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Abstract.  This paper studies the effect of parameter mismatch on the dual-lag synchronization of a class 
of coupled chaotic systems. Based on the Lyapunov stability theory, a new definition for global dual lag 
quasi-synchronization is introduced and used to analyze the synchronous behavior of coupled chaotic 
systems in the presence of parameter mismatch. Numerical simulations on the Ikeda oscillator are presented 
to verify the theoretical results 
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1. Introduction  
Chaos synchronization, which was firstly introduced by Pecora and Carrols [1], has attracted increased 

interest for the applications of secure communications and spread spectrum communications. For chaotic 
communication systems, it would also be of great interest to exploit the property of multiplexing chaotic 
signals in one communication channel. In 1996, Tsimring and Sushchik [2] investigated multiplexing chaos 
synchronization in a simple map and an electronic circuit model for the first time. Then in 2000 Liu and 
Davids raised the concept of “dual synchronization", which refers to using a scale signal to simultaneously 
synchronize two different pairs of chaotic oscillator (two masters and two slaves) [3].  

Many studies on dual synchronization of chaotic systems have been reported. For example, Ref. [4] 
considered the dual synchronization in Colpitts electronic oscillators. Ref.[5] studied the dual 
synchronization of the Lorenz and the R o ssler systems. Dual and cross dual synchronization of chaotic 
external cavity laser diodes were investigated in [6]. In[7] experimental and numerical dual synchronization 
of chaos in two pairs of one-way coupled microchip lasers using only one transmission channel were studied. 
Dual synchronization in modulated time delay system using delay feedback controller was proposed in [8]. 
Based on Lyapunov stability theory, a general method to achieve the dual-anticipating, dual, dual-lag 
synchronization of time-delayed chaotic systems was suggested.  

It is well known that parameter mismatch is inevitable in practical implementations of chaos 
synchronization because of noise or other artificial factors. In certain cases parameter mismatches are 
detrimental to the synchronization quality: in the case of small parameter mismatches the synchronization 
error does not decay to zero with time, but can show small fluctuations about zero or even a non-zero mean 
value; larger values of parameter mismatches can result in the loss of synchronization [9].  

Recently, there are some reports on chaos synchronization in the presence of parameter mismatch. In 
Ref. [10] the authors investigated the robustness of the synchronization with respect to parameter 
mismatches or noise. In Ref. [11], the authors studied the synchronization between two nonidentical 
unidirectionally linearly coupled chaotic systems with time delay and showed that parameter mismatch is of 
crucial importance in achieving synchronization. The effect of parameter mismatch on lag synchronization of 
chaotic systems was studied in Ref. [12]. Ref. [9] considered the effect of parameter mismatch on 
anticipating synchronization of chaotic systems with time delay in the framework of the master-slave 
configuration. However, to the best of our knowledge, only a few studies have addressed the effects of 
parameter mismatches on dual lag synchronization theoretically.  

In this paper, we present theoretical analysis and numerical simulations of the parameter-mismatch 
effect on dual lag quasi-synchronization for a class of coupled chaotic systems. A new definition for global 
dual lag quasi-synchronization is introduced and a global dual lag synchronization error bound together with 
a sufficient condition is derived. Numerical simulations on the Ikeda oscillator are presented to verify the 
theoretical results  

The rest part of the paper is organized as follows: In the next section, the problem to be studied is 
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formulated and some preliminaries are presented. In Sec. 3, a sufficient condition for dual lag quasi-
synchronization in the presence of parameter mismatch is derived. An illustrating example is then given in 
Sec. 4, and some conclusions are finally drawn in Sec. 5. 

2. Problem formulation and preliminaries 
Consider a class of delay chaotic system as  

 1 1 1 1 1 1( ) ( ( τ ( )))t A x B f x t tx                                                                (1) 

where 1( ) nx t R  is the state vector, 1A  is an ×n n  symmetric matrix, 1B  is an ×n n  matrix, n nf R R   is 
a nonlinear function with (0) 0f  . 1τ ( )t  is the delay time of the feedback loop, where 1 10 τ ( ) τt  .  

Many chaotic systems with delays are of the form of (1), for example the Ikeda oscillator [13], the 
Mackey-Glass oscillator [14], the Vallee system [15], etc.  

