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Abstract. In this paper, semi-iterative method is applied to find solution of the fully fuzzy linear systems. 
The convergence of this method is discussed in details. Furthermore, we show that in some situations that the 
existing methods such as Jacobi, Gauss-Seidel, JOR, SOR and are divergent, our proposed method is 
applicable. Finally, numerical computations are presented based on a particular linear system, which clearly 
show the reliability and efficiency of our algorithms 
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1. Introduction  
     Let us consider the following linear systems 

                                                                           Ax=b,                                                                                 (1) 

where , ,n n nA R b x R×∈ ∈  . These method often occur in a wide variety of area including numerical 

differential equation, eigenvalue problems, economics models, design and computer analysis of circuits, 

power system networks, chemical engineering processes, physical and biological sciences ; see [1-12] and 

the references therein.  

However, when the estimation of the system coefficients is imprecise and only some vague knowledge 
about the actual values of the parameters is available, it may be convenient to represent some or all of them 
with fuzzy numbers [13]. Fuzzy data is being used as a natural way to describe uncertain data. Fuzzy concept 
was introduced by Zadeh [13- 14]. We refer the reader to [15] for more information on fuzzy numbers and 
fuzzy arithmetic. Fuzzy systems are used to study a variety of problems including fuzzy metric spaces [16], 
fuzzy differential equations [17], particle physics [18- 19] , Game theory [20], optimization [21] and fuzzy 
linear systems[22-25]. 

Fuzzy number arithmetic is widely applied and useful in computation of linear system whose 
parameters are all or partially represented by fuzzy numbers. Dubois and Prade [26-27] investigated two 
definitions of a system of fuzzy linear equations, consisting of system of tolerance constraints and system of 
approximate equalities. The simplest method for finding a solution for this system is creating scenarios for 
the fuzzy system, which is a realization of fuzzy systems. Based on these actual scenarios, Buckley and Qu 
[28] extended several methods for this category and proved their approaches are not practicable, because 
infinite number of scenarios can be driven for a fully fuzzy linear system (FFLS). Friedman et al. [22] 
introduced a general model for solving a fuzzy n × n linear system whose coefficient matrix is crisp and the 
right-hand side column is an arbitrary fuzzy number vector. They used the parametric form of fuzzy numbers 
and replaced the original fuzzy n × n linear system by a crisp 2n × 2n linear system and studied duality in 
fuzzy linear systems AX = BX+Y where A , B are real n×n matrix, the unknown vector X is vector consisting 
of n fuzzy numbers and the constant Y is vector consisting of n fuzzy numbers, in [29].  There are many other 
numerical methods for solving fuzzy linear systems such as Jacobi, Gauss-Seidel, Adomiam decomposition 
method and SOR iterative method [30-35].  In addition, another important kind of fuzzy linear systems are 
the fully fuzzy linear systems (FFLS) in which all the parameters are fuzzy numbers. Dehghan and Hashemi 
[36-37] proposed the Adomian decomposition method, and other iterative methods to find the positive fuzzy 
vector solution of n × n fully fuzzy linear system. Dehghan et al. [38] proposed some computational methods 
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such as Cramer’s rule, Gauss elimination method, LU decomposition method and linear programming 
approach for finding the approximated solution of FFLS. Nasseri et al. [39] used a certain decomposition 
methods of the coefficient matrix for solving fully fuzzy linear system of equations. Kumar et al. in [40] 
obtained exact solution of fully fuzzy linear system by solving a linear programming. In this paper, we 
propose Semi-iterative method for solving fully fuzzy linear systems.  
This paper is organized as follows: 

In Section 2 some basic definitions and arithmetic are reviewed. In Section 3 a new method is proposed 
for solving FFLS and we respectively give the semi-iterative method and some convenient iterative methods.  
In section 4 numerical results are considered to show the efficiency of the proposed method. Section 5 ends 
this paper with a conclusion. 

2. Some Basic Definition and Arithmetic Operations  
 In this section, an appropriate brief introduction to preliminary topics such as fuzzy numbers and fuzzy 

calculus will be introduced and the definition for FFLS will be provided. For details, we refer to [26, 37]. 

Definition 2.1 Let X  denote a universal set. Then a fuzzy subset A~ of X  is defined by its membership 
function ]1,0[:~ →XAμ ; which assigns a real number )(~ xAμ in the interval [0,1], to each element Xx ∈ , 

where the value of )(~ xAμ at x shows the grade of membership of x  in A~ . 

