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Abstract. We report a fourth order accurate numerical technique via nonpolynomial spline for singularly 
perturbed singular two point boundary value problems of the form 

( ) ( ) 0,, '" =+− uurfruε ,  ( ) ( ) BbuAau == , . 
The numerical scheme is developed for problems arising in the various fields of science and 
engineering. The scheme is three point nonlinear systems of equations. The method is applied to a 
few test examples to illustrate the accuracy and the implementation of the method.  

Keywords: Non polynomial spline, Singular perturbation, Singular equation, Boundary layer, Taylor’s 
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1. Introduction 
Consider the following nonlinear singular perturbation problems (SPP) 

( ) ( ) 0,, '" =+− uurfruε , ( ) ( ) BbuAau == , , bra ≤≤                                       (1) 
where 10 <<< ε , A  and B are finite constants and assuming that f  is bounded and smooth function 
satisfying 
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Howes [1], suggested that under the above conditions, the problem (1) posses a unique solution. SPP 
occur in many branches of science and engineering such as heat transport problems with large Peclet 
numbers, Navier-Strokes flows with large Reynolds numbers, convection-diffusion process, gas porous 
electrodes theory, fluid dynamics, chemical kinetics, modeling of steady and unsteady viscous flow problems. 
The solution of SPP exhibits a multi-scale character. There are many methods based on finite difference, 
boundary element, collocations method etc. available for solving linear SPP[2-10].  Recently, Tirmizi [11], 
have proposed a nonpolynomial spline method for linear singular perturbation problems which has second 
and fourth order of convergence depending upon the choice of free parameters. Kadalbajoo and Patidar [12] 
has considered second order convergent spline in compression technique for the nonlinear singular 
perturbation problems. However, their methods are only applicable to non-singular problems. Difficulties 
were experienced in the past for the numerical solution of singularly perturbed singular two point boundary 
value problems in polar coordinates. The solution usually deteriorates in the vicinity of singularity. The aim 
of this paper is to design a computationally efficient numerical technique based on nonpolynomial spline and 
finite difference approximations in such a way that fourth order convergence is retained for smaller values of 
ε  and restriction on grid size can be avoided in case of singularity.  

In this paper, we are concerned with the problem of applying nonpolynomial spline functions to develop 
numerical schemes for obtaining approximate solution for the nonlinear singular two point boundary value 
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problems. The ∞C - differentiability of the trigonometric part of nonpolynomial spline basis compensates for 
the loss of smoothness inherited by polynomial splines. The resulting nonpolynomial spline three point 
difference schemes are of fourth order accuracy. The importance of our work is that the proposed methods 
are applicable to problems both in rectangular and polar coordinates.  

The paper is organized as follows:  In section 2, we give a brief description of the mathematical method. 
In section 3, we design difference schemes of class of singular equation in operator compact form.  Some 
nonlinear singular and nonsingular examples are illustrated to justify the accuracy and efficiency of the 
proposed method in section 4. The numerical results exhibit oscillation free solution for 10 <<< ε , even in 
the vicinity of the singularity.  

2. Nonpolynomial Spline Finite Difference Method 
For the numerical approximation of problems (1), we divided the domain Ω  = [a, b] into a set of nodes 

with interval of ( ) NNh ,11 +=  being a positive integer. The nonpolynomial spline approximations is 
obtained on Ω  that consists of the central point khark +=  and two neighbouring grids 1±kr . The 
approximate solution of this equation is sought in the form of the function ( )rSk  which interpolates 

( )',, uurf  at kr  defined as follows 

( ) ( ) ( ) ( ) ( )NkrrrrrrrS kkkkkkkk 10,cossin =+−+−+−= δγτβτα                       (2) 

where ,,, kkk γβα  and kδ  are constants and τ  is the frequency of the trigonometric functions. Thus, the 
cubic nonpolynomial spline is defined by the relations: 

(i)  ( ) ( )Ω∈ ∞CrS                                                                                                     (3) 

(ii) ( ) kk MrS =" , ( ) ( ) 110, +== NkurS kk  
We obtain via algebraic calculations the following expressions 
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Following, Islam  and Tirmizi [11, 13] and , Rashidinina et. al. [14], we obtain  