We take another system with parameter mismatch from (1) as  
 2 1 2 1 21( ) ( ( τ ( )))t A y B f y t ty                                                            (2) 

where 1( ) ny t R  is the state vector, 2A  is an ×n n  symmetric matrix and 2B  is an ×n n  matrix. 2τ ( )t  is 
the delay time of the feedback loop, where 2 20 τ ( ) τt  .  

By using a combination of systems (1) and (2), we have the following drive system:  

 1 1 1 1 1 1 1 1 2

2 1 2 1 2 2 1 11

( ) ( ( τ ( ))) ( ( τ ( )))
( ) ( ( τ ( ))) ( ( τ ( )))

t A x B f x t t C g y t tx
t A y B f y t t C g x t ty
     

      




                               (3) 

where 1 2C C  are ×n n  matrices, n ng R R   is a nonlinear function with (0) 0g  .  
To synchronize system (3) using feedback control in the framework of the drive-response configuration, 

we design the response system as:  

 2 11 12 2 1 2 2 1 1

22 22 2 2 2 1 2 22

( ) ( ( τ ( ))) ( ( τ ( ))) ( ( τ( )) ( ))
( ) ( ( τ ( ))) ( ( τ ( ))) ( ( τ( )) ( ))

t x f x t t g y t t K x t t y tx B CA
t y f y t t g x t t K x t t y ty B CA

        
         




          (4) 

where 2 2
n nx R y R    are the response states, τ( )t  is coupling delay which is bounded and K  is the 

coupling strength.  
Ref.[8] investigated the dual lag synchronization between systems (3) and (4) with 

1 21 2 1 21 1 1 1 2 2 2 2 1 2 2 1 ( ) ( )A a B b A a B b C b C b g x f xB B C CA A                     
and τ( ) τ pt    where τ p  is a constant. In this paper, we focus on the case of 

1 2ii ii i iA B C iB CA          We use Δ Δ Δ 1 2ii ii i i i i iA A B B C C iB CA              
to denote the parameter mismatch errors, and let 1 2 1 2 2 1( ) ( ) ( τ( )) ( ) ( ) ( τ( ))e t x t x t t e t y t y t t        be 
the synchronization errors between the states of drive system (3) and response system (4). By subtracting 
Eq.(3) from Eq. (4), we obtain the following error system:  
 

1 11 1 2 1 1 1

1 2 2 1 2 1 1

1 1 1 1 1 2

1 1 1 1 1

( ) ( ) [ ( ( τ ( ))) ( ( τ ( ) τ( )))]
[ ( ( τ ( ))) ( ( τ ( ) τ( )))] Δ ( τ( ))

Δ ( ( τ ( ) τ( ))) Δ ( ( τ ( ) τ( )))
[ ( τ( )) ( ( τ ( ) τ(

t e t f x t t f x t t te BA
g y t t g y t t t A x t tC

B f x t t t C g y t t t
A x t t B f x t t t

     

      
     
    



     

     

     1 1 2 1

2 22 2 2 2 1 2

2 2 1 1 1 2 1

2 1 2 2 1 1

))) ( ( τ ( ) τ( )))] ( ) ( )
( ) ( ) [ ( ( τ ( ))) ( ( τ ( ) τ( )))]

[ ( ( τ ( ))) ( ( τ ( ) τ( )))] Δ ( τ( ))
Δ ( ( τ ( ) τ( ))) Δ ( ( τ ( ) τ( ))

C g y t t t t Ke t
t e t f y t t f y t t te BA

g x t t g x t t t A y t tC
B f y t t t C g x t t t

    
     

      
     





     

     

2 1 2 1 2 2 1 1 2

)
[ ( τ( )) ( ( τ ( ) τ( ))) ( ( τ ( ) τ( )))] ( ) ( ).A y t t B f y t t t C g x t t t t ke t












          

 （5）
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It is easy to observe that 1 2( ) ( ( ) ( )) 0T T Te t e t e t    is not an equilibrium point of system (5), which means 
that dual-lag synchronization is impossible. Therefore, we study the dual-lag quasi-synchronization between 
systems (3) and (4). First of all, we present the definition of dual-lag quasi-synchronization.   

