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Abstract. The steepest decent method is proposed by French mathematician Cauchy and it is one of the 
simplest and oldest methods for solving unconstrained optimization problems. The steepest descent method, 
negative gradient direction is chosen as the search direction, also known as the gradient method. Usually, the 
step length α୩ of the steepest decent method can be computed by some inexact line search. In this paper, we 
will use a Wolfe type line search to evaluate the step length and its convergence property will be given under 
mild assumptions. From the numerical results, we can see that the steepest descent method with this Wolfe 
type line search is very promising. Finally, we give an application of the method to solve the nonlinear 
complementarity problem. 

Keywords: the steepest decent method, line search, global convergence 

1. Introduction  
We consider the following unconstrained optimization problem 

)(min xf
nRx∈

,                                                                       (1) 

where RRf n →: is continuously differentiable. In the past four decades, many theories and algorithms in 
globally optimal problems have been developed ([1-15]). Among these methods, the steepest decent method 
proposed by French mathematician Cauchy is one of the well-known and practical methods for global 
optimization problems. Because it has the simple structure, the less amount of calculation and the fast 
convergence speed when it away from the minimum value of the problem. So the steepest descent method 
has become one of the most famous methods for solving large-scale optimization problem. The steepest 
descent method has been studied deeply by many scholars, such as [1-4]. In practice, it often used in 
communication, computer and information engineering and other fields. Therefore, it has an important 
meaning for the study of the steepest descent method. 

The classical steepest descent method for the continuously differentiable function RRf n →:  is 
defined by the iteration  

kkkk dxx α+=+1 , 

where kd is the steepest descent direction at kx and kα is the step length at kx .Since we use a negative 
gradient direction as the search direction, so the steepest decent method is also sometimes called the gradient 
method. In practice, the step length is computed by an inexact line search, this ensures an appropriate 
reduction in the objective function. Usually, we use Armijo, Wolfe and other inexact line search rule to 
compute the step length kα (such as [2]). In this paper, we use a Wolfe type line search to computing the step 
length. The numerical results in Section 4 indicate that, for some problems, the steepest descent method with 
Wolfe type line search can obtain the global minimum solutions most close to the function, as well as the 
steepest descent with Armijo line search. 

The Wolfe type line search (see [5]) as follows: 
Choose 0>kα such as 

22)()( kkkkkk ddxfxf ραα ≥+−                                                 (2) 
22)( kkk

T
kkk dddxg σαα −≥+                                                   (3) 
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 where 10 <<< σρ . 

This paper is organized as follows. In Section 2, we will give the algorithm of the steepest descent 
method with the Wolfe type line search and the steepest descent method with Armijo line search, 
respectively. The global convergence of the methods will be given in Section 3. In Section 4, some 
numerical results are reported for both the steepest descent method with the Wolfe line search, the steepest 
descent method with Armijo line search and some conjugate gradient methods. Finally, in Section 5, we give 
the conclusion and an application of the steepest descent method for solving nonlinear complementarity 
problem. 

In this paper, we denote )()( kkk xfxgg ∇== . The norm |||| ⋅ is the Euclidean norm. 

2. Algorithm  
In this section, we will give the steepest descent method with the Wolfe type line search and the Armijo 

line search, respectively. The steepest descent method with Armijo line search has been detail introduced in 
[2], so we will only give the algorithm. 

Algorithm 2.1 
Step 0. Given nRx ∈0 , )1,0(∈β , )5.0,0(∈σ , 10 <<< ε , 1=k . 

Step 1. Compute kg . If ε≤kg , stop. Output kx as the approximate optimal solution. 

Step 2. Choose kk gd −= . 

Step 3. Compute kα by  

k
T
k

m
kk

m
k dgxfdxf σββ +≤+ )()( . 

Step 4. Set kkkk dxx α+=+1 , 1+= kk , go to Step 1. 
In the following, we present the steepest descent method with the Wolfe type line search. 

Algorithm 2.2 
Step 0. Given nRx ∈0 , )1,0(∈β , )5.0,0(∈σ , 10 <<< ε , 1=k . 

Step 1. Compute kg . If ε≤kg , stop. Output kx as the approximate optimal solution. 

Step 2. Choose kk gd −= . 

Step 3. Compute kα by (2) and (3). 

Step 4. Set kkkk dxx α+=+1 , 1+= kk , go to Step 1. 
As a comparison, in Section 4, we will give the numerical results of the above two algorithms, 

respectively. 
 

