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Abstract. In this paper, we introduce the notion of biorthogonal wavelet packets associated with 
nonuniform multiresoltion analysis and study their characteristics by means of Fourier transform. Three 
biorthogonal formulas regarding these wavelet packets are established. Moreover, it is shown how to obtain 
several new Riesz bases of the space ܮଶ(ℝ)	by constructing a series of subspaces of these nonuniform 
wavelet packets.  
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Fourier transform. 

1. Introduction  
In his pioneering paper, Mallat [11] first formulated a new and remarkable idea of multiresolution 

analysis (MRA) which deals with a general formalism for the construction of an orthonormal basis of 
wavelet bases. Mathematically, an MRA consist of a sequence of embedded closed subspaces, ൛ ܸ: ݆	 ∈	ℤ	 of 2ܮℝ	  such that ݂ݔ∈ܸ݆ if and only if	 	  Furthermore, there exists an element ߮∈ܸ0 such .1+݆ܸ∋ݔ2݂
that the collection of integer translates of function ߮, {߮(x	 − 	k): ݇	 ∈ 	ℤ}	 represents a complete 
orthonormal system for	 ܸ. The function ߮ is called the scaling function or the father wavelet. Recently, the 
idea of MRA and wavelets have been generalized in many different settings, for example, one can replace 
the dilation factor  by an integer ܯ ≥ 2 and in higher dimensions, it can be replaced by a dilation matrix ܣ, 
in which case the number of wavelets required is |݀݁ܣݐ| 	− 	1. But in all these cases, the translation set is 
always a group. In the two papers [6, 7], Gabardo and Nashed considered a generalization of Mallat’s [11] 
celebrated theory of MRA based on spectral pairs, in which the translation set acting on the scaling function 
associated with the MRA to generate the subspace 	 ܸ is no longer a group, but is the union of  and a 
translate of . More precisely, this set is of the form	Λ = {0, r/N} + 2	ℤ, where ܰ ≥ 1  is an integer, 1	 ≤ 	ݎ	 ≤ 2ܰ − 1,  ܰ. They call this a nonuniform multiresolution	is an odd integer relatively prime to ݎ
analysis (NUMRA). Moreover, they have provided the necessary and sufficient conditions for the existence 
of associated wavelets in ܮଶ(ℝ).	Later on, Gabardo and Yu [8, 9] continued their research in this non-
standard setting and gave the characterization of all nonuniform wavelets associated with nonuniform 
multiresolution analysis. 

It is well-known that the classical orthonormal wavelet bases have poor frequency localization. To 
overcome this disadvantage, Coifman et al. [5] constructed univariate orthogonal wavelet packets as a 
generalization of Walsh systems. Wavelet packets give rise to a large class of orthonormal bases of 	ܮଶ(ℝ),	each one corresponding to a different splitting of ܮଶ(ℝ) into direct sum of its closed subspaces. 
Wavelet packets, due to their nice characteristics have been widely applied to signal processing, coding 
theory, image compression, fractal theory and solving integral equations and so on. Chui and Li [3] 
generalized the concept of orthogonal wavelet packets to the case of non-orthogonal wavelet packets so that 
they can be applied to the spline wavelets and so on. The introduction of biorthogonal wavelet packets 
attributes to Cohen and Daubechies [4]. Shen [14] generalized the notion of univariate orthogonal wavelet 
packets to the case of multivariate wavelet packets. Other notable generalizations are the orthogonal version 
of vector-valued wavelet packets [2], higher dimensional wavelet packets with arbitrary dilation matrix [10], 
the orthogonal -wavelet packets and the -wavelet frame packets on the positive half-line ℝା [12, 13]. 

In his recent paper, Behera [1] has constructed nonuniform wavelet packets associated with 

nonuniform multiresolution analysis. He proved lemmas on the so-called splitting trick and several theorems 
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concerning the construction of nonuniform wavelet packets on	ℝ. It is well known that the orthogonal 

wavelet packets have many desired properties such as compact support, good frequency localization and 

vanishing moments. However, there is no continuous symmetry which is a much desired property in image 

and signal processing. To achieve symmetry, several generalizations of scalar orthogonal wavelet packets 

have been investigated in literature. The biorthogonal wavelet packets achieve symmetry where the 

orthogonality is replaced by the biorthogonality. Therefore, the main goal of this paper is to introduce the 

notion of biorthogonal wavelet packets associated with nonuniform multiresoltion analysis and investigate 

their properties by means of the Fourier transform. Further, we also construct several new Riesz bases of 

space 	ܮଶ(ℝ) by constructing a series of subspaces of nonuniform wavelet packets. 