Definition. For the drive system (3) and the response system (4), it is said that system (3) and (4) are 
dual lag quasi-synchronized with error bound ε  if there exists a 0T t  such that 1 1|| ( τ( )) ( ) || εx t t y t   , 

2 2|| ( τ( )) ( ) || εx t t y t    for all t T .  
Before give our main results, we introduce two Lemmas which are needed in the proof of the main 

theorem.  
Lemma 1. Let 1 1 2 2 1 2τ {τ ( )} τ {τ ( )} τ {τ τ } [0 )max t max t max t           Suppose that function 

( )x t  is non-negative when [ τ )t    and satisfies the following inequality:  
 0 1 1 2 2( ) ( ) ( τ ( )) ( τ ( )) αx t k x t k x t t k x t t         
where 0 1α k k  , and 2k  are nonnegative constants, and 0 1 2k k k  . Then  

 
α( ) || (0) || 0rtx t x e t
r

                                                                        (6) 

where 
τ 0

|| (0) || max ( )
s

x x s
  

    and r  is the unique positive solution of  

 1 2τ τ
0 1 2

r rr k k e k e       

Proof: Let α( ) || (0) || 0rt
ry t x e t      From (6), we need only to prove that ( ) ( ) 0x t y t t     Assume it 

is not true, then there must be a positive number 0t  such that  

 
0

0 0 0

0 0

( ) ( )
( ) ( )

( ) ( ) 0

x t y t t t
x t y t t t
x t y t

   
    
     

 

Note that  

 

0 0 1 0 0

0 0 0 1 0 1 0 2 0 2 0

0 0 1 0 1 0 2 0 2 0

0 0 1 0 1 0 2 0 2 0

( τ ( )) (
0 1 2

( ) ( ) ( τ ( )) ( τ ( )) α
( ) ( τ ( )) ( τ ( )) α
( ) ( τ ( )) ( τ ( )) α

α α(|| (0) || ) (|| (0) || ) (|| (0) ||rt r t t r t

x t k x t k x t t k x t t
k y t k x t t k x t t
k y t k y t t k y t t

k x e k x e k x e
r r

    

      

      

      

     



2 0

0 0 1 0 0 2 0

1 0 2 0 0

01 2

0

τ ( ))

( τ ( )) ( τ ( )) 0 1 2
0 1 2

τ ( ) τ ( )
0 1 2

τ τ
0 1 2

0

α) α

|| (0) || || (0) || || (0) || α α

( ) || (0) ||
( )|| (0)||

|| (0)|| ( )

t

rt r t t r t t

r t r t rt

rtr r

rt

r
k k kk x e k x e k x e

r
k k e k e x e

k k e k e x e
r x e y t

    







 

  
     

   

   
  

 

we have 0 0( ) ( )x t y t  , which is in contrast with 0 0( ) ( ) 0x t y t   . Therefore, one gets ( ) ( ) 0x t y t t    
and the proof of lemma 1 is completed .  

Remark 1. Lemma 1 is the extension of that presented in Ref.[12].  
 
Lemma 2 (Ref. 13). For any vectors nx y R   and positive-definite matrix ×n nQ R , the following 

matrix inequality holds:  
 12 T T Tx y x Qx y Q y    
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Throughout this paper, we assume that f  and n ng R R   are Lipschitz continuous, i.e. there exist 
positive constants fL  and gL  such that for all nx y R  , 

|| ( ) ( ) || || || || ( ) ( ) || || ||f gf x f y L x y g x g y L x y          
 

3. Criterion for dual lag quasi-synchronization in the presence of parameter 
mismatch  

Now, we are in a position to give our main theorem which provides a criterion for dual lag quasi-
synchronization of the chaotic systems (3) and (4) with parameter mismatch.  

Theorem 1. Suppose that 1 1 1 1Ω { || || ω }nx R x    , 2 1 1 2Ω { || || ω }ny R y     
and 1 1 1 1 1 2 1 1 1 1 1 1 2 1| Δ || ω || Δ || ω || Δ || ω μ (|| || ω || || ω | || ω )τ νf g f gA B L C L A B L C L        

2 2 2 2 2 1 2 2 2 2 2 2 1 2|| Δ || ω || Δ || ω || Δ || ω μ (|| || ω || || ω || || ω )τ ν .f g f gA B L C L A B L C L       Also, suppose 

there exists a symmetric and positive-definite matrix 0P  , and positive scalars α β γ δ ( 1 2)i i i i iK i        
and 0K , such that the following conditions hold:  

