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Abstract. In this paper, Artificial Neural Networks (ANNs) are used to model the effect of atmospheric 
air-plasma treatment on fabric surfaces with various structures. In order to reduce the complexity of the 
models and increase the knowledge and comprehension of the underlying process, a fuzzy sensitivity 
variation criterion is used to select the most relevant parameters which are taken as inputs of the reduced 
neural models. The model outputs are the water contact angle and the capillarity of woven fabrics, 
characterizing the change of fabric surfaces. The early stopping and Bayesian regularization techniques are 
used for improving the network’s generalization capability. Two different network configurations are studied. 
One deals with two networks having each one output layer neuron and another with a single network 
combining the two outputs. Obtained results showed that the first configuration combined with the Bayesian 
regularization approach is the most suitable to achieve a good prediction accuracy. 
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1. Introduction  
In recent years, atmospheric plasma treatment has gained increasing interest for application in the textile industry. 

This technology is an environmentally friendly alternative to conventional wet-chemical processes, since it does not 
require the use of water and since there is no waste production. Other advantages of it include: low cost of operation, 
rapid processing and high efficiency. A plasma is a partially ionized gas composed of highly excited atomic, molecular, 
ionic and radical species, as well as photons and electrons. These active species can enable a variety of generic surface 
process including surface activation by bond breaking to create reactive sites, dissociation of surface contaminants 
(cleaning), material volatilization and removal (etching), and deposition of conformal coatings (polymerization) [1]. In 
all these processes, only the topmost layer of the material are modified leaving the bulk properties unaffected. The 
altered surface properties are ideal for dyeing, printing, or adhesive bonding.1Although enormous literature is available 
on plasma surface modification of textile fabrics [2-9], a systematic study on the simultaneous effects of various 
reaction parameters on the surface properties is still lacking. In practice, the induced plasma effects depend not only on 
the gas used but on a multiplicity of factors like electrical power, treatment time, substrate nature and so forth [3,4,7,10]. 
The relationship between these factors and surface wetting properties is very complex and non-linear. It is very difficult 
to characterize this relationship analytically. Thus, we use neural networks to construct a model. In fact, neural 
networks have numerous attractive properties for modeling complex systems such as efficient learning from 
experimental data, universal approximations for any arbitrary complex relation between input and output patterns, 
resistance to noisy or missing data, and good generalization ability [11-13]. Indeed, neural networks have recently been 
applied to a variety of plasma-based processes [14-17]. In this way, studies have shown that neural network models 
exhibit superior accuracy and predictive capabilities over traditional statistical methods and require less experimental 
training data [18-20].  

However, developing neural network models is constrained by many factors such as the complex non-linear 
relationship between input and output variables, the large dimensionality of the input space, the presence of redundant 
variables and the lack of available learning data. These factors may cause a deterioration of the generalization ability 
and an increase of the computational cost. Therefore, selecting the most relevant input variables is critical to enhance 
model performance and increase interpretability of the results [21,22]. In this way, the selection of process parameters 
allows manufacturers to adjust only a few number of the most relevant parameters in order meet the requirements. In 
literature, many features selection techniques have been proposed [23-25]. In our study, as the number of available 
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experimental data is rather limited, we use the fuzzy sensitivity variation criterion developed by Deng et al. [26,27] to 
identify the most relevant fabric parameters to achieve the desired modification results by air-plasma treatment. This 
method has been applied successfully to the design of a non-woven process [27]. By comparison with the classical 
selection methods, the proposed criterion has shown to be more robust and less sensitive to measured data noises and 
uncertainties. Furthermore, it can deal with a very few number of learning data. These advantages proved a strong 
motivation to the present paper for using such method to select the most relevant plasma process parameters in order to 
reduce data complexity and obtain more interpretable results with a very limited cost. The results obtained from this 
fuzzy-based method will enable to better understand, control and optimize the plasma process in order to obtain the 
desired effect. 

In this paper, a fuzzy sensitivity criterion is used to select the most relevant input parameters of plasma 
process to be used to develop neural network models for predicting fabric surface wetting properties. The use 
of early stopping and Bayesian regularization approaches are considered. Two different network 
configurations are studied. One deals with two networks each having one output layer neuron and another 
with a single network that gives two outputs. A comparison between these configurations and training 
algorithms is performed. 