2. Nonuniform multiresoltion analysis and the wavelet packets  
In this section, we state some basic preliminaries and definitions including nonuniform multiresoltion 

analysis, the associated nonuniform wavelets and wavelet packets. More details are referring to [6–9]. 
Definition 2.1. We say that a pair of functions	݂(ݔ), ሚ݂(ݔ) ∈  ଶ(ℝ) are biorthogonal, if their translatesܮ	

satisfy 																																																																			〈	݂(. ), ሚ݂(. 〈	(ߣ− = ߣ			,	,ఒߜ	 ∈ ⋀,																																															(2.1)	 
 
where 	ߜ,ఒ is Kronecker symbol, i.e., 	ߜ,ఒ = 1 when ߣ = 0	 and		ߜ,ఒ = 0, otherwise.  
Definition 2.2. Let ℍ be a Hilbert space. A sequence { ݂}ୀଵஶ  of ℍ is said to be a Riesz basis for ℍ if there 

exist constants ܣ  and ܤ, 0 < ܣ ≤ ܤ < ∞  such that any ݂ ∈ ℍ  can be represented as a series ݂	 =	∑ ܿ	 ݂ = 1	ஶୀଵ  converging in ℍ with 

ଶଶ‖݂‖	ܣ																																																																 	≤ 	|ܿ|ଶ ≤ ଶଶஶ‖݂‖	ܤ
ୀଵ .																																																		(2.2)		 

We first recall the definition of nonuniform multiresolution analysis and some of its properties.  
Definition 2.3. A sequence ൛ ܸ ∶ 	݆ ∈ 	ℤൟ of closed subspaces 	ܮଶ(ℝ) is called a nonuniform multiresolution 

analysis of 	ܮଶ(ℝ)	if the following hold:  

(i)			 ܸ ⊂ 	 ܸାଵ	, for	all			݆ ∈ 	ℤ, 

(ii) 	⋃ 	 ܸ		∈	ℤ is dense in 	ܮଶ(ℝ) and ⋂ 	 ܸ = 	 {0}∈	ℤ , 
(iii) 	݂	(ݔ) ∈ 	 ܸ	 if and only if		݂	(2ܰ. ) ∈ 	 	 ܸାଵ,  

(iv) there is a function ߮	in	 ܸ	,		called the scaling function, such that the system of functions {߮(. (ߣ− ∶ ߣ ∈	⋀ forms a Riesz basis for subspace	ܸ0.      
 
It is worth noticing that, when	ܰ = 1, one recovers from the definition above the standard definition 

of a one-dimensional multiresolution analysis with dilation factor equal to	2. When	ܰ	 > 	1, the dilation 

factor of 2ܰ ensures that 2ܰ⋀ ⊂ 2ℤ	 ⊂ ⋀	. 
 

       Since	߮(ݔ) ∈ 	 	 ܸ ⊂ 	 ଵܸ, there exists sequence	{ܽఒ}ఒ	∈⋀  with ∑ |ܽఒ|ଶఒ∈	⋀	 < ∞		such that  

 																																																																					߮ ቀ 2ܰቁݔ =  ܽఒ	ఒ	∈⋀ ݔ)߮ −  	(2.3)																																																				.(ߣ
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Taking Fourier transform of (2.3), we get 
 																																																																					 ො߮ (ߦ2ܰ)	 = ℎ(ߦ)	 ො߮  (2.4)																																																											,(ߦ	)	

where  ℎ(	ߦ) = 	∑ ܽఒ	ఒ	∈⋀ ݁ିଶగఒక,  is called the symbol of  ߮(ݔ). 
Let ܹ ∶ 	݆ ∈ 	ℤ  be the direct complementary subspaces of 	 ܸ 	 in	 ܸାଵ. Assume that there exist a set 

of 2ܰ − 1 functions {߰ଵ, ߰ଶ, . . ., ߰ଶேିଵ} in 	ܮଶ(ℝ) such that their translates and dilations form a Riesz basis 

of		 ܹ, i.e,  																					 ܹ = spanതതതതതത	൛߰൫(2ܰ). ൯ߣ− ∶ 	ߣ	 ∈ ⋀,			1 = 1,2, … ,2ܰ − 1ൟ,			݆	 ∈ ℤ	.																											(2.5)	 
 

Since	߰(ݔ) ∈ 	 	 ܹ ⊂ 	 ଵܸ, 1 ≤ ݎ	 ≤ 2ܰ − 1, there exists a sequence	{ܽఒ}ఒ	∈⋀	 with  ∑ |ܽఒ|ଶ	ఒ	∈⋀ < ∞ such 

that  																																																								 12ܰ ߰ ቀ 2ܰቁݔ =  ܽఒ	ఒ	∈⋀ ݔ)߮ −  		(2.6)																																																							.(ߣ
Implementing the Fourier transform for both sides of (2.6) gives 
 																																																																 ߰(2ܰߦ) = ℎ(ߦ) ො߮  (2.7)																																																																,(ߦ)	
 
where   																																													ℎ(	ߦ) = 	 ܽఒఒ	∈⋀ ݁ିଶగఒక,			1 ≤ ݎ	 ≤ 2ܰ − 1.																																														(2.8)	 
If ߮(ݔ), ߮(ݔ) ∈  are a pair of biorthogonal scaling functions, then it follows by Definition 2.1 that	ଶ(ℝ)ܮ	
 																																																							〈߮(. ),			 ߮ (. 〈(ߣ− = 	ߣ					,,ఒߜ	 ∈ ⋀.																																															(2.9) 

 