2 2
1 11 1 1 11 1 1 1 0

2 2
2 22 2 2 22 2 2 2 0

1 2 1 2
1 2 1

1 2 1 2
1 2 2

0 1 2

(1) α β γ δ 0,

(2) α β γ δ 0,

(3) α β 0

(4) β α 0
(5) 2 0

TT

TT

f g

g f

P P P P P P P P K PB B C CA A
P P P P P P P P K PB B C CA A

L I L I K P

L I L I K P
K K K K

 

 

      

      

   

   

    

 

Then the dual lag quasi-synchronization with error bound 
1 2 1 2 1 2 1 2

1 1 1 1 2 2 2 2γ μ δ ν γ μ δ ν
λ ( )ε

m P r

       between the systems (3) 

and (4) is achieved, where ε  is any arbitrary small positive number and r  is the unique positive solution of 
equation 1 2τ τ

0 1 22 r rr K K K e K e         
Proof.  Construct the following Lyapunov function:  
 1 1 2 2( ( )) ( ) ( ) ( ) ( )T TV e t e t Pe t e t Pe t    

where 1 2( ) ( ( ) ( ))T T Te t e t e t    Differentiating ( ( ))V e t  with respect to t  along the trajectory of error system 
(5) yields  

 

111 1 2 1 1 1

1 2 2 1 2 1 1

1 1 1 1 1 2

1 1 1 1 1

( ) 2 ( ) { ( ) [ ( ( τ ( ))) ( ( τ ( ) τ( )))]
[ ( ( τ ( ))) ( ( τ ( ) τ( )))] Δ ( τ( ))

Δ ( ( τ ( ) τ( ))) Δ ( ( τ ( ) τ( )))
[ ( τ( )) ( ( τ ( ) τ(

TV t e t P e t f x t t f x t t tBA
g y t t g y t t t A x t tC

B f x t t t C g y t t t
A x t t B f x t t t

     
      
     
    



 

 

     1 1 2 1

222 2 2 2 1 2

2 2 1 1 1 2 1

2 1 2 2 1 1

))) ( ( τ ( ) τ( )))] ( ) ( )}

2 ( ) { ( ) [ ( ( τ ( ))) ( ( τ ( ) τ( )))]
[ ( ( τ ( ))) ( ( τ ( ) τ( )))] Δ ( τ( ))

Δ ( ( τ ( ) τ( ))) Δ ( ( τ ( ) τ(

T

C g y t t t t Ke t
e t P e t f y t t f y t t tBA

g x t t g x t t t A y t tC
B f y t t t C g x t t t

   

     
      
     

 （7）

  

  

  

2 1 2 1 2 2 1 1 2

)))
[ ( τ( )) ( ( τ ( ) τ( ))) ( ( τ ( ) τ( )))] ( ) ( )}A y t t B f y t t t C g x t t t t Ke t          

 

In view of Lemma 2, we have  

1 1 11 2 1 1 1 1 1 1
1

1 2 1 1 1 2 1 1 1
1

1 11 1 1 1 2 1 1 1

2 ( ) [ ( ( τ ( ))) ( ( τ ( ) τ( )))] α ( ) ( )

α [ ( ( τ ( ))) ( ( τ ( ) τ( )))] [ ( ( τ ( ))) ( ( τ ( ) τ( )))]
α ( ) ( ) α || ( ( τ ( ))) ( ( τ ( )

T T

T

T T

e t P f x t t f x t t t e t P Pe tB B B
f x t t f x t t t f x t t f x t t t

e t P Pe t f x t t f x t tB B





    

        

      2

1 2
1 1 1 1 1 1 1 11 1

τ( ))) ||
α ( ) ( ) α ( τ ( )) ( τ ( ))TT T

f

t
e t P Pe t L e t t e t tB B     
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1 1 11 2 2 1 2 1 1 1
1

1 2 2 1 2 2 2 1 2
1

1 11 1 1 1 2 2 1 2

2 ( ) [ ( ( τ ( ))) ( ( τ ( ) τ( )))] β ( ) ( )
β [ ( ( τ ( ))) ( ( τ ( ) τ( )))] [ ( ( τ ( ))) ( ( τ ( ) τ( )))]

β ( ) ( ) β || [ ( ( τ ( ))) ( ( τ ( )

TT

T

TT

e t P g y t t g y t t t e t P Pe tC C C
g y t t g y t t t g y t t g y t t t

e t P Pe t g y t t g y t tC C





    