2. Experiments and measurements 

2.1. Materials 
Six different woven fabrics are used during this study. Two of them are made of viscose fibers, and the others of 

polyester (PET) fibers. Before air plasma treatment, the woven samples are cleaned and left in a controlled climate 
(20±2°C, 65±2% relative humidity (RH)) for at least 24 hours prior to all experiments. Table 1 presents the fabric 
features and their ranges. The numeric values 0 and 1 are used to encode the corresponding woven feature (given in 
parentheses). 

Table1. The range of woven fabric features. 
Parameter  Minimum  Maximum  
Fiber nature 0 (100% polyester) 1 (100% viscose) 
Fabric weight (g/m2) 160 200 
Thickness (mm) 0.31 0.41 
Construction 0 (plain) 1 (3/1 twill) 
Weft density (picks/cm) 17.2 21 
Warp density (ends/cm) 39.2 45 
Weft count (dtex) 150 340.29 
Fiber count (dtex) 0.9 1.7 
Air permeability (l/m2s) 19.62 786.2 
Porosity (%) 60.55 69.51 
Surface roughness (µm) 41.86 74.4 

 

2.2. Plasma treatments 
Plasma treatments are carried out using an atmospheric plasma machine called “Coating star” 

manufactured by the Ahlbrandt system (Fig.1). The following machine parameters are kept constant: 
frequency of 30 KHz, electrode length of 0.5m and inter-electrode distance of 1.5mm. The electrical power 
and treatment speed are varied respectively between 300-1000 Watts and 2-10 m/min. Plasma discharge is 
generated at atmospheric pressure by two electrodes and a counter-electrode both covered by a dielectric 
ceramic material. During plasma treatment, woven samples are in contact with the counter-electrode, and 
passed through the plasma gas present between the electrodes/counter electrode gap. 
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Fig. 1: Atmospheric plasma treatment, using “Coating Star” system. 

2.3. Measurements 
In order to quantify the surface treatment modification, contact angle and capillarity measurements are 

carried out with distilled water on a tensiometer “3S balance” from GBX. During measurements, a fabric 
sample of size 5cm x 3cm is connected to the tensiometer at the weighing position and progressively brought 
into contact with the surface of water placed in a container. On immediate contact with the water surface, a 
sudden increase weight is measured due to wetting forces. When the liquid is moved down to leave the fabric 
sample, the balance gave the values of the total weight at the end (Wt) and the weight of capillarity (Wc). 
These parameters are used to calculate the approximate meniscus weight (Wm) using Eq. (1)  

                                                                                  (1) 

The water contact angle of woven samples can be determined from the meniscus weight using Eq. 
(2), since both the surface tension of liquid water and the perimeter of the contacting surface are know. 

                                                                (2)             

where p the sample perimeter in contact with the liquid (mm), Wm the calculated meniscus weight (g), g = 9.81m/s2,  
the surface tension of the liquid (mN/m) and  the contact angle (°). 

The capillarity values for the woven samples are obtained from the capillarity weight values (Wc) 
from wettability experiments and are expressed as a percentage (Eq. 3) of the fabric weight. 

                                                                            (3) 

where Wc the weight of water absorbed by capillarity after 2 min of contact (g) and Ws the textile sample 
weight. 

3. Selection procedure of relevant input parameters 

In this paper, the fuzzy sensitivity criterion developed by Deng et al. [26,27] is used for selecting the 
most relevant input parameters of plasma process. The main advantage of this method is that it can deal with 
a limited number of learning data. Its principle consists of calculating distances or variations between 
individual data samples in the input space (process parameters) and the output space (quality features), 
respectively. Then, fuzzy logic is used to evaluate the sensitivity variation of each input variable related to 
the output variable. The sensitivity for all the input variables is defined according to the two following 
principles: 
1) If a small variation of an input variable  corresponds to a large variation of the output 

variable , THEN this input variable has a great sensitivity value S. 
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2) If a large variation of an input variable  corresponds to a small variation of the output 
variable , THEN this input variable has a small sensitivity value S. 

These principles are transformed into a fuzzy model in which the input data variation  and the output 
data variation  are taken as two input variables and the sensitivity S as output variable [26,27].  

Given a specific output variable yl, for any pair of data sample (xi, yjl) and (xj, yjl) denoted as (i, j), the 
input data variation ∆xij and the output data variation ∆yij are calculated. The corresponding sensitivity in the 
data pair (i, j) related to yl ,can be obtained from this fuzzy model, i.e. ),(),( ijijl yxFLjiS ΔΔ= . 