Moreover, we say that	߰(ݔ), ෨߰(ݔ) ∈ ,ଶ(ℝ)ܮ	 1 ≤ ݎ	 ≤ 2ܰ − 1 are pair of biorthogonl nonuniform wavelets 

associated with a pair of biorthogonal scaling functions ߮(ݔ)	and ߮ (ݔ)  if the family {߰(. (ߣ− ∶ 	ߣ	 ∈⋀,			1=1,…,2ܰ−1 is a Riesz basis of		ܹ0, and    

 																																						〈߮(. ),			 ෨߰(. 〈(ߣ− = 	ߣ				,0	 ∈ ⋀, 1 ≤ ݎ	 ≤ 2ܰ − 1,																																		(2.10) 																																						〈 ߮(. ),			߰(. 〈(ߣ− = 	ߣ				,0	 ∈ ⋀, 1 ≤ ݎ	 ≤ 2ܰ − 1,																																		(2.11) 																																					〈߰(. ),			 ෨߰௦(. 〈(ߣ− = ,,ఒߜ,௦ߜ	 	ߣ ∈ ⋀, 1 ≤ ,ݎ	 ݏ ≤ 2ܰ − 1.																					(2.12) 
Set 													 ܹ = 	 spanതതതതതത	൛߰൫(2ܰ). ൯ߣ− ∶ 	ߣ	 ∈ ⋀			ൟ,			݆	 ∈ ℤ	, 1 ≤ ݎ	 ≤ 2ܰ − 1.																													(2.13)	 
 

By definition of ܹ and formulae (2.9)– (2.12), we obtain the following proposition. 

Proposition 2.4. If  ߰(ݔ), ෨߰(ݔ) ∈ ,ଶ(ℝ)ܮ	 1 ≤ ݎ	 ≤ 2ܰ − 1,   are a pair of biorthogonal nonuniform 

wavelets associated with a pair of biorthogonal scaling functions	φ(x),φ(x), then   

ଶ(ℝ)ܮ	  =⊕∈ℤ ܹ = ⊕∈ℤ⊕ୀଵଶேିଵ ܹ,																																								(2.14) 
where ⊕ denotes the direct sum. 
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Similar to (2.3) and (2.6), there exist finite sequences 	{ ܽఒ}ఒ	∈⋀	and 	{ ܽఒ}ఒ	∈⋀, 1 ≤ ݎ	 ≤ 2ܰ − 1 such 

that ߮ 																																																																	   :and ෨߰ satisfy the following equations		(ݔ) ߮ ቀ 2ܰቁݔ =  ܽఒ	ఒ	∈⋀ ߮(ݔ −  	(2.15)																																																				.(ߣ
																																																																	 12ܰ ෨߰ ቀ 2ܰቁݔ =  ܽఒ	ఒ	∈⋀ ߮(ݔ −  					(2.16)																																									.(ߣ

 

For ݊	 = 	0, 1, 2, . . .,  the basic biorthogonal nonuniform wavelet packets ߱  and ߱  (as defined in [1]) 

associated with the scaling functions ߮(ݔ)	and	 ߮  respectively, are defined recursively by ,(ݔ)

 																																																					߱ାଶே(ݔ) = (2ܰ)ܽఒఒ	∈⋀ ߱(2ܰݔ −  (2.17)																																												,(ߣ
																																																					 ߱ାଶே(ݔ) = (2ܰ) ܽఒఒ	∈⋀ ߱(2ܰݔ −  	(2.18)																																											,(ߣ

 
where 	 ≥ 0 is the unique element such that ݊	 = 	ݍ	 + ,2ܰ	 0	 ≤ 	ݍ	 ≤ 2ܰ − 1 holds. 

 
Applying the Fourier transform for the both sides of (2.17) and (2.18) yields, respectively, 

 																																		 ෝ߱ାଶே(ݔ) = ℎ((2ܰ)ିଵߦ) ෝ߱((2ܰ)ିଵߦ),			0	 ≤ 	ݍ	 ≤ 2ܰ − 1																							(2.19) 
 																																				 ߱ାଶே	(ݔ) = ℎ෨((2ܰ)ିଵߦ)		 ߱((2ܰ)ିଵߦ),			0	 ≤ 	ݍ	 ≤ 2ܰ − 1.																(2.20)	 
 
Lemma 2.5[6]. Let ߮(ݔ), ߮(ݔ) be a pair of scaling functions. Then ߮(ݔ), ߮(ݔ) are biorthogonal if and only 

if  	ఒ	∈⋀ ො߮(ߦ − (ߣ ߮	(ߦ − തതതതതതതതതതതത(ߣ = 1,							ܽ. 	ߦ		.݁ ∈ ℝ. 
3. Properties of biorthogonal wavelet packets  
In this section, we characterize the biorthogonality property of the nonuniform wavelet packets by means of 

Fourier transform. 