3. Convergence analysis of the algorithms  
The convergence result of Algorithm 2.1 has been given in [2] in detail. In the following, we only give 

the global convergence result of Algorithm2.2. 
In order to establish the global convergence of Algorithm 2.2, firstly, we give the following Assumption 

3.1 and Lemma 3.1. 
Assumption 3.1. )(xf is bounded below on the level set  

{ })()( 00 xfxfRxL n ≤∈= . 

Lemma 3.1. Suppose that Assumption 3.1 holds, then the Wolfe type line search (2) and (3) is feasible 
(see [5]).  

Now, we give the following global convergence theorem for the steepest descent method with the Wolfe 
type line search under mild assumptions. 
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Theorem 3.1. Suppose that Assumption 3.1 hold, )(xg is Lipschitz continuous on the level set 0L . If kα
satisfies (2) and (3) and{ }kx is generated by the Algorithm 2.2, then 

0)(lim =
∞→ kk

xg .                                                                    (4) 

Proof. From (2) and Assumption 3.1, we know that 

0lim =
∞→ kkk

dα
.                                                                    (5) 

By (3), we have 

( ) 2 ,T k
k k k k k

k

dg x d d
d

α σα+ ≥ −
 

i.e., 

( ) ( ) ( ( ) ( ))

( ) 2 .

T k
k k k k k k k k

k

T
k k

k k
k

dg x d g x g x d g x
d

g x d d
d

α α

σα

+ − ≥ + −

≥ − −
 

Because )(xg is Lipschitz continuous on the level set 0L , we know 

kkkkkkkkkk dLxdxLxgdxg ααα =−+≤−+ )()( , 

where L is the Lipschitz constant. So 

kk
k

k
T

k
kk d

d
dxg

dL σαα 2
)(

−−≥
. 

Since )( kk xgd −= , we have 

( )0 - ( 2 ) .
T

k k
k k

k

g x d L d
d

σ α≤ ≤ +
 

Let ∞→k , by (5), we have 

0
)(

lim =−
∞→

k

k
T

k

k d
dxg

. 
Then, we know that 

0)(lim
)(

)(
lim

)(
lim

2

===−
∞→∞→∞→ kk

k

k

k
k

k
T

k

k
xg

xg
xg

d
dxg

. 
Therefore (4) holds. 

 

4. Numerical results  
In this section, we will give some numerical results. They are respectively from the Algorithm 2.1, the 

Algorithm 2.2, the FR conjugate gradient method, the PRP conjugate gradient method and the spectral 
conjugate gradient method. 

In this section, the testing functions we will use are well-known functions that are often used [2, 6]. 
The test functions are the follow functions, 
(i) 6-hump camel back function 
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3,3,44
3
11.24)( 21

4
2

2
221

6
1

4
1

2
1 ≤≤−+−−+−= xxxxxxxxxxf  

The global minimum solutions )7127.0,0898.0(=∗x or )7127.0,0898.0( −−=∗x  and 0316.1−=∗f . 

(ii) function 

,)1()(100)( 2
1

2
2

2
1 −+−= xxxxf  

The global minimum solution )0000.1,0000.1(=∗x and 0000.0=∗f . 

(iii) Rastrigin function 

1,1),18cos()18cos(-)( 2121
2
2

2
1 ≤≤−−+= xxxxxxxf  

The global minimum solutions )0000.0,0000.0(=∗x or )0000.0,0000.2(−=∗x and 0000.2−=∗f . 

First presents the definition of several notations in the table, 

0x indicates the initial point, 
∗x indicates the calculated global minimizer, 

)( ∗xf indicates the calculated function value of the global minimizer. 

In algorithms we set 5.0=β , 2.0=ρ , 4.0=σ and 510−=ε .  

4.1. PartⅠ 
The calculation results are given in the tables below. The data in the table (a) and (b) is computed by the 
Algorithm 2.1 and Algorithm 2.2, respectively. 

Function (i) 
Table 4.1.1. (a) 

0x  ∗x  )( ∗xf  

(0.1,0.8) (0.089842089632932,0.712656303523469) -1.031628453489766 
(0.424,0.286) (0.089841909056407,0.712656424904444) -1.031628453489829 

(-0.089,-0.633) (-0.089841963420045,-0.712656330523904) -1.031628453489828 
Table 4.1.1. (b) 

0x  ∗x  )( ∗xf  

(0.1,0.8) (0.089842074004650,0.712656538129374) -1.031628453489722 
(0.424,0.286) (0.089841798439412,0.712656422581195) -1.031628453489690 

(-0.089,-0.633) (-0.089841433791874,-0.712656440898500) -1.031628453488535 
Function (ii) 