When removing xk from the whole set of input variables, the sensitivity of the remaining input variables 
in the data pair (i, j) related to the output yl can be calculated by ),(),(, ij

k
ijlk yxFLjiS ΔΔ= . The sensitivity 

variation of the pair (i, j) can be calculated as follows: 

                           ),(),(),(, ij
k
ijijijlk yxFLyxFLjiS ΔΔ−ΔΔ=Δ                               (4) 

The general sensitivity variation lkS ,Δ for all pairs of data samples when removing the variable xk is 
defined by  

                                     ∑∑
= +=

Δ=Δ
n

i

n

ij
lklk jiSS

1 1
,, ),(1

γ
                                               (5) 

where  1)/2-n(n=γ the total number of data pairs.  

Bigger is the value of lkS ,Δ , more the corresponding variable xk is relevant to the quality feature yl. 

Based on this fuzzy logic sensitivity criterion, we proposed the following algorithm for selecting the most relevant 
variables and removing irrelevant ones.  
Inputs: process input variables X={x1,…,xm} and one related specific output yl 
Output: relevant process parameters Xr, and related sensitivity variation value  

: threshold of sensitivity variation 
 

Initialise X’=X,  Xr= { }, ={ } 
While . 

 Calculate the sensitivity variation of inputs in X’ related to yl denoted      
  
      Xr=Xr  {xi}, X’=X’ {xi} where    
      X’=X’ {xj} where    
End 

 
This algorithm combines both the forward and the backward search by removing the subset of the most 

sensitive variables and the subset of the most insensitive variables at each step. A small positive value  is 
defined for eliminating non significant ranking order of variables. All the variables whose sensitivity 
variations are included between  and 1 are considered as the most sensitive variables. The most 
insensitive variables correspond to the case in which their sensitivity variations are smaller than . When this 
recurrent procedure is completed, we can obtain a significant and independent list of the most relevant 
process parameters. 

4. Modeling with artificial neural networks 

In this paper, feed-forward neural networks are used for the plasma modeling due to their proven high 
accuracy in learning nonlinear process data [14,15,18]. The network architecture includes two hidden layers. 
The input layer corresponds to the selected input parameters. The outputs are the water contact angle and the 
capillarity values. Two cases of network architecture, as shown in Figs. 2 and 3, are compared to discuss the 
prediction efficiency of the networks. In the first case, each output is modeled using a separate network. In 
the second case, a single network is used to model the two outputs. For both cases, a sigmoid transfer 
function was used for hidden layers and a linear transfer function was used for the output layer.  
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Fig.2. Network architecture of case 1. 

 

 
Fig.3. Network architecture of case 2. 

These networks were trained with two different algorithms: the levenberg-Marquardt algorithm 
(trainlm MATLAB training function) and the Bayesian regularization algorithm (trainbr MATLAB training 
function). The first algorithm uses an early stopping mechanism in which the error on the validation set is 
monitored during the training process and training is stopped when the prediction accuracy begin to decrease, 
whereas the second algorithm is a modification of the first one to improve the model’s generalization 
capability. The modification consists of changing the performance function, which is normally chosen to be 
the sum of squares of the network errors (MSE), by adding a term that consists of mean square error of 
weight and biases. This performance function will cause the network to have smaller weight and biases there 
by forcing networks less likely to be overfit [28]. 

 Prior to training, the available data is scaled into zero mean and unity standard deviation. After that, 
the entire samples are randomly divided into a training set (85 samples) and a test set (17 samples). 
Whenever early stopping technique is used, the initial training set is divided, in the same way, into a training 
set (68 samples) and a validation set (17 samples). The validation set is used to terminate training done with 
the training set. The testing set is kept independent and used in accuracy assessment only after training has 
converged. 

         The number of neurons in the hidden layers can significantly affect the efficiency and accuracy of learning. Thus, 
for optimizing the network models, the number of hidden neurons is determined using an iterative algorithm. The 
principle of this algorithm is to first generate a network having one neuron in each hidden layer and then add neurons 
one by one recurrently until some stopping criteria are reached. This algorithm can be illustrated in the following 
pseudo-codes, 

1. Create an initial network with one neuron in each hidden layer . 
2. Realise 50 training iterations. 
3. Calculate the root mean square errors ( ) and the correlation coefficients 

( ) in the training and test sets. 
4. Compare  to  and the correlation coefficients to 1. 
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       IF �

         
      Keep the predicting model with  and  
      ELSEIF   
                Let   
    ELSE 
               Let    and go back to Step 2 
    END IF 

According to this algorithm, 50 iterations are applied at each time and some stopping criteria are 
used to determine when stop adding new hidden neurons. Since neural network is an alternate statistical 
method, the root mean square error (RMSE) and correlation coefficient (R) are used as performance criteria 
to get higher suitable models. Here, the number of hidden neurons is considered optimal when the training 
and test root mean square errors are both in the same order and as small as possible, and the correlation 
coefficients are close to 1. The test and training root mean square errors are considered in the same order if 
their ratio is close to 1. Therefore, this ratio should be less than a given threshold value α to obtain good 
network’s generalization ability. In overall, this method will help to find the optimal or at least the near-
optimal number of hidden neurons since the learning algorithms used can avoid being trapped into local 
minima.  In our application, α is set to be to 1.5. The training and test root mean square errors are calculated 
according to Eq. (6) and (7), respectively    

                                                      (6)                      

                                                                (7)                 

where the number of training samples is,  the number of test samples, di the desired output, and yi the calculated 
output of the network.  
      The R values are obtained by calculating the regression coefficients of the lines that relate network output 
values to their corresponding targets. In this application, R values superior to 0.85 are considered as good 
matching to the targets. 

5. Results and discussions  

In this study, 11 fabric features and 2 plasma parameters are taken as input parameters of the plasma 
process. These parameters are pre-selected by experts according to their possible influence on the outputs, i.e. 
the water contact angle and the capillarity, as shown in Table 2. 

Table 2. Input and output parameters of the plasma process. 
Factor Variables names 

Plasma process parameters 
(inputs) 

Woven fabric features:  
fiber nature (x1); fabric weight (x2); thickness (x3); construction 
(x4); weft density (x5); warp density (x6); weft count (x7);fiber 
count (x8); air permeability (x9); porosity (x10); surface 
roughness (x11) 
Plasma parameters: 
electrical power (x12); treatment speed (x13) 

Fabric surface wetting 
properties (outputs) 

water contact angle (y1); capillarity (y2) 

If we take all these 13 plasma process parameters as input variables, this would increase the amount 
of data required to estimate the network parameters efficiently and decrease the processing speed.  Thus, in 
order to reduce the complexity of the model and the related field data collection efforts, we use the fuzzy-
based method presented forward in this paper to select the most relevant input variables and remove 
irrelevant ones. The threshold of sensitivity variation  is set to the value 0.2. Tables 3 and 4 show the 
detailed steps for recursively selecting the inputs relevant to water contact angle and capillarity. 

 
 
 

Table 3.  Selection of input variables relevant to water contact angle, using the fuzzy sensitivity variation criterion. 
 Remaining inputs Significance ranked by Most relevant inputs  Irrelevant inputs  
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ascending order ∆S  
Step 1 All inputs, x1 to x13 x12, x13, x1, x9, x11, x8, x6, x10, 

x4, x7, x2, x3, x5 
x12 x5, x3 

Step 2 x1, x2, x4, x6, x7, x8, x9,  
x10, x11, x13 

x13, x1, x11, x9, x8, x7, x4, x10, 
x6, x2 

x13, x1 x2 

Step 3 x4, x6, x7, x8, x9, x10, x11 x8, x11, x9, x7, x4, x10, x6 x8 x6 
Step 4 x4, x7, x9, x10, x11 x11, x9, x4, x7, x10 x11 x10, x7 
Step 5 x9, x4 x9, x4 x9 x4 

 
Table 4.  Selection of input variables relevant to capillarity, using the fuzzy sensitivity variation criterion. 

 Remaining inputs Significance ranked by 
ascending order ∆S  

Most relevant inputs  Irrelevant inputs  

Step 1 All inputs, x1 to x13 x12, x1, x13, x9, x11, x8, x6, x10, 
x4, x7, x2, x3, x5 

x12, x1 x5, x3 

Step 2  x2, x4, x6, x7, x9, x8, 
x10,  x11, x13 

x13, x8, x9, x11, x7, x4, x6, x10, 
x2 

x13 x2, x10 

Step 3 x4, x6, x7, x9, x8, x11 x8, x9, x11, x4, x7, x6 x8, x9 x6, x7 
Step 4 x11, x4 x11, x4 x11 x4 