        

     2

1 2
1 1 1 1 2 2 2 21 1

τ( )))] ||
β ( ) ( ) β ( τ ( )) ( τ ( ))TT T

g

t
e t P Pe t L e t t e t tC C 



    

  

1 1 1 1 1 1 1 1 2
2 1 2

1 1 1 1 1 1 1 1 1 1 1 2

2 1
1 1 1 1 1 1 1 1

2 ( ) [Δ ( τ( )) Δ ( ( τ ( ) τ( ))) Δ ( ( τ ( ) τ( )))]
γ ( ) ( ) γ || Δ ( τ( )) Δ ( ( τ ( ) τ( ))) Δ ( ( τ ( ) τ( ))) ||
γ ( ) ( ) γ (||Δ ||ω ||Δ || ω ||Δ

T

T
f

e t P A x t t B f x t t t C g y t t t
e t P e t A x t t B f x t t t C g y t t t

e t P e t A B L





      

        

    2
1 2

2 1 2
1 1 1 1 1

|| ω )

γ ( ) ( ) γ μ
g

T

C L
e t P e t   

 

1 1 1 1 1 1 1 1 2
2 1 2 2

1 1 1 1 1 1 1 1 1 2

2 1 2
1 1 1 1 1

2 ( ) [ ( τ( )) ( ( τ ( ) τ( ))) ( ( τ ( ) τ( )))] ( )]
δ ( ) ( ) δ (|| || ω || || ω || || ω ) τ

δ ( ) ( ) δ ν

T
f g

T

e t P A x t t B f x t t t C g y t t t t
e t P e t A B L C L

e t P e t






      

   

  



  

Similary, we can derive the following inequalities:  
1 2

2 2 22 2 2 1 2 2 2 2 2 2 2 2 22 ( ) [ ( ( τ ( ))) ( ( τ ( ) τ( )))] α ( ) ( ) α ( τ ( )) ( τ ( ))T TT
fe t P f y t t f y t t t e t P Pe t L e t t e t tB B B         

1 2
2 2 22 2 1 1 1 2 2 2 2 1 1 1 12 ( ) [ ( ( τ ( ))) ( ( τ ( ) τ( )))] β ( ) ( ) β ( τ ( )) ( τ ( ))TT T

ge t P g x t t g x t t t e t P Pe t L e t t e t tC C C           
2 1 2

2 2 1 2 1 2 2 1 1 1 2 2 2 22 ( ) [Δ ( τ( )) Δ ( ( τ ( ) τ( ))) Δ ( ( τ ( ) τ( )))] γ ( ) ( ) γ μTe t P A y t t B f y t t t C g x t t t e t P e t            
2 1 2

2 2 1 2 1 2 2 1 1 2 2 2 2 22 ( ) [ ( τ( )) ( ( τ ( ) τ( ))) ( ( τ ( ) τ( )))] ( )] δ ( ) ( ) δ νTe t P A y t t B f y t t t C g x t t t t e t P e t             
Substituting these into Eq.(7) yields  

 

2 2
1 11 1 1 11 1 1 1 1 0 1

2 2
2 22 2 2 22 2 2 2 2 0 2

1 2 1 2
1 1 1 2 1 1 1

1 2 1 2
2 2 1 2 2

( ) ( ) [ α β γ δ ] ( )

( ) [ α β γ δ ] ( )

( τ ( ))(α β ) ( τ ( ))

( τ ( ))(β α

TT T

TT T

T
f g

T
g f

V t e t P P P P P P P P K P e tB B C CA A
e t P P P P P P P P K P e tB B C CA A
e t t L I L I K P e t t

e t t L I L I K P

 

 

      

      

    

   



 

 

 2 2

0 1 1 0 2 2 1 1 1 1 1
1 2 1 2 1 2 1 2

2 2 2 1 2 1 1 1 1 2 2 2 2

0 1 1 2 2
1 2

1 1

) ( τ ( ))

( 2 ) ( ) ( ) ( 2 ) ( ) ( ) ( τ ( )) ( τ ( ))

( τ ( )) ( τ ( )) (γ μ δ ν γ μ δ ν )
( 2 ) ( ( )) ( ( τ ( ))) ( ( τ ( )))