Table 4.1.2. (a) 

0x  ∗x  )( ∗xf  

(0,0) (0.999989222566424,0.999978407179369) 1.162980041764064e-010 
(2,1) (1.000010676532803,1.000021395023532) 1.141634442014956e-010 
(1,-1) (0.999988939604407,0.999977837179067) 1.225100304529775e-010 

Table 4.1.2. (b) 

0x  ∗x  )( ∗xf  

(0，0) (0.999992175224127,0.999984335009511) 6.125114236575247e-011 

(2，1) (1.000007857200306,1.000015730032360) 6.175983917201136e-011 

(1，-1) (1.000007832119298,1.000015679790382) 6.136608808308800e-011 
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Function (iii) 

Table 4.1.3. (a) 

0x  ∗x  )( ∗xf  

(0.9,0.9) (1.040758689281631, 1.040758689281631) 0.179774966368992 
(0.087,0.05) 1.0e-007 * (0.114742873638724, -0.038252512615108) -1.999999999999976
(0.898,0.91) (1.040758715794927, 1.040758699645090) 0.179774966368884 

Table 4.1.3. (b) 

0x  ∗x  )( ∗xf  

(0.9,0.9) 1.0e-007 *(-0.188828543001469, -0.188828543001469) -1.999999999999884
(0.087,0.05) 1.0e-008 *(0.980814674548121, 0.490561612735529) -1.999999999999981
(0.898,0.91) 1.0e-007 *(0.141998555082016, 0.011710431701756) -1.999999999999967

4.2. PartⅡ 
The algorithm of the FR conjugate gradient method is as following, 
Algorithm 4.1 
Step 0. Given nRx ∈0 , 10 <<< ε . Compute )( 00 xfg ∇= , let 1=k . 

Step 1. If ε≤kg , stop. Output kx as the approximate optimal solution. 

Step 2. Compute kd by 

⎩
⎨
⎧

≥+−
=−

=
−− ,1,

,0,

11 kdg
kg

d
kkk

k
k β

 

where
11

1
−−

− =
k

T
k

k
T
k

k gg
ggβ ( 1≥k ). 

Step 3. Compute kα by 

.)()( k
T
k

m
kk

m
k dgxfdxf σββ +≤+  

Step 4. Set kkkk dxx α+=+1 , compute )( 11 ++ ∇= kk xfg . 
Step 5. Set 1+= kk and go to Step 1. 

The calculation results are given in the tables below. The data in the table (a) and (b) is computed by the 
Algorithm 4.1 and Algorithm 2.2, respectively. 

Function (i) 
Table 4.2.1. (a) 

0x  ∗x  )( ∗xf  

(0.1,0.8) (0.089842697705424, 0.712656168820365) -1.031628453487441 
(0.424,0.286) (0.089842587116499, 0.712656053536417) -1.031628453487392 

(-0.089,-0.633) (-0.089841879036056, -0.712656181058019) -1.031628453489433 
Table 4.2.1.(b) 

0x  ∗x  )( ∗xf  

(0.1,0.8) (0.089842074004650,0.712656538129374) -1.031628453489722 
(0.424,0.286) (0.089841798439412,0.712656422581195) -1.031628453489690 

(-0.089,-0.633) (-0.089841433791874,-0.712656440898500) -1.031628453488535 
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Function (ii) 

Table 4.2.2. (a) 

0x  ∗x  )( ∗xf  

(0,0) (1.000008546928186, 1.000017142529611) 7.328617925712770e-011 
(2,1) (1.000008148420339, 1.000016314203475) 6.642667056318378e-011 
(1,-1) (1.000005740918587, 1.000011515455341) 3.307094284929168e-011 

Table 4.2.2. (b) 

0x  ∗x  )( ∗xf  

(0，0) (0.999992175224127,0.999984335009511) 6.125114236575247e-011 

(2，1) (1.000007857200306,1.000015730032360) 6.175983917201136e-011 

(1，-1) (1.000007832119298,1.000015679790382) 6.136608808308800e-011 
Function (iii) 

Table 4.2.3. (a) 

0x  ∗x  )( ∗xf  

(0.9,0.9) (1.040758711091145, 1.040758711091145) 0.179774966368863 
(0.087,0.05) 1.0e-008 * (0.099902941034896, -0.967539795907809) -1.999999999999985
(0.898,0.91) (1.040758710534585, 1.040758715778078) 0.179774966368869 

Table 4.2.3. (b) 

0x  ∗x  )( ∗xf  

(0.9,0.9) 1.0e-007 *(-0.188828543001469, -0.188828543001469) -1.999999999999884
(0.087,0.05) 1.0e-008 *(0.980814674548121, 0.490561612735529) -1.999999999999981
(0.898,0.91) 1.0e-007 *(0.141998555082016, 0.011710431701756) -1.999999999999967

4.3. PartⅢ 
The algorithm of the PRP conjugate gradient method is as following, 
Algorithm 4.2 
Step 0. Given nRx ∈0 , 10 <<< ε . Compute )( 00 xfg ∇= , let 1=k . 