 
According to these tables, it can be noticed that, electrical power (x12), treatment speed (x13), fiber nature (x1), 

fiber count (x8), air permeability (x9) and surface roughness (x11) are identified as the most relevant inputs for both 
water contact angle and capillarity. The only difference between them is that the orders of these two ranking lists of 
relevant inputs are slightly different. This result indicates that the modification of textile surface is not only dependent 
on plasma parameters, but also influenced by woven fabric features. Thus, by using the fuzzy sensitivity criterion, the 
number of plasma processing parameters has been reduced by more than 50%. The relevant parameters selected from 
this criterion can be ranked in a significant order of relevancy. For both the water contact angle and capillarity, the most 
important plasma process parameter is electrical power. The obtained two ranking lists are conform to general 
professional knowledge of experts. Therefore, it can be concluded that the fuzzy sensitivity variation criterion can 
effectively filter data complexity related to plasma process and provide only a better ranking results according to the 
process parameters relevancy. This enables in turn a better understanding on the plasma process since the adjustable 
parameters are more concise and easier to be interpreted physically.  

The selected relevant parameters are used to set up feed-forward neural networks models. Two cases of 
network configurations are studied. In the first case, two separate networks with two hidden layers and one output layer 
neuron are considered. The first network had an output of water contact angle and the second had an output of 
capillarity. The optimal architecture obtained in this case is given in Fig. 4. The number of neurons in the hidden layers 
was 5 in both layers in the first network and 6 and 4 in the first and second layer in the second network. In the second 
case, a single network with two hidden layers is considered. The input layer of this network corresponds to the six 
selected input parameters. The output layer corresponds to the two outputs viz. water contact angle and capillarity. The 
optimal architecture of this network is given in Fig. 5. The number of neurons in the hidden layers was 8 and 6, 
respectively. These networks were trained using the Levenberg-Marquardt (trainlm) and the Bayesian Regularization 
(trainbr) training algorithms. The performances of these networks are measured by computing the root mean square 
errors (RMSE) over the training and test data subsets. In order to get a true unbiased indication of the network 
performance, a regression analysis is performed between the network response and the corresponding targets. Tables 5 
and 6 give a comparison of the performances of the two configurations trained with ‘trailm’ and ‘trainbr’, respectively. 
The network model predictions in both cases are given in Figs. 6 and 7 for the ‘trailm’ algorithm and respectively in 
Figs. 8 and 9 for the ‘trainbr’ algorithm. 
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Fig.4. Network architecture for (a) water contact angle and (b) capillarity. 

 

 
Fig.5. Network architecture for water contact angle and capillarity. 

 
Table 5. Comparaison of the two network configurations trained with Levenberg-Marquardt algorithm (trainlm). 

Case study Network 
architecture 

Number of 
iterations 

RMSETraining RMSETest RTraining RTest 

Case 1 Contact angle 
 

Capillarity  

6-5-5-1 
 

6-6-4-1 

25 
 

105 

0.734° 
 

2.08% 

0.888° 
 

2.42% 

0.9967 
 

0.9993 

0.9848 
 

0.9992 
Case 2 Contact angle 

 
Capillarity 

 
6-8-6-2 

 
80 
 

0.761° 
 

2.96% 

1.084° 
 

3.47% 

0.9965 
 

0.9986 

0.9774 
 

0.9985 
 

Table6. Comparaison of the two network configurations trained with Bayesian Regularization algorithm (trainbr). 
Case study Network 

architecture 
Number of 
iterations 

RMSETraining RMSETest RTraining RTest 

Case 1 Contact angle 
 

Capillarity  

6-5-5-1 
 

6-6-4-1 

60 
 

145 

0.461° 
 

0.92% 

0.643° 
 

1.32% 

0.9985 
 
1 

0.9917 
 

0.9998 
Case 2 Contact angle 

 
Capillarity 

 
6-8-6-2 

 
120 

 

0.569° 
 

1.67% 

0.804° 
 

2.21% 

0.9981 
 

0.9995 

0.9876 
 

0.9994 
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(a)                                                                             (b) 

Fig.6. ANN model prediction of (a) water contact angle and (b) capillarity in case 1 (trainlm) 

  
(a)                                                                            (b) 

Fig.7. ANN model prediction of (a) water contact angle and (b) capillarity in case 2 (trainlm). 