(γ μ

T T T

T

e t t

K K e t Pe t K K e t Pe t K e t t Pe t t
K e t t Pe t t

K K V e t K V e t t K V e t t

   





      

      
     

 

 

 

 1 2 1 2 1 2
1 1 2 2 2 2

0 1 1 2 2

δ ν γ μ δ ν )
( 2 ) ( ( )) ( ( τ ( ))) ( ( τ ( ))) αK K V e t K V e t t K V e t t

   
       

  

where 1 2 1 2 1 2 1 2
1 1 1 1 2 2 2 2α γ μ δ ν γ μ δ ν          

By Lemma 1, we have  

 
α( ( )) || ( (0)) || 0rtV e t V e e t
r

      

where r  is the unique positive solution of 1 2τ τ
0 1 22 r rr K K K e K e       Note that  

 2λ ( ) || ( ) || ( ( ))m P e t V e t   
where λ ( )m P  is the minimal eigenvalue of matrix P , one gets 

1 2 1 2 1 2 1 2
1 1 1 1 2 2 2 2γ μ δ ν γ μ δ ν2λ ( ) || ( ) || || ( (0 )) || rt

m rP e t V e e
         Accordingly, we obtain  

 

 

1 2 1 2 1 2 1 2
1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2
1 1 1 1 2 2 2 22

γ μ δ ν γ μ δ ν1
λ ( )

γ μ δ ν γ μ δ ν1
λ ( ) λ ( )

|| ( ) || (|| ( (0)) || )

|| ( (0)) ||

m

r

m m

rt
P r

t
P P r

e t V e e

V e e
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Obviously, 21
λ ( ) || ( (0)) || 0

r

m

t
P V e e   as t   . Thus for any arbitrary small positive number ε , there 

is a positive T  such that for any t T , 
1 2 1 2 1 2 1 2

1 1 1 1 2 2 2 2γ μ δ ν γ μ δ ν
λ ( )|| ( ) || ε

m P re t
         Therefore, the dual lag quasi-

synchronization occurs between system (3) and system (4) with error bound 
1 2 1 2 1 2 1 2

1 1 1 1 2 2 2 2γ μ δ ν γ μ δ ν
λ ( )ε

m P r

       for any 

arbitrary small positive number ε . This completes the proof.  
Remark 2. It is clear that if the parameter mismatch vanishes and τ( )t  is constant, then the dual-lag 

synchronization will occur.  
Remark 3. The first two conditions in Theorem 1 are a set of LMIs since we are able to transform them 

to the following equivalent LMIs, respectively:  

 

2 2
11 1 11 1 0 1 1

11 1

11 1

γ δ α β
α α 0 0
β 0 β

T

T

P P P P K P P PB CA A
P IB
P IC

      
 

    
   

 

and  

 

2 2
22 2 22 2 0 2 2

22 2

22 2

γ δ α β
α α 0 0
β 0 β

T

T

P P P P K P P PB CA A
P IB
P IC

      
 

    
   

 

where I  is an identity matrix.  
Let 1 2 1 2 1 2 1 2α α β β γ γ δ δ 1P I            one has the following Corollary.  

Corollary 1. Suppose that 1 1 1 1Ω { || || ω }nx R x    , 2 1 1 2Ω { || || ω }ny R y     and 

1 1 1 1 1 2 1 1 1 1 1 1 2 1|| Δ || ω || Δ || ω || Δ || ω μ (|| || ω || || ω || || ω )τ νf g f gA B L C L A B L C L       

2 2 2 2 2 1 2 2 2 2 2 2 1 2|| Δ || ω || Δ || ω || Δ || ω μ (|| || ω || || ω || || ω )τ ν .f g f gA B L C L A B L C L       If the 
following conditions hold:  

1 11 1 1 1 0

2 22 2 2 2 0
2 2 2 2

1 2

0 1 2

(1) 2 0

(2) 2 0

(3) 0 (4) 0
(5) 2 0

TT

TT

f g g f

I K IB B C CA A
I K IB B C CA A

L L K L L K
K K K K

     

     

       

    

，

，
 

Then the dual lag quasi-synchronization with error bound 
1 2 1 2 1 2 1 2

1 1 1 1 2 2 2 2γ μ δ ν γ μ δ νε r

       between the systems (3) 
and (4) is achieved, where ε  is any arbitrary small positive number and r  is the unique positive solution of 
equation 1 2τ τ

0 1 22 r rr k k k e k e        

Remark 4. From Corollary 1 it is easy to see that if 0 1 2K K K K    are sufficient large, then conditions (1)-(5) 
are satisfied, which means as long as K  is large enough the dual lag quasi-synchronization with error bound 

1 2 1 2 1 2 1 2
1 1 1 1 2 2 2 2γ μ δ ν γ μ δ νε r

       between the systems (3) and (4) will occur. 