Lemma 3.1. Assume that ߱, ߱ 	 ∈ ,ଶ(ℝ)ܮ	 1	 ≤ 	ݍ	 ≤ 2ܰ − 1  are a pair of biorthogonal nonuniform 

wavelets associated with a pair of biorthogonal scaling functions ߱	and ߱. Then, we have 

											  ℎ((2ܰ)ିଵ(ߦ + ିࡺ	((ߪߨ2
ୀ࣌ ℎ෨((2ܰ)ିଵ(ߦ + തതതതതതതതതതതതതതതതതതതതതതതതതതതത((ߪߨ2 = 	 	0			,	,ߜ ≤ ,	 	ݍ ≤ 2ܰ − 1.									(3.1)	 

 
Proof. By using equations (2.9)–(2.13), (2.19), (2.20) and Lemma 2.5, we obtain 
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,ߜ																							 = 	 	߱(ߦ + ⋀∋	ఒ(ߣߨ2 ߱(ߦ +  തതതതതതതതതതതതതതതത(ߣߨ2
																															=  	ఒ	∈⋀ ℎ൫(2ܰ)ିଵ(ߦ + 	൯(ߣߨ2 ෝ߱൫(2ܰ)ିଵ(ߦ + ×																																																				 	൯(ߣߨ2 		 ߱((2ܰ)ିଵ(ߦ + ߦ)ℎ෨൫(2ܰ)ିଵ		തതതതതതതതതതതതതതതതതതതതതതതതതതതത((ߣߨ2 +  ൯തതതതതതതതതതതതതതതതതതതതതതതതതതതത(ߣߨ2
 																															=  ℎ൫(2ܰ)ିଵ(ߦ + ିࡺ	൯(ߪߨ2

ୀ࣌ ℎ෨((2ܰ)ିଵ(ߦ + ×																																																				 	തതതതതതതതതതതതതതതതതതതതതതതതതതതത((ߪߨ2 	 ෝ߱((2ܰ)ିଵ(ߦ + (ߪߨ2 + ⋀∋	ఒ	(ߣߨ2 ߱((2ܰ)ିଵ(ߦ + (ߪߨ2 +  തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത(ߣߨ2
																															=  ℎ((2ܰ)ିଵ(ߦ + ିࡺ	((ߪߨ2

ୀ࣌ ℎ෨((2ܰ)ିଵ(ߦ + തതതതതതതതതതതതതതതതതതതതതതതതതതതത((ߪߨ2 	.																						⊡ 

 
Theorem 3.2. Suppose {߱(ݔ) ∶ ݊ ≥ 0}	and { ߱(ݔ) ∶ ݊ ≥ 0}	 are nonuniform wavelet packets with respect 

to a pair of biorthogonal scaling functions ߱(ݔ) and	 ߱(ݔ), respectively. Then, for ݊	 ≥ 	0, we have 																																												〈߱(. ),			 ߱(. 〈	(ߣ− = 	ߣ			,	,ఒߜ ∈ ⋀	.																																																														(3.2)	 
 
Proof. We prove this result by using induction on	݊. It follows from (2.9) and (2.12) that the claim is true for ݊	 = 	0 and		݊	 = 	1, 2, . . . , 2ܰ	 − 	1. Assume that (3.2) holds when ݊	 < ݈, where	ℓ > 	0. Then, we prove the 

result (3.2) for		݊	 = 	ℓ. Order	݊	 = ݍ	 + 	 where ,2ܰ ≥ 	0, 0	 ≤ 	ݍ ≤ 	2ܰ	 − 	1 and		 < 	݊. Therefore, by 

induction assumption, we have 
 〈߱(. ),			 ߱(. 〈	(ߣ− = ,ఒߜ 					⟺				  	ఒ	∈⋀ ෝ߱(ߦ − (ߣ ߱	(ߦ − തതതതതതതതതതതതതത(ߣ 	= 	ߦ				,	1 ∈ ℝ.		 
Using Proposition 2.4, Lemma 2.5, (2.19) and (2.20), we obtain 
 			〈߱(. ), ߱(.		−ߣ)	〉 = 	 〈 ෝ߱(. ),			 ߱(.		−ߣ)	〉			 
																						= 	 න ෝ߱ାଶே(ߦ)ℝ 	 ߱ାଶே	(ߦ)തതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ 

																					= 	 න ℎ((2ܰ)ିଵߦ) ෝ߱((2ܰ)ିଵߦ)ℝ 	ℎ෨((2ܰ)ିଵߦ)	തതതതതതതതതതതതതതതതത	 ߱((2ܰ)ିଵߦ)തതതതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ 

																				=  	ఒ	∈⋀ 		 න ℎ((2ܰ)ିଵߦ) ෝ߱((2ܰ)ିଵߦ)ଶே(ሾ,ଶగሿାఒ) 	ℎ෨((2ܰ)ିଵߦ)	തതതതതതതതതതതതതതതതത	 ߱((2ܰ)ିଵߦ)തതതതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ		 
 																					= න ൝	 ෝ߱൫(2ܰ)ିଵ(ߦ + 	൯(ߣߨ2 ߱((2ܰ)ିଵ(ߦ + ⋀∋	ఒ	തതതതതതതതതതതതതതതതതതതതതതതതതതതത((ߣߨ2 ൡଶேሾ,ଶగሿ 		 																																																																																													× 		ℎ((2ܰ)ିଵߦ)	ℎ෨((2ܰ)ିଵߦ)	തതതതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ			 																				= න ℎ((2ܰ)ିଵߦ)	ℎ෨((2ܰ)ିଵߦ)	തതതതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ	ଶேሾ,ଶగሿ 						 
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																			= න 	ሾ,ଶగሿ  ℎ൫(2ܰ)ିଵ(ߦ + ିࡺ	൯(ߪߨ2
ୀ࣌ ℎ෨((2ܰ)ିଵ(ߦ +  	ߦ݁ଶగఒక݀		തതതതതതതതതതതതതതതതതതതതതതതതതതതത((ߪߨ2