A fuzzy subset A~  can be characterized as a set of ordered pairs of element x  and grade )(~ xAμ and is 

often written }));(,{(~
~ XxxxA A ∈= μ .The class of fuzzy sets on X  is denoted with ).(XΓ  

Definition 2.2 A fuzzy set with the following membership function is named a triangular fuzzy number and 

in this paper we will use these fuzzy numbers. 

               

1 , , 0,

( ) 1 , , 0,

0, .

A

m x m x m

x mx m x m

else

−⎧ − − ≤ ≤ >⎪
⎪ −⎪= − ≤ ≤ + >⎨
⎪
⎪
⎪⎩

%

α α
α

μ β β
β

 

Definition 2.3   A fuzzy number A% is said to be positive (negative) by 0( 0)A A> <% %  if  its membership 

function ( )A x%μ   satisfies ( ) 0, 0( 0).A x x x= ∀ ≤ ∀ ≥%μ   

Using its mean value and left and right spreads, and shape functions, such a fuzzy number A%  is symbolically 

written ( , , )A m α β=%  . Obviously, A%  is positive, if and only if 0.m α− ≥  

Definition 2.4   Two fuzzy numbers ( , , )A m α β=%  and ( , , )B n γ δ=%  are said to be equal, if and only if m = 

n, α = γ and β = .δ  

Definition 2.5  Let  ( , , )A m α β=%  , ( , , )B n γ δ=%  be two triangular fuzzy numbers then; 

(i) ( , , ) ( , , ) ( , , ),A B m α β n γ δ m n α γ β δ⊕ = ⊕ = + + +% %  

(ii) ) ( , , ) ( , , ),A m α β m β α− = − = −%  

(iii)if ,A B% %  be a positive fuzzy number then: ( , , ) ( , , ) ( , , ),m α β n γ δ mn nα mγ nβ mδ⊗ ≅ + +  
(iv) For scalar multiplication we have; 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22598 | Generated on 2025-04-12 04:21:01



Journal of Information and Computing Science, Vol. 9 (2014) No. 1 pp 067-074 
 
 

JIC email for subscription: publishing@WAU.org.uk 

69

( , , ), 0,
( , , )

( , , ), 0.
λm λα λβ λ

λ m α β
λm λβ λα λ

≥⎧
⊗ = ⎨ − − <⎩

 
Definition 2.6   A matrix ( )ijA a=% %  is called a fuzzy matrix, if each element of A%  is a fuzzy number. A fuzzy 

matrix A%  will be positive and denoted by 0A >% , if each element of A% be positive. We may represent n × n 
fuzzy matrix ( )ij n nA a ×=% % , such that  ( , , )ij ij ij ija a α β=% , with the new notation ( , , )A A M N=% , where A 
=(aij ), M =(αij ) and N =(βij ) are three n × n crisp matrices.

 3. Chebyshev Semi-iterative Method for FFLS 

     Consider Fully fuzzy linear system (FFLS) A x b⊗ = %% %  . In this paper we are going to obtain a positive 

solution of FFLS, where, ( , , ) 0, ( , , ) 0A A M N b b g h= > = >%% % %  and ( , , ) 0.x x y z= > %%   

So we have;  

                              ( , , ) ( , , ) ( , , ).A M N x y z b g h⊗ =                                                                            (2) 

Then by Definition 2.5 we have;   

                                       ( , , ) ( , , ).Ax Ay Mx Az Nx b g h+ + =                                                              (3) 

And by Definition 2.4, concludes that; 

                                                                  

,
,

.

Ax b
Ay Mx g
Az Nx h

=⎧
⎪ + =⎨
⎪ + =⎩

                                                                        (4) 

Then, 

{ {

0 0
0 .

0
X

A x b
M A y g
N A z h

ΞΛ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠1442443

 

So, by assuming that A be a nonsingular matrix we have; 

                                                             

1

1

1

,
( ),
( ).

x A b
y A g Mx
z A h Nx

−

−

−

⎧ =
⎪

= −⎨
⎪ = −⎩

                                                                (5) 

Dehghan et al. [36] applied some iterative techniques such as Richardson, Jacobi, Jacobi overrelaxation 

(JOR), Gauss–Seidel, successive overrelaxation (SOR), accelerated overrelaxation (AOR), symmetric and 

unsymmetric SOR (SSOR and USSOR) and extrapolated modify ed Aitken (EMA) for solving  FFLS.  First, 

we review their work. 

