and guides the actor unit to find a policy that maps state s to action a. This action output 

will lead to environment change to create a new state. Every time, the choice behavior principle for the Agent 

is to maximize long-term reward, determine whether a new state meets the learning goals and generate a 

corresponding TD error signal to adjust actor unit strategies. After repeated trial and error, the Agent can 

finally obtain optimal behavioral strategies and complete the learning task. 

  

B RL-based Decoupling control system architecture 

        RL-based decoupling control system is an actor-critic architecture, which has five components: adaptive 

critic evaluation element (ACE), associative search element (ASE), system model (SM), state feedback 

controller K, IQC stability analysis and optimal element. The system model approximates the linear part of 

plant. The state feedback K controller is used in the control loop giving the system a guaranteed initial 

performance. The ACE learns to evaluate the system performance and tune the ASE to learn nonlinear 

decoupling compensation mapping. The input of actual control is generated by summing the output of 

controller K and ASE. 
        Through replacing nonlinear and time-varying aspects of a neural network and model uncertainty with 
IQC, the stability is guaranteed in robust reinforcement learning process even as the neural network is being 
trained. 
 
C. STATE FEEDBACK K 
        In fact, the coke oven system is a nonlinear and time-varying system. It is sure that there exist error and 
residuals in statistics, if a linear system, as shown in Eq(1), is used to model it.  
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Where y is controlled system output, X is state of system, A, B, C, D is matrix of system. 
        The quadratic constraint J, as performance index, is introduced to evaluate the LTI system. 
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H  function is got when minimize J [2]: 
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                                                (3) 

        Where P is got from Riccati matrix equations. Suppose PBRK T1 , then the basic control law 

)(tKx is obtained.The overall output, as mentioned above, is given by 

                        )()()( ttKxtu                                                                        (4) 

Where decoupling compensation   is the ASE output adding random exploration. 
 
D. ACE AND ASE  
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        Here, ACE and ASE are based on neural network which are standard three-layer feed-forward network 

with hyperbolic tangent nonlinear activation function for hidden layer and linear output layer. According to 

the state of the environment and instantaneous signals, ACE learns to predict the long-term reward values, 

through which a set of action is evaluated for the control object. ASE produces control action. Meanwhile, a 

reinforcement signal is obtained and used to update the weights of ACE and ASE neural network. When a 

state is changed into another state by taking actions, the output of ACE can be used to evaluate the previous 

actions. If the reward is better than ACE prediction, it means the Agent performance is improved and the 

probability of choosing this action can be increased, and vice versa. 

        The instantaneous error signal can be obtained as follows: 

                      RuuQxxtE TT )(                                                                 (5) 

Where E(t) is the performance signal. In this paper, the reward function is defined by external reinforcement 

signal r: 

                               .)()( tEtr                                                                              (6) 

 Let V  be the predicting reinforcement signal by ACE, then the form of reinforcement learning signal is 

given by: 
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Where λ is discount factor and 0 ≤λ≤ 1. In this paper λ=0.9. )(tr


 is temporal difference (TD) error. Taking 

the predicting reinforcement signal as an additional learning signal leads to faster and reliable learning control. 

ACE determined by K and ASE evaluates the “goodness” of the control actions and fine tune the weight 

vectors. The formulae for updating the weights of ACE and ASE are shown in section IV.  

 

3.   IQC stability analysis 

Integral quadratic constraints (IQC)[6],[7] are a tool that is used to verify the stability of the uncertain 

system. As shown in Fig 1, the block M is a LTI system, the block △ is an uncertain block, and the feedback 

interconnection is considered.  

M

w

fz

e

 
Figure 1 feedback system 

        IQC is an inequality describing the relationship between two signals w and z, which are characterized by 
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Z and W are the Fourier Transforms of z(t) and w(t) respectively.  

The system shown in figure 3 can be described as follows 

                               
ezw

fMwz





)(
                                                                                                       （9） 

        Also, the basic IQC stability theorem can be stated as follows: 

Assume that: 

The interconnection of M and △ is well-posed. 

The IQC defined byⅡ is satisfied. 