																		= න ݁ଶగఒక݀ߦ	ሾ,ଶగሿ = ,ఒߜ 																						⊡ 																					 
Theorem 3. 3. Suppose {߱(ݔ) ∶ ݊ ≥ 0}	and { ߱(ݔ) ∶ ݊ ≥ 0}	 are nonuniform wavelet packets with respect 

to a pair of biorthogonal scaling functions ߱(ݔ) and	 ߱(ݔ), respectively. Then, for 	 ≥ 	0, we have 																								〈߱భାଶே(	. ),			 ߱మାଶே(	. 〈	(ߣ− = 	ߣ			,భ,మߜ	,ఒߜ ∈ ⋀, 0	 ≤ ,ଵݍ	 ଶݍ 	≤ 2ܰ − 1.						(3.3)	 
Proof.  By Lemma 2.5, we have 〈߱భାଶே(	. ), ߱మାଶே(	. 〈	(ߣ− = 	 〈 ෝ߱భାଶே(	. ), ߱మାଶே(	.  〈	(ߣ−
 
 =	න ෝ߱భାଶே(ߦ)ℝ 	 ߱మାଶே	(ݔ)തതതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ																			 

																																										= 	 න ℎభ((2ܰ)ିଵߦ) ෝ߱((2ܰ)ିଵߦ)ℝ 	ℎ෨మ((2ܰ)ିଵߦ)	തതതതതതതതതതതതതതതതതതത	 ߱((2ܰ)ିଵߦ)തതതതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ 

 																								= 2ܰ  	ఒ	∈⋀ 		 න ℎభ(ߦ) ෝ߱(ߦ)(ሾ,ଶగሿାଶగఒ) 	ℎ෨మ(ߦ)	തതതതതതതതത	 ߱(ߦ)തതതതതതതത	݁ଶగ(ଶே)ఒక݀ߦ 

																									= 2ܰ න  ෝ߱(ߦ − 	(ߣ ߱(ߦ − ⋀∋	തതതതതതതതതതതതതఒ(ߣ ℎభ(ߦ)ሾ,ଶగሿ 	ℎ෨మ(ߦ)	തതതതതതതതത	݁ଶగ(ଶே)ఒక݀ 

=	 න ℎభ((2ܰ)ିଵߦ)ଶேሾ,ଶగሿ 	ℎ෨మ((2ܰ)ିଵߦ)	തതതതതതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ 

																																							= න 	ሾ,ଶగሿ  ℎభ൫(2ܰ)ିଵ(ߦ + ିࡺ	൯(ߪߨ2
ୀ࣌ ℎ෨మ((2ܰ)ିଵ(ߦ +  ߦ݁ଶగఒక݀		തതതതതതതതതതതതതതതതതതതതതതതതതതതതത((ߪߨ2

													= න ሾ,ଶగሿ	ߦ݁ଶగఒక݀	భ,మߜ = భ,మߜ	,ఒߜ .																																⊡ 

 

Theorem 3.4. If {߱(ݔ) ∶ ݊ ≥ 0}	and { ߱(ݔ) ∶ ݊ ≥ 0}	 are basic nonuniform wavelet packets with respect to 

a pair of biorthogonal scaling functions ߱(ݔ) and	 ߱(ݔ), respectively. Then, for ℓ, ݊	 ≥ 	0, we have 																																													〈߱ℓ(	. ),			 ߱(	. 〈	(ߣ− = 	ߣ			,	,ఒߜ	ℓ,ߜ ∈ ⋀.																																																	(3.4)	 
 
Proof. For	ℓ	 = 	݊, the result (3.4) follows by Theorem 3.2. When	ℓ ≠ ݊, and	0	 ≤ ℓ, ݊	 ≤ 2ܰ	 − 	1, the 

result (3.4) can be established from Theorem 3.3. Assuming that ℓ is not equal to	݊, and atleast one of {ℓ, ݊} 
does not lies in 	0, 1, . . , 2ܰ	 − 	1 , then we can rewrite ℓ, ݊  as 	ℓ	 = 	 ଵݍ 	+ ,ଵ2ܰ	 ݊	 = 	 ଵݏ 	+ ଵݎ2ܰ	 , 

where	ଵ, ଵݎ	 ≥ 	0, 0 ≤ ,ଵݍ ଵݏ	 ≤ 2ܰ	 − 	1.  
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Case 1. If	ଵ = ଵݍ		ଵ, thenݎ	 ≠  ଵ. Therefore, Eq. (3.4) follows by virtue of (2.19), (2.20), Lemma 2.5 andݏ	