   
(a)                                                                                  (b) 

Fig.8. ANN model prediction of (a) water contact angle and (b) capillarity in case 1 (trainbr) 
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(a)                                                                                  (b) 

Fig.9. ANN model prediction of (a) water contact angle and (b) capillarity in case 2 (trainbr). 

It can be seen from tables 5 and 6 that the two cases give high correlation coefficients and acceptable 
predictions errors for both outputs, showing that their learning and generalization performances are good 
enough. This result is confirmed by Figs. 6, 7, 8 and 9 which show a good agreement between predicted and 
observed data values. However, the networks models in case 1 are able to predict the water contact angle and 
capillarity with higher coefficients of correlation and less root mean square errors as compared with case 2. 
In addition, the number of hidden neurons in case 1 is less therefore the memory consumed for training is 
less much than the second case. Moreover, results show that the networks trained with ‘trainbr’ generalize 
well when tested with unseen data as compared to the networks trained with ‘trailm’. Thus, the Bayesian 
regularization approach yields higher prediction accuracy than the early stopping technique. Also, another 
advantage of this method is that, it does not require any separate validation data set. Also, it can be noticed 
that training with the ‘trainbr’ algorithm takes more iterations than with the ‘trainlm’ algorthim. This can be 
explained by the fact that the Bayesian regularization method generally takes longer to converge than early 
stopping. Consequently, it can be concluded that the neural network methodology is helpful towards a better 
understanding of the relationship between plasma processing parameters and fabric surface wetting 
properties  

6. CONCLUSION  
    In this paper, a fuzzy sensitivity variation criterion was used to select the most relevant input parameters 
of plasma process which were used to set up feed-forward neural network models. This selection procedure 
would allow manufacturers to focus on the most relevant parameters in order to optimize the underlying 
process and minimize the number of experiments. The developed network models were different in a number 
of output neurons and learning algorithms. Obtained results showed that networks with one output layer 
neuron achieve better learning ability and predictive capability. Furthermore, it was found that the Bayesian 
regularization approach provides best performance on the training and test sets but, it takes longer to 
converge than the early stopping. Thus, it is believed that neural network models can be efficiently applied to 
understanding, evaluation and prediction of fabric surface modification by atmospheric air-plasma treatment. 

7. References  
[1] T. Herbert, Atmospheric-pressure cold plasma processing technology, Plasma technologies for textile, R. Shishoo 

(Eds.), Woodhead publishing in textiles, Cambridge England, pp. 79-128, 2007.  

[2] M. J. Shenton, and G. C. Stevens, Surface modification of polymer surfaces: atmospheric plasma versus vaccum 
plasma treatments, J. Phys. D: Appl. Phys., 34 (2001), pp. 2761-2768.  

[3] T. H. C. Costa, M. C. Feitor, C. Alves, P. B. Freire, and  C. M. De Bezerra, Effects of gas composition during 
plasma modification of polyester fabrics, J. Mater. Proc. Technol. 173 (2006), pp.40-43. 

[4] M. M. Hossain, A. S. Herrmann, and D. Hegemann, Plasma hydrophilization effect on different textile structures, 
Plasma Process Polym. 3(2006), pp.299–307. 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22623 | Generated on 2025-04-20 18:19:53



Journal of Information and Computing Science, Vol. 8 (2013) No. 2, pp 141-152 
 
 

JIC email for subscription: publishing@WAU.org.uk 

151

[5]  H. A. Karahan, Improvements of surface functionality of cotton fibers by atmospheric plasma treatment, Fiber. 
polym., 9 (2008), pp. 21-26. 

[6]  K. K. Samanta, M. Jassal, and A. K. Argawal, Improvement in water and oil absorbency of textile substrate by 
atmospheric pressure cold plasma treatment, Surf. Coat. Technol. 203(2009), pp.1336-1342.  

[7] F. Leroux, C. Campagne, A. Perwuelz, and L. Gengembre, Atmospheric air plasma treatment of textile materials. 
Textile structure influence on surface oxidation and silicon resin adhesion, Surf. Coat. Technol. 203 (2009), 
pp.3178-3183.  

[8] K. Kale, S. Palaskar, P. J. Hauser, and A. El-Shafei, Atmospheric Pressure glow discharge of Helium- oxygen 
plasma treatment on polyester/cotton blended fabric, Indian J. Fibre. Text. Res. 36 (2011), pp.137-144.  

[9] S. Nourbakhsh, and I. Ebrahimi, Different surface modification of poly (ethylene terephthalate) and polyamide 66 
fibers by atmospheric air plasma discharge and laser treatment: Surface morphology and soil release behavior, J. 
Text. Sci. Eng., 2(2012.).  