There exists ε >0 that for all ω , the fomula (11) is derived: 
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        Then the feedback interconnection of M and △ is stable. 
Firstly, Δ  is described by IQCs as accurately as possible, and the class ∏Δ of all rational Hermitian matrix 
functions that define a valid IQC for a givenΔ is convex. WhenΔ composes of  several simple blocks, the 
corresponding IQCs can be generated by convex constraints combining with these simple blocks, and the 
search for a suitable ∏ restricted to a finite-dimensional subset of ∏Δ  can be carried out by numerical 
optimization,. Then, ∏ can be written on the form 

                  
0
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q q
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                                                                 (11) 

Where qx are positive real parameters. There exist Matrix A(nxn), B (nxm), symmetric real matrices 
F1,…Fq0(n+m)x(n+m) that the following formula can be obtained 
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By application of the Kalman–Yakubovich–Popov lemma, the formula (13) is equivalent to formula 
(14), if a symmetric matrix P=P

T
 is existed 
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                                                                (14) 

Hence the search for ∏ that satisfying formula (14) can take the form of a convex optimization problem 

defined by a linear matrix inequality (LMI) with the variables Pxq ,  . This can be solved efficiently by the 

recently developed numerical algorithms [9], [10].The more detail and procedure are discussed in Ref[4][9]. 

        A library of IQCs for common uncertainties is available in Matlab[9] and more complex IQCs can be 

constructed using the basic IQCs. To analyze the stability of the feedback loop, an IQC is placed to represent 

the range of parameters in actual system. 

        The non-LTI function φ is used to cover a time varying weight updated in ASE, which accounts for the 

change in the weight as the network learns. The neural network learning rate is used to determine the 

bounding constant α, and the algorithm looks for the largest allowable β to make sure the system’s stability[4].  

        At first, a search process is performed for current neural network weight values using IQC to find the 

boundaries within which the system is stable. This defines a known “stable region" of weight values. Then, 

the neural network is trained in these boundaries and the weights change rate is lower than a constant. The 

previous step is repeated and the training is continued until the termination condition is satisfied when any 

weight approaches the boundaries of the stability region. 

4. Application to gas collector pressure control of coke covens  

A. Process description and control requirements 
        The structure of the gas collector pressure system for coke ovens is shown in Fig. 2. The gas generated 
from each chambers of coke ovens is cooled to 80-90C through the cycle of ammonia, and then sent to 
primary coolers through the butterfly valves, where it is further cooled to 35-40C. Finally it will be sent to 
the next process by the blast blower. 
        The control goal is to stabilize the collector gas pressure  between 80 and 120Pa. The key problem is that 
there exists strong coupling among two gas collectors, the coke ovens and the blast blowers, which is often 
adjusted by butterfly valves on the collectors, and before the blast blowers. Here, only two butterfly valves on 
the collectors are adjusted by the RL and the butterfly valves before blast blowers are used to keep pressure 
before primary coolers smooth and steady. 
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Coke coven1 Coke coven2

1 2

1 2

Collectors  pipe

Blast blower

Primary cooler

 
Figure.2 Scheme of collectors’ pressure system 

B. Reinforcement learning implementation 
        The coupling process is serious accompanying with uncertainty and complexity. It is difficult to establish 
accurate mathematics models. The traditional PID control can't deal with this nonlinear systems and often lead 
to serious oscillation[8]. Moreover, its control accuracy is poor, and its control effect is hard to be satisfied. So 
the proposed method is adapted to solve the decoupling control problem of collectors’ pressure system. Its 
implementation process is shown in Fig. 3. 
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Figure.3 Reinforcement learning implementation structure 

 

1) Model of the plant 
At first the plant model is set up using the method described in literature[12], which consists of nonlinear 

differential equations. After linearization, the model can be written as a linear model adding a nonlinear and 
uncertain part. The model parameters are shown as follows: 
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 Where )()(),()( 4231 txtytxty  , )(tui  donates the action output, )(tyi  is pressure output. di donates 

disturbance and uncertainty.  