(3.1), i.e, 

 	〈߱ℓ(	. ), ߱(	. 〈	(ߣ− = 〈߱భାଶேభ(	. ), ߱	௦భାଶே	భ(	.   	〈	(ߣ−
 																						= 〈 ෝ߱భାଶேభ(	. ), ߱	௦భାଶே	భ(	.    	〈	(ߣ−
																					= 	 න ෝ߱భାଶேభ(ߦ)ℝ 	 ߱	௦భାଶே	భ	(ߦ)തതതതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ 

																					= 	 න ℎభ((2ܰ)ିଵߦ) ෝ߱భ((2ܰ)ିଵߦ)ℝ 	 ߱	భ((2ܰ)ିଵߦ)തതതതതതതതതതതതതതതതതത	ℎ෨	௦భ((2ܰ)ିଵߦ)	തതതതതതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ 

 																			=  	ఒ	∈⋀ 		 න ℎభ((2ܰ)ିଵߦ) ෝ߱భ((2ܰ)ିଵߦ)ଶே(ሾ,ଶగሿାఒ) 	 ߱	భ((2ܰ)ିଵߦ)തതതതതതതതതതതതതതതതതത		 
 ×		ℎ෨	௦భ((2ܰ)ିଵߦ)	തതതതതതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ 																					= න ൝	 ෝ߱భ൫(2ܰ)ିଵ(ߦ + 	൯(ߣ ߱	భ((2ܰ)ିଵ(ߦ + ⋀∋	ఒ	തതതതതതതതതതതതതതതതതതതതതതതതതത((ߣ ൡଶேሾ,ଶగሿ 		 																																																																																													× 		ℎభ((2ܰ)ିଵߦ)	ℎ෨	௦భ((2ܰ)ିଵߦ)	തതതതതതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ			  																			= න 	ሾ,ଶగሿ  ℎభ൫(2ܰ)ିଵ(ߦ + ିࡺ	൯(ߪߨ2

ୀ࣌ ℎ෨	௦భ((2ܰ)ିଵ(ߦ +  	ߦ݁ଶగఒక݀		തതതതതതതതതതതതതതതതതതതതതതതതതതതതത((ߪߨ2
																		= න ௦భ	భ,ߜ 	݁ଶగఒక݀ߦ	ሾ,ଶగሿ = ,ఒߜ = 0.							 
Case 2. If	ଵ ≠ ଵ		ଵ, orderݎ	 = ଶݍ + ,ଶ	2ܰ ଵݎ	 = ଶݏ	 + ,ଶ	 where	ଶ,ݎ	2ܰ ଶݎ	 	≥ 	0 and	0	 ≤ 	 ,ଶݍ ଶݏ	 ≤ 	2ܰ	 −	1. If		ଶ = ଶݍ		ଶ, thenݎ	 ≠ ଶ	ଶ. Similar to Case 1, (3.4) can be established. Whenݏ	 ≠ ଶ		ଶ, we orderݎ	 ଷݍ= + ,ଷ	2ܰ ଶݎ	 = ଷݏ	 + ,ଷ	 where	ଷ,ݎ	2ܰ ଷݎ	 	≥ 	0 and	0	 ≤ 	 ,ଷݍ ଷݏ	 ≤ 2ܰ − 	1. Thus, after taking finite steps 

(denoted by	ߢ), we obtain 0	 ≤ ,	 ݎ	 ≤ 	2ܰ − 	1 and	0	 ≤ 	 ,ݍ ݏ	 ≤ 2ܰ − 	1. If		 = ݎ	 , then		ݍ ≠ ݏ	 .  

Similar to the Case 1, (3.4) follows. If		 ≠ .), then it gets from (2.9)–(2.12) that 〈߱ഉݎ	 ),			 ߱ഉ(. 〈	(ߣ− = 	ߣ			,0 ∈ ⋀ 			⟺ 				  	ఒ	∈⋀ ෝ߱ഉ(ߦ − (ߣ ߱ഉ	(ߦ − തതതതതതതതതതതതതത(ߣ 	= 	ߦ				,	0 ∈ ℝ.		 
Furthermore, we obtain 〈߱(	. ), ߱(	. 〈	(ߣ− = 〈 ෝ߱(	. ), ߱(	.    	〈	(ߣ−
 																									= 〈 ෝ߱భାଶேభ(	. ), ߱	௦భାଶே	భ(	.    	〈	(ߣ−
																								= 	 න ෝ߱భାଶேభ(ߦ)ℝ 	 ߱	௦భାଶே	భ	(ݔ)തതതതതതതതതതതതതതതതത	݁ଶగఒక݀ߦ 
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																							= 	 න ℎభ((2ܰ)ିଵߦ)ℝ 	ℎమ((2ܰ)ିଶߦ)	 ෝ߱మ((2ܰ)ିଶߦ) ߱	మ((2ܰ)ିଶߦ)തതതതതതതതതതതതതതതതതത	 	× 			ℎ෨	௦భ((2ܰ)ିଵߦ)	തതതതതതതതതതതതതതതതതതത		ℎ෨	௦మ((2ܰ)ିଶߦ)	തതതതതതതതതതതതതതതതതതത݁ଶగఒక݀ߦ			  																							= 	 න ൝ෑℎℓ൫(2ܰ)ିℓߦ൯
ℓୀଵ ൡℝ 	 ෝ߱ഉ((2ܰ)ିߦ) ߱	ഉ((2ܰ)ିߦ)തതതതതതതതതതതതതതതതതതത	൝ෑℎ෨௦ℓ((2ܰ)ିℓߦ)തതതതതതതതതതതതതതതതത