Step 1. If ε≤kg , stop. Output kx as the approximate optimal solution. 

Step 2. Compute kd by 

⎩
⎨
⎧

≥+−
=−

=
−− ,1,

,0,

11 kdg
kg

d
kkk

k
k β

 

where
11

1
1

)(

−−

−
−

−
=

k
T
k

kk
T
k

k gg
gggβ ( 1≥k ). 

Step 3. Compute kα by 

.)()( k
T
k

m
kk

m
k dgxfdxf σββ +≤+  

Step 4. Set kkkk dxx α+=+1 , compute )( 11 ++ ∇= kk xfg . 
Step 5. Set 1+= kk and go to Step 1. 

The calculation results are given in the tables below. The data in the table (a) and (b) is computed by the 
Algorithm 4.2 and Algorithm 2.2, respectively. 
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Function (i) 

Table 4.3.1. (a) 

0x  ∗x  )( ∗xf  

(0.1,0.8) (0.089841762699973, 0.712656219576425) -1.031628453489404 
(0.424,0.286) (0.089842201183537, 0.712656571349010) -1.031628453489539 

(-0.089,-0.633) (-0.089841794962414, -0.712655906515560) -1.031628453487782 
Table 4.3.1.(b) 

0x  ∗x  )( ∗xf  

(0.1,0.8) (0.089842074004650,0.712656538129374) -1.031628453489722 
(0.424,0.286) (0.089841798439412,0.712656422581195) -1.031628453489690 

(-0.089,-0.633) (-0.089841433791874,-0.712656440898500) -1.031628453488535 
Function (ii) 

Table 4.3.2. (a) 

0x  ∗x  )( ∗xf  

(0,0) (0.999997438981979, 0.999994875421996) 6.559462797894382e-012 
(2,1) (0.999997325751484, 0.999994648964635) 7.152253072945237e-012 
(1,-1) (1.000002057771020, 1.000004121363929) 4.237806081218173e-012 

Table 4.3.2. (b) 

0x  ∗x  )( ∗xf  

(0，0) (0.999992175224127,0.999984335009511) 6.125114236575247e-011 

(2，1) (1.000007857200306,1.000015730032360) 6.175983917201136e-011 

(1，-1) (1.000007832119298,1.000015679790382) 6.136608808308800e-011 
Function (iii) 

Table 4.3.3. (a) 

0x  ∗x  )( ∗xf  

(0.9,0.9) (1.040758730815448, 1.040758730815448) 0.179774966369012 
(0.087,0.05) 1.0e-007 * (0.011140898081130, 0.115493523260776) -1.999999999999978
(0.898,0.91) (1.040758692213578, 1.040758730557294) 0.179774966368982 

Table 4.3.3. (b) 

0x  ∗x  )( ∗xf  

(0.9,0.9) 1.0e-007 *(-0.188828543001469, -0.188828543001469) -1.999999999999884
(0.087,0.05) 1.0e-008 *(0.980814674548121, 0.490561612735529) -1.999999999999981
(0.898,0.91) 1.0e-007 *(0.141998555082016, 0.011710431701756) -1.999999999999967

4.4. PartⅣ 
The algorithm of the spectral conjugate gradient method is as following (see [16]), 
Algorithm 4.3 
Step 0. Given nRx ∈0 , 10 <<< ε . Compute )( 00 xfg ∇= , let 00 gd −= and 1=k . 

Step 1. If ε≤kg , stop. Output kx as the approximate optimal solution. 

Step 2. Compute kα by 
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.)()( k
T
k

m
kk

m
k dgxfdxf σββ +≤+  

Set kkkk dxx α+=+1 . 

Step 3. Compute
k

T
k

k
T
k

k ys
ss

=θ and
k

T
k

k
T

kkk
k ys

gsy 1)( +−
=

θβ . Define 

.1 kkkk sgd βθ +−= +  

Then compute 1+kd by 

⎩
⎨
⎧

−
−≤

=
+

+
−

+
+ othersg

gdgifd
d

kk

kk
k ,

10d,

1

212
3

1
T

1 θ
. 