 

 

4. Simulation and results 
In the following, we will confirm that the numerical simulations fully support the analytical results 

presented above. For simplicity, we take the Ikeda time-delay system[13] to show the effectiveness of the 
proposed results. The Ikeda oscillator is of the form:  
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 1 1 1 1 1 1( ) sin( ( τ ( )))t a x b x t tx                                                                        (8) 
where 1x  is the phase lag of the electric field across the resonator, 1a  is the relaxation coefficient for the 
dynamical variable, and 1b  is the laser intensity injected into the system. 1τ ( )t  is the round-trip time of the 
light in the resonator or feedback delay time in the coupled systems. The Ikeda model was introduced to 
describe the dynamics of an optical bistable resonator and is well known for delay-induced chaotic behavior. 
When 1 11 4a b     and 1τ ( ) 1 5t   , the Ikeda model is chaotic, as shown in Fig. 1. 

 
Figure 1. The chaotic attractor of Ikeda system (8). 

For numerical simulations, we assume that the drive system associated with Eq. (8) is of the form  

 

1 2
1 1 1 1 1 1 1

1 1
2 1 2 1 2 21

( τ ( ))( ) sin( ( τ ( ))) sin( )
2

( τ ( ))( ) sin( ( τ ( ))) sin( )
2

y t tt a x b x t t cx

x t tt a y b y t t cy

      
       






          (9) 

System (9) exhibits chaotic behavior for the set of parameter values 
1 1 1 2 2 2 11 4 6 1 2 6 4 τ ( ) 1 5a b c a b c t               , and 2τ ( ) 1t  . The chaotic attractors of the drive 

system (9) is shown in Fig. 2.  
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Figure 2. The chaotic attractor of system (9). 

Using the proposed delay feedback controller the response system corresponding with system (9) is designed 
as  

 

2 2
2 1 112 2 1 1 1

2 1
2 222 2 2 2 22

( τ ( ))( ) sin( ( τ ( ))) sin( ) ( ( τ( )) ( ))
2

( τ ( ))( ) sin( ( τ ( ))) sin( ) ( ( τ( )) ( ))
2

y t tt x x t t K x t t y tx a cb

x t tt y y t t K x t t y ty a cb

         
          






（10） 

In the process of simulation, we set  
1 1 211 1 1 2 2 21 4 6 1 2 6 4 0 999 4 001 5 999 1 201a b c a b c a c ab                        

22 15 999 4 001 τ ( ) 1 5tcb         , 2τ ( ) 1t    and τ( ) 2t  . Thus ||Δ || ||Δ || ||Δ || 0001i i iA B C     1 2i    
According to Fig. 2, we have 1 2ω ω 8    Notice that 1 1 ( ) 0f gL L t       one gets 

1 2 1 2μ μ 0 021 ν ν 0         Suppose 0 1 251 9980 2K K K       then conditions (1)-(4) are satisfied. If 
we take 1r    then we obtain 33 6990K     and condition (5) is also satisfied. In virtue of Corollary 1 we 
can state that the dual lag quasi-synchronization between the systems (9) and (10) is achieved and the 

estimated error bound is 
1 2 1 2 1 2 1 2

1 1 1 1 2 2 2 2γ μ δ ν γ μ δ ν{ }rD d R d
          { 0 021 2 0 0297}d R d          The 

synchronization error curve with the control strength 33 6990K    is shown in Fig.3. From this figure, it is 
easy to see that the numerical simulation is in good agreement with the theoretical analysis.  
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Figure 3. Synchronization error curve with the control strength K=33.6990. 

 

5. Conclusion  

This paper discusses the effect of parameter mismatch on the dual-lag synchronization of a class of 
coupled chaotic systems. Based on the Lyapunov stability theory, we suggest a general method to achieve 
dual-lag synchronization. As an example, numerical simulations for the Ikeda systems are conducted, which 
is in good agreement with the theoretical analysis. 
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