2) External reinforcement signal  
        In this system, two external pulse disturbance at time 0 and time tl are acted on the gas collectors, then 
the performance index is considered as external reinforcement signal, quadratic index Ei is used to measure 
control performance: 

( ) T Tr t e Qe u Ru                                                                            (16) 

where ][ 21eee  , 
d

iii yyte )( ，i=1,2, yi are the controlled variables, in our work it is the collectors’ 

gas pressure, y
d
 are the expected value. Q and R are the weight coefficients matrix. Q=diag[0.05,0.05,2,2], 

R=diag[0.05,0.05]. d1=0.012, d2=0.015 and when t is between [3,3.2],[8,8.5], The feedback matrix is given 

by: 
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3) learning algorithm for ACE and ASE 

        The forward networks structure is shown in Fig. 4. The output of ACE is the evaluation signal V(t), 

which is the estimated values of long-term reword. The output of ASE is the decoupling compensation 

(Represented by a1, a2). The same state vectors X(t) are used for ASE and ACE input, and all the networks 

use the same input layer( wi), hidden layer: 

 

V

a1

1h

2h

jh cw

aw

( )Xt

a2

Iw

 
Fig. 4  networks structure 

WI are the hidden layer input weights, wa,wb,wc are the output layer weights The arctan function is used  in 

hidden nodes. 

                    (17) 

        

Where  j=1,..,Nh, j=1,2,...,m. Nh is the number of neurons in hidden layer, 
1 4[ , , ]TX x x  The output of m 

nodes to ASN and ACN are defined as follows:  

  

                                (18)                                                                                

 

                                                                                            (19) 

 

 

 

                                                                                            (20) 

, ,a b cw w w are hidden layer to output layer weights respectively. After ai is got, a maximum probability 

action is selected by Random Action Selection Unit. The actual decoupling compensation action applied to 

the gas collector plant can then be computed as: 

                           
( , )i i Kia u   

                                                                           (21) 

Where Ψ is a normal distribution function with mean ai, which provides the required exploration around ai. 

And the variance is given by： 

                            
1

21 exp( )

k

k V
 


                                                                            (22) 

 

Where k1 is 0.05 and k2 is 5. If the predicted reinforcement V is high, the network performance is well, and 

hence the amount of exploration should be minimized. If the V is low, the network performance is poor and 

the more exploration is needed to find better actions. 

        In the critic network, supervised learning is used. The objective function is the differentiation function 

between the prediction and the actual long-term reward which is defined as (7) .  

ACE weights wc are updated as follows:
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Where δ is the  learning  factor.

 

The action recommended by (21) can then be written as 
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ASE weights wa are updated as follows:   
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η is the learning rate， 

 

4） stability analysis with IQC  

        For stability analysis, the nonlinear function is replaced by an IQC. The nonlinearity meets the 

conditions of the odd slope-restricted nonlinearity IQC 

Formula (17) can be rewritten as: 

                                                                                        (28) 

 
As described in section 3, the arctan function, namely the active function of hidden nodes in neural network, 
meets the conditions of the odd slope-restricted nonlinear IQC:  

 arctan( ) arctan( )x x               
2

1 2 1 2 1 20 (arctan( ) arctan( ))( ) ( )x x x x x x                        (29) 

So the matrix Φ can be replaced by an uncertainty function and the bounded odd slope nonlinearity IQCs can 

be used to describe it. The matrix Φ can be replaced by diagonal matrix of these bounded odd slope 

nonlinearity IQCs with an appropriately dimensions. In this paper if the weight vectors are satisfied: 

 

                                                                                      (29) 
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        This linear gain block with slowly time-varying can be replaced by slowly time-varying real scalar 

IQCs.  

        Others uncertainties such as model uncertainty are also replaced by appropriate IQCs and carried out a 

search procedure in fig 4. This procedure includes using IQC analysis to find bounds of weight values within 

which the system is stable.  

C. The simulation results 
        The simulation results are shown in Fig. 5. There exists disturbance 0.15 and 0.1 to the x3 and x4 
respectively.  The top diagram in Figure 5 shows the system corresponding to the state controller K and neural 
controller before learning . The bottom diagram shows the same system after learning. It can be seen that the 
response  is quickly and the coupling between the two gas pressures are weakened greatly. 
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(b) 

Figure 5 Simulation results of RRLC (a) before learning, (b) after learning 

5. Conclusion 

It is very difficult to guarantee the control stability while RL is learning. This paper presents a new 

control strategy for gas collector pressure control of coke ovens based on robust reinforcement learning, which 

adopts an actor-critic architecture and uses IQC analysis to implement the robust reinforcement learning. The 

use of IQC enables the system to cope with difficulties in the stability analysis with uncertainty. The robust 

reinforcement learning can accelerate the convergence speed on actor-critic learning. It is very suitable for 

multivariable decoupling control. Further work will be involved in distributed reinforcement learning to 

reduce cycle time and improve the system performance using multi-agent cooperation and collaboration. 
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