[10] G. Borcia, C. A. Anderson, and N. M. D. Brown, The surface oxidation of selected polymers using an atmospheric 
pressure air dielectric barrier discharge. Part II, Appl. Surf. Sci. 225(2004), pp.186-197. (10) 

[11]   D. C. Psichogios, and L. H. Ungar, Direct and Indirect Model Based Control Using Artificial Neural Networks, 
Ind. Eng. Chem. Process Design Develop. 30 (1991), pp.2564-2573.  

[12] K. J. Hunt, D. Sbarbaro, R. Zbikowki, and P. J. Gawthrop, Neural Networks for Control Systems - A Survey, IEEE 
Trans. Neur. Net. 28 (1992), pp.1083-1112. 

[13] D. W. Coit, B. T., Jackson, and A. E. Smith, Static neural network process models: considerations and case 
studies, Int. J. Prod. Res. 36 (1998), pp.2953- 2967.  

[14] E. A. Rietman, and E. R. Lory, Use of neural networks in modeling semiconductor manufacturing processes: An 
example for plasma etch modeling, IEEE Trans. Sem. Manuf. 6(1993), pp.343-347. 

[15] B. Kim, and G. S. May, An optimal neural network process model for plasma etching, IEEE Trans. Sem. Manuf. 
7(1994), pp.12-21. 

[16]  S. J. Hong, G. S. May, and D. C. Park, Neural network modeling of reactive ion etching using optical emission 
spectroscopy data, IEEE Trans. Sem. Manuf.16(2003), pp.598-608. 

[17]  C. Wang, X. Wang, and X. He, Neural networks model of polypropylene surface modification by air plasma. 
Proceedings of the IEEE International Conference on Automation and Logistic, Jinan, China, August 18-21, pp. 20 
– 24, 2007.  

[18] C. D. Himmel, and G. S. May, Advantages of plasma etch modeling using neural networks over statistical 
techniques, IEEE Trans. Sem. Manuf. 6(1993), pp.103-111.  

[19] Y. L. Huang, T. F. Edgar, D. M. Himmelbau, and I. Trachtenberg, Constructing a reliable neural network model 
for a plasma etching process using limited experimental data, IEEE Trans. Sem. Manuf. 7(1994), pp.333-344. 

[20] B. Kim, D. W. Kim, and G. T. Park, Prediction of plasma etching using a polynomial neural network, IEEE Trans. 
Plasma Sci. 31(2003), pp.1330-1336.  

[21] I. Guyon, and A. Elisseeff, An introduction to variable and feature selection, J. Mach. Learn. Res. 3 (2003), 
pp.1157–1182.  

[22] H. Liu, and L. Yu, Toward integrating feature selection algorithms for classification and clustering, IEEE Trans. 
Knowl. Data Eng. 17 (2005), pp.491–502.  

[23] G. Castellano, and A.M. Fanelli, Variable selection using neural network model, Neurocomputing, 31 (2000), 
pp.1-13. 

[24] N. Kwak, C. H. Choi, Input featiure selection for classification problems, IEEE Trans. Neur. Net., 13 (2002), 
pp.143-159. 

[25] F. Fleuret, Fast binary feature selection with conditional mutual information, J. Mach. Learn. Res. 5(2004), 
pp.1531-1555. 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22623 | Generated on 2025-04-20 18:19:53



Radhia Abd Jelil et.al. : Modeling Plasma Fabric Surface Treatment Using Fuzzy Logic and Artificial Neural Networks 
 

JIC email for contribution: editor@jic.org.uk 

152

[26] X. Deng, P. Vroman, X. Zeng, and L. Koehl, A Fuzzy logic based criterion for selecting relevant process 
parameters for design of nonwoven products, IMACS Multiconferences on Computational Engineering in Systems 
Applications (CESA’06), Beijing, China, October 4-6, 2006. 

[27] X. Deng, P. Vroman, X. Zeng, and L. Koehl, A fuzzy criterion for selecting relevant process parameters for the 
development of nonwoven products, J. Inf. Comput. Sci. 2 (2007), pp.93-102.  

[28] D. J. C. Mackay, A practical Bayesian framework for backpropagation networks, Neural Comput. 4 (1992), 
pp.448-472. 
 

 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22623 | Generated on 2025-04-20 18:19:53