ℓୀଵ ൡ ݁ଶగఒక݀ߦ 

		=  	ఒ	∈⋀ 		 න ൝ෑℎℓ൫(2ܰ)ିℓߦ൯
ℓୀଵ ൡ(ଶே)ഉ(ሾ,ଶగሿାఒ) 	ቄ ෝ߱ഉ((2ܰ)ିߦ) ߱	ഉ((2ܰ)ିߦ)തതതതതതതതതതതതതതതതതതതቅ	 

		× 			 ൝ෑℎ෨௦ℓ((2ܰ)ିℓߦ)തതതതതതതതതതതതതതതതത
ℓୀଵ ൡ ݁ଶగఒక݀ߦ	 

				= 		 න ൝ෑℎℓ൫(2ܰ)ିℓߦ൯
ℓୀଵ ൡ(ଶே)ഉሾ,ଶగሿ 		൝ෑℎ෨௦ℓ((2ܰ)ିℓߦ)തതതതതതതതതതതതതതതതത

ℓୀଵ ൡ																																								 
						× ൝ 	 ෝ߱ഉ((2ܰ)ି(ߦ + ((ߣ ߱	ഉ((2ܰ)ି(ߦ + ⋀∋	തതതതതതതതതതതതതതതതതതതതതതതതതതఒ((ߣ ൡ		݁ଶగఒక݀ߦ	 

																					= 	 න ൝ෑℎℓ൫(2ܰ)ିℓߦ൯
ℓୀଵ ൡ(ଶே)ഉሾ,ଶగሿ 			 .0.		 ൝ෑℎ෨௦ℓ((2ܰ)ିℓߦ)തതതതതതതതതതതതതതതതത

ℓୀଵ ൡ ݁ଶగఒక݀ߦ														 ⊡											 
 

4. The nonuniform biorthogonal wavelet packet bases of ࡸ(ℝ)  
    In this section, we will decompose subspaces ܸ 	, ෨ܸ and ܹ 	, ෩ܹ by constructing a series of subspaces of 

nonuniform wavelet packets. Furthermore, we present the direct decomposition for space	ܮଶ(ℝ). 
For any	݊	 ≥ 	0, define 																																																		ܷ = spanതതതതതത	{߱(ݔ	 − (ߣ ∶ 	ߣ	 ∈ ⋀			},																																																							(4.1)	 																
Then, we have  ܷ = ܸ, 	 ௦ܷ = ܹ, 1 ≤ ݍ ≤ 2ܰ − 1. Assume that ൛ℎ ((2ܰ)ିଵ(ߦ − ൟ,ఒୀଶேିଵ((ߣ

 is a unitary 

matrix.  

Lemma 4.1. For	݊	 ≥ 	0, the space ܷࣞ can be decomposed into direct sum of		ܷାଶே, 0	 ≤ 	ݍ	 ≤ 	2ܰ − 	1, 

i.e. ܷࣞ =	 ⊕ୀଶேିଵ 		ܷାଶே,																																																														(4.3) 
 

where ࣞ is the dilation operator with respect to the dilation	2ܰ. 

 
Proof. First, we claim that 

																		ܷࣞ = ቐ݂(ݔ) ∶ (ݔ)݂		 =   ఒܾ	ఒ∈⋀
ଶேିଵ
ୀ ߱ାଶே(ݔ − ,(ߣ  	ఒ	∈⋀ ห ఒܾหଶ < ∞ቑ.														(4.4)	 
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As for any	0	 ≤ 	ݍ	 ≤ 	2ܰ − 	1, by (2.17) and (4.1),	߱ାଶே(ݔ − (ߣ ∈ ܷࣞ. Assume that ݂(ݔ) ∈ ܷࣞ,	then 

there exists a sequence { ఒܿ}	ఒ∈⋀	such that 																																																												݂(ݔ) = ∑ 	ఒ	∈⋀ ఒܿ		߱(2ܰݔ −   	(4.5)																																																		.(ߣ

Further, if there exists a sequence ൛ ఒܾൟ	ఒ∈⋀	, 0	 ≤ 	ݍ	 ≤ 	2ܰ − 	1,		as for	݂(ݔ) ∈ ܷࣞ, such that 																																																	݂(ݔ) = ∑ ∑ ఒܾ	ఒ∈⋀ଶேିଵୀ ߱ାଶே(ݔ −   (4.6)																																																			.(ߣ

Taking Fourier transform on the both sides of (4.5) and (4.6), respectively and by using (2.19), we obtain 														 መ݂(ߦ) = ݉((2ܰ)ିଵߦ)	 ෝ߱((2ܰ)ିଵߦ) = ∑ ݃(ߦ)ℎ((2ܰ)ିଵߦ)ଶேିଵୀ ෝ߱((2ܰ)ିଵߦ),									(4.7)  
 

where 					݉(ߦ) = ∑ ఒܿఒ∈⋀ ݁ିଶగఒక	, 	݃(ߦ) = ∑ ఒܾఒ∈⋀ ݁ିଶగఒక, 0	 ≤ 	ݍ	 ≤ 	2ܰ − 	1, ߦ ∈ ℝ.  
 