Consider Eq. (4) and let A=Q- P  be a proper splitting of crisp matrix A and Q, called the splitting matrix, be 

a nonsingular crisp matrix. Thus, the iterative method for FFLS is as follows; 
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( 1) ( )

( 1) ( )

( 1) ( )

, ( 0). (6)

k k

k k

k k

x x
y T y ξ k
z z

+

+

+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

= + ≥⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

T is called the iteration matrix and ξ is a vector and; 

                                                   

11

1 1 1

1 1 1

0 0
0 , .

0

Q bQ P
T Q M Q P ξ Q g

Q N Q P Q h

−−

− − −

− − −

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= − = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠

                                 (7) 

Therefore by choose special parameters in Q we can obtain the popular iterative method. For example,  if 
A=D-L-U, where D is diagonal , L is lower triangular and U is upper triangular part of A, then we have;  
 
   1) Jacobi method for Q=D. 

   2) JOR(Jacobi Overrelaxation) method for 1 ,( )Q D w R
w

= ∈ . 

   3) Gauss-Seidel method for Q=D-L. 

   4) SOR method for 1( ), ( )Q D L w R
w

= − ∈ .  

For details, we refer to [36]. 

Next, we apply another acceleration method called Chebyshev semi-iterative method for FFLS. Based on 

above demonstration, semi-iterative method is as follows;  

                     

            

( 1) ( ) ( 1) ( 1)1

( 1) 1 1 ( ) ( 1) ( 1)
1

1 1( 1) ( ) ( 1) ( 1)

0 0
( 0 ) , (8)

0

k k k k

k k k k
k

k k k k

x x x xQ P
y ω Q M Q P y ξ y y

Q N Q Pz z z z

+ − −−

+ − − − −
+

− −+ − −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

where, 

1

1

12 ( )
( ) ,1( ) ( )

( )

k

k

K

C
T

T C
T

+

+

= ρω
ρ

ρ  
( ) (1) (0)

( ) 3 (1) (0)

( ) (1) (0)

, ,

k

k n

k

x x x
y R y T y ξ
z z z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

∈ = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

and, 
1 2 0 1( ) 2 ( ) ( ), ( ) 1, ( ) ,k k kC x xC x C x C x C x x− −= − = =  

are the Chebyshev polynomials of the first kind and also ( )Tρ is called spectral radius of T; see [1- 2, 41]  .  
For example, by Eq. (8), Chebyshev-SOR semi-iterative method is as follows; 
  

     

( 1) ( ) 1 ( 1)
1 1

( 1) ( ) 1 ( ) 1 ( 1)
1 1

( 1) ( ) 1 ( ) 1 ( 1)
1 1

( ( ) ) (1 ) ,

( ( ) ( ) ) (1 ) ,

( ( ) ( ) ) (1 ) .

k k k
k k

k k k k
k k

k k k k
k k

x x w D wL b x

y y w D wL Mx w D wL g y

z y w D wL Nx w D wL h y

+ − −
+ +

+ − − −
+ +

+ − − −
+ +

⎧ = + − + −
⎪

= − − + − + −⎨
⎪ = − − + − + −⎩

ω κ ω
ω κ ω
ω κ ω

                        (9) 
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Where, 
1( ) [(1 ) ].D wL w D wU−= − − +κ  

However, since the spectral radius of T is not known in advance, ( )Tρ   is usually replaced by the lower and 

upper bounds (see [41]), that is; 

                                           

( 1) ( ) ( ) ( 1) ( 1)

( 1) ( ) ( ) ( 1) ( 1)
1

( 1) ( ) ( ) ( 1) ( 1)

( ) , (10)

k k k k k

k k k k k
k

k k k k k

x m x x x
y ω γ n y y y
z o z z z

+ − −

+ − −
+

+ − −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

= + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

                    

where, 

1
1

( ) 1 ( )

( ) 1 ( )

( ) 1 ( )

( )2. . ,
( )

2 2 ( ), , ,
2 ( ) ( )

1 1, , ( ).

i
i

i

k k

k k

k k

C
C

m Q b x
n Q g y
o Q h z

eigenvalues T

+
+

−

−

−

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ − += − Λ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− ≤ ≤ ≤ ≤ > ∈

υω υ
υ

β αγ υ
β α β α

α λ β β α λ

 

Furthermore, after some calculation, from Eq. (10), we have; see [2, 42]: 

            

( 1) ( ) 1 ( 1)

( 1) ( ) 1 ( 1)1
1

( 1) ( ) 1 ( 1)

{[2 ( ) ] 2 } (1 ) , (11)
2 ( )

k k k

k k kk
i

k k k

x x Q b x
y T I y Q g k y
z z Q h z

+ − −

+ − −+
+

+ − −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

= − + + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

ρ α β ρ
α β  

where, 
                        2 2 2 1

1 2 11, 2 / (2 1), 2; (1 / 4 ) .k kfor n −
+= = − ≥ = −ρ ρ υ υ ρ ρ υ  

Theorem 3.1. Chebyshev semi-iterative method (8) for solving fully fuzzy linear system A x b⊗ = %% % , 

converges if and only if its classical version converges for solving the crisp linear system Ax = b derived 

from the corresponding FFLS. 