Step 4. Set 1+= kk and go to Step 1. 
The calculation results are given in the tables below. The data in the table (a) and (b) is computed by the 

Algorithm 4.3 and Algorithm 2.2, respectively. 
Function (i) 

Table 4.4.1. (a) 

0x  ∗x  )( ∗xf  

(0.1,0.8) (0.089842583251361, 0.712656607352788) -1.031628453488385 
(0.424,0.286) (0.089841833241950, 0.712656270695127) -1.031628453489632 

(-0.089,-0.633) (-0.089841750284188, -0.712656542030075) -1.031628453489414 
Table 4.4.1.(b) 

0x  ∗x  )( ∗xf  

(0.1,0.8) (0.089842074004650,0.712656538129374) -1.031628453489722 
(0.424,0.286) (0.089841798439412,0.712656422581195) -1.031628453489690 

(-0.089,-0.633) (-0.089841433791874,-0.712656440898500) -1.031628453488535 
Function (ii) 

Table 4.4.2. (a) 

0x  ∗x  )( ∗xf  

(0,0) (0.999999785507294, 0.999999573073940) 4.643119494828477e-014 
(2,1) (1.000003050819062, 1.000006113709804) 9.322047031107793e-012 
(1,-1) (0.999999268834521, 0.999998529052728) 5.420279651816089e-013 

Table 4.4.2. (b) 

0x  ∗x  )( ∗xf  

(0，0) (0.999992175224127,0.999984335009511) 6.125114236575247e-011 

(2，1) (1.000007857200306,1.000015730032360) 6.175983917201136e-011 

(1，-1) (1.000007832119298,1.000015679790382) 6.136608808308800e-011 
Function (iii) 

Table 4.4.3. (a) 

0x  ∗x  )( ∗xf  

(0.9,0.9) (1.040758709325329, 1.040758709325329) 0.179774966368862 
(0.087,0.05) 1.0e-007 * (0.002044808565636, -0.111757681749955) -1.999999999999980
(0.898,0.91) (1.040758709306231, 1.040758709326703) 0.179774966368862 

 
 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22568 | Generated on 2025-04-09 06:53:03



Ju Jing-jie et.al. : A steepest descent method with a Wolf type line search 
 

JIC email for contribution: editor@jic.org.uk 

260

 
 
Table 4.4.3. (b) 

0x  ∗x  )( ∗xf  

(0.9,0.9) 1.0e-007 *(-0.188828543001469, -0.188828543001469) -1.999999999999884
(0.087,0.05) 1.0e-008 *(0.980814674548121, 0.490561612735529) -1.999999999999981
(0.898,0.91) 1.0e-007 *(0.141998555082016, 0.011710431701756) -1.999999999999967

 

5. CONCLUSIONS  
According to the numerical results of Section 4 we can see that, the numerical performance of the 

steepest descent method with the Wolfe type line search is excellent, as well as the steepest descent method 
with Armijo line search, the conjugate gradient methods and the spectral conjugate gradient method. So, the 
steepest descent method with the Wolfe type line search is promising. Hence, we can use this method to 
solve the optimization problems. 

Next, we give some discussions about the application of the steepest descent method with the Wolfe type 
line search. 

As we known, the nonlinear complementarity problem, )( fNCP for short, can be transformed into 
unconstrained optimization problem [10]. The nonlinear complementarity problem is to find an nRx ∈ , such 
that 

，0)(,0)(,0 =≥≥ xfxxfx T  

where )(xf is continuously differentiable. We can use the Fischer-Burmeister function to transform the 
nonlinear complementarity problem to unconstrained optimization problem. The Fischer-Burmeister function,

RR →2：φ , 

,),( 22 bababa −−+=φ  

Thenφ is continuously differentiable, except the point )0,0( . And  

.0,0,00),( =≥≥⇔= abbabaφ  

We denote RR →2:ψ , 

.,)(
2
1)( 22 Ruuu ∈= φψ  

where, 

.),(,)( 2Rbauueuu TT ∈=−=φ  

Denote the merit function 

.,,2,1,))(,(
2
1))(,()(,)()( 2

1
nixfxxfxxxx iii

n

i
iii L====∑

=

φψθθθ  

where RR →2:θ is continuously differentiable. Then, we know that x  is the solution of
nRx

x
∈

)(minθ if 

and only if x  is the solution of )( fNCP . So, the )( fNCP is transformed into unconstrained optimization 
problem. The detailed algorithm and convergence property will be given in the future. 
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