The above result (4.7) follows if the following equality holds: 																																																				݉((2ܰ)ିଵߦ) = ∑ ݃(ߦ)ℎ((2ܰ)ିଵߦ)ଶேିଵୀ .																																						(4.8)  

For any sequence	{ ఒܿ}	ఒ∈⋀, we will prove that there exists a sequence ൛ ఒܾൟఒ∈⋀	, 0	 ≤ 	ݍ	 ≤ 	2ܰ − 1 

such that (4.8) is satisfied. Moreover, Eq. (4.8) is equivalent to the following equation:  											݉((2ܰ)ିଵ(ߦ − ((ߣ = ∑ ݃(ߦ)ℎ((2ܰ)ିଵ(ߦ − ଶேିଵୀ((ߣ ,						0	 ≤ ߣ	 ≤ 	2ܰ − 1.									(4.9)  

The solvability of Eq. (4.9) for every sequence 	{ ఒܿ}	ఒ∈⋀   follows from the fact that the matrix ൛ℎ((2ܰ)ିଵ(ߦ −  ,ଶேିଵis a unitary matrix (see [6, 7]). Hence, equality (4.4) follows. Furthermore	ఒ,ஸ	ஸ	ൟ((ߣ

applying Theorem 3.3, it follows that 

 ൛߱ାଶே(ݔ − (ߣ ∶ 		݊ ≥ 0, 0	 ≤ ݍ	 ≤ 	2ܰ − 1, ߣ ∈ Λ		ൟ,  

forms a Riesz basis of ܷࣞ.                                ⊡                                               

 

Similar to (4.3), we can establish the following result:  ෩ܷ = ෨ܸ, 	 ෩ܷ௦ = ෩ܹ, 0 ≤ ݍ ≤ 2ܰ − 1,  

and ࣞ෩ܷ =	 ⊕ୀଶேିଵ 		 ෩ܷାଶே.																																																														(4.10) 
 

For ℓ	 ∈ ℕ,  define  Γ෨ℓ = ∑ (2ܰ)ℓୀ ,ߤ Γℓ = Γ෨ℓ − Γ෨ℓିଵ.  In what follows, we will give the direct 
decomposition of space ܮଶ(ℝ). 
 
Theorem 4.2. The family of functions {߱(ݔ − (ߣ ∶ 	݊ ∈ Γℓ, ߣ ∈ Λ	}	constitutes Riesz basis of		ࣞℓ ܹ . In 

particular, {߱(ݔ − (ߣ ∶ 	݊ ≥ 0, ߣ ∈ Λ	} constitutes Riesz basis of ܮଶ(ℝ). 
 

Proof. By equation (4.3), we have ܷࣞ = ⨁ୀଶேିଵܷ    i.e. ܷࣞ = 	ܷ⨁ୀଵଶேିଵܷ. Since ܷ = ܸ  and ܹ =⨁ୀଵଶேିଵ ܹ 	= 	⨁ୀଵଶேିଵܷ, then	ܷࣞ = ܸ ⊕ ܹ. It can be inductively inferred from (4.3) that 																																					ࣞℓܷ = 		ࣞℓିଵܷ ⊕∈ℓ 	ܷ	,							ℓ ∈ ℕ.																																																		(4.11)  
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Since ܸାଵ = ܸ ⊕ ܹ	, ݆ ∈ ℤ,	  therefore, 		ࣞℓܷ = 			ࣞℓିଵܷ ⊕ ࣞℓିଵ ܹ	, ℓ ∈ ℕ.  It follows from (4.3) and 

Proposition 2.4 that 		ࣞℓ ܹ =⊕∈ℓ 	ܷ and 								ܮଶ(ℝ) = ܸ ⊕ ൫⊕ℓஹ 		ࣞℓ ܹ൯ = ܷ ⊕ ቀ⊕ℓஹ ൫⊕∈ℓ ܷ൯ቁ =⊕ୀஶ 	ܷ.							(4.12) 
In the light of Theorem 3.2, the family {߱(ݔ − (ߣ ∶ ߣ	 ∈ Λ	} is a Riesz basis of	ࣞ ܹ. Moreover, according 

to (4.12), the family {߱(ݔ − (ߣ ∶ 	݊ ≥ 0, ߣ ∈ Λ	} forms a Riesz basis of 	ܮଶ(ℝ).       ⊡ 

 

Corollary 4.3. For every	ℓ ∈ ℕ, the family of functions  { ߱(ݔ − (ߣ ∶ 	݊ ∈ Γℓ, ߣ ∈ Λ	}  

forms a Riesz basis of 	ࣞℓ ෩ܹ. 
 

Corollary 4.4. For every	ℓ ∈ ℕ, the family of functions  

 ൛߱൫(2ܰ)ݔ − ൯ߣ ∶ 	݆ ∈ ℤ, ݊ ∈ Γℓ, ߣ ∈ Λ	ൟ  

forms a Riesz basis of ܮଶ(ℝ).      
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