Proof.   By above demonstrations and based on Eq. (7) it is easy to see that spectrum of T is equal to 

spectrum of 1Q P− . Therefore, the proof is complete.  

Theorem 3.2. Let 1 ( ) [2 ( ) ] / [2 ( )]P T T Iα β α β= − + − +  . Then Chebyshev semi-iterative method 

converges, if 1( ( )) 1.P Tρ <
 

Proof. Using Theorem 3.1 of this paper and Theorem 4.11[42], the result is trivial.  
 

4. Numerical Experiments  
  In this section, we give some numerical experiments to illustrate the results obtained in previous sections. 

All the numerical experiments presented in this section were computed in double precision using a 

MATLAB 7 on a PC with a 1.86GHz 32-bit processor and 1GB memory.  
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Example 4.1. Consider the Consider the following FFLS: 

                                               

(1,4,1),
( , , ); (0.1,1,0.1),

(0.2,1,0.1).

A tridiag
A A M N M tridiag

N tridiag

=⎧
⎪= =⎨
⎪ =⎩

%  

And , 

( , , ); , , .
1i i i

i ib b g h b i g h
n n

= = = =
+

%  

The following table shows the numerical results of above example with the tolerance 610ε −= and the initial 

approximation zero vector. In the Table 1, we reported the number of iterations (Iter) and Elapsed time 

(ELP) for the SOR iterative method  and Chebyshev-SOR semi-iterative method with different  n and w=1.1.   

 

             Table1        Shows the results of example 4.1 for SOR and Chebyshev-SOR methods.   
Method         SOR method           Chebyshev-SOR method 
      n  Iter ELP       Iter     ELP 
     50   18 0.049826        16 0.008087 
   100   19 0.251584        17 0.145590 
   200   20 0.251584        18 0.298130 
   300   20 0.292463        19 0.374779 

                 

Example 4.2. Consider the following FFLS: 

                 

1 1 1( , , )(1,0.2,0.2) (1,0.4,0.3) (2,0.3,0.4) (4,0.2,0.1)
((4,0.3,0.1) (3,0.4,0.2) (2,0.2,0.3) (1,0.1,0.3)

(1,0.3,0.2) (1,0.5,0.2) (3,0.3,0.1) (1,0.2,0.3)
(2,0.4,0.5) (4,0.5,0.2) (2,0.6,1.2) (3,0.3,0.3)

x y z
x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2 2 2

3 3 3

4 4 4

(6.9,5,4.1)
, , ) (5,3,4)

.
( , , ) (4.9,4,3.2)

(7,5,6)( , , )

y z
x y z
x y z

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

If we use iterative methods [36] for this problem we can see that all of the Jacobi, Gauss-Sidel and JOR, 

SOR methods are divergent (since 1( ) 1).Q P− >ρ  

However, by using the initial values (0,0,0,0)tx y z s= = = =  and stopping criterion 610tol −≤ , the 

Chebyshev-Gauss-Seidel semi-iterative method(Q D L= − ) converges in 29 iterations to the following 

solution; 

1 1 1

2 2 2

3 3 3

4 4 4

( , , ) (0.1961,0.0072,0.1448)
( , , ) (0.3143,0.0393,0.3681)

.
( , , ) (1.1169,0.8533,0.5744)

(1.0390,0.6348,0.4386)( , , )

x y z
x y z
x y z
x y z

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 

5. Conclusion 
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 In this paper, the fully fuzzy linear systems, i.e., fuzzy linear systems with fuzzy coefficients involving 
fuzzy variables are investigated and semi-iterative method is applied for solving these systems. The proposed 
method is easy to understand and apply in real life situations. Furthermore, we show that our algorithm 
compare with some other algorithms  works better . Finally,  from theoretical  speaking and  numerical  
examples,  it  may  be  concluded  that  this method is  efficient and convenient. 
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