( ) ( )NkMMMhuuu kkkkkk 11,022 11
2

11 ==++−+− +−+− αβα                               (4) 

where,  
θθ
θθα

sin
sin

2
−

= ,  
θθ

θθθβ
sin

cossin
2
−

=  

Consider the following approximations 

h
uuu kk

k 2
ˆ 11' −+ −

= ,    
h

uuuu kkk
k 2

43ˆ 11'
1

mm ±±
= ±

± ,  ( )'
1111 ˆ,,ˆ
±±±± = kkkk uurfH               

( )11
'' ˆˆˆˆ̂

−+ −+= kkkk HHhuu ω                                                                                                                        (5) 

The above nonpolynomial spline finite difference approximation for 
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3. Application to Singular Problems 
We discuss the application of method (4), for the numerical solution of model problems of various 

classes of singular perturbation problems. Consider the following singularly perturbed model problem  
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( ) ( ) ( ) ( ) Ω∈=+++++++− rrguuuueurburau u ,0'
4

2'
3

2
21

'" δδδδε                         (6) 

where ( )
r

ra λ
=  and ( ) 2r

rb λ
−= . For =λ 1 and 2 the above equation represents in cylindrical and 

spherical symmetry respectively. The model problem is considered in such a way that self-adjoint singularly 
perturbed problem and general linear singularly perturbed two point boundary value problems are the 
particular cases of the equation (6). 

Now, we discuss the application of nonpolynomial spline formula (4) and finite difference 
approximations (5) to the nonlinear singularly perturbed singular equation (6), we obtain 
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The nonpolynomial spline finite difference method (7) is of order four for 
ε

ω
20

1
−= (see Bawa [2]). 

However, the method fails when the coefficients ( ) ( )rbra ,  and ( )rg  contains singularities and the 
solutions are to be determined at 1±=k . We overcome this difficulty by modifying the scheme (7) in such a 
way that solutions retain the order and accuracy even in the vicinity of the singularity. We use following 
Taylor’s approximation 

( )6'""
5

""
4

'"
3

"
2

'
1 1202462

hOahahahahhaaa kkkkkkk +±+±+±=±                                     (8) 

Using the Taylor’s approximation for 1±ka , 1±kb  and 1±kg  in equation (7) and neglecting ( )6hΟ  
terms, we obtain the following nonpolynomial spline schemes in operator compact form  
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Note that the nonpolynomial spline difference scheme (9) is of fourth order accurate and free from the 
terms ( )11 ±k  and hence, easily solved for ( )Nk 11= .  

4. Computational Results 

Table 1: Root Mean Square Errors for Example 1. 

ε  
N  2-4 2-5 2-6 2-7 2-8 2-9 2-10 

0,1,0,0 4321 ==== θθθθ  
16 4.17e-06 2.09e-06 1.04e-06 5.21e-07 2.61e-07 1.30e-07 6.52e-08 
32 1.09e-06 5.45e-07 2.72e-07 1.36e-07 6.81e-08 3.41e-08 1.70e-08 
64 2.79e-07 1.39e-07 6.97e-08 3.48e-08 1.74e-08 8.71e-09 4.35e-09 

128 7.05e-08 3.52e-08 1.76e-08 8.81e-09 4.41e-09 2.20e-09 1.10e-09 
256 1.77e-08 8.86e-09 4.43e-09 2.22e-09 1.11e-09 5.54e-10 2.77e-10 
512 4.44e-09 2.22e-09 1.11e-09 5.56e-10 2.78e-10 1.39e-10 6.94e-11 
1024 1.11e-09 5.56e-10 2.78e-10 1.39e-10 6.95e-11 3.48e-11 1.74e-11 

0,0,0,1 4321 ==== θθθθ  
16 1.07e-08 4.51e-09 1.51e-09 7.41e-10 9.29e-10 2.29e-10 8.83e-11 
32 7.46e-10 3.13e-10 1.04e-10 5.14e-11 6.92e-11 1.82e-11 8.95e-12 
64 4.92e-11 2.07e-11 6.89e-12 3.39e-12 4.58e-12 1.21e-12 6.30e-13 

128 3.16e-12 1.33e-12 4.42e-13 2.18e-13 2.94e-13 7.82e-14 4.09e-14 
256 2.00e-13 8.40e-14 2.80e-14 1.38e-14 1.86e-14 4.80e-15 2.56e-15 
512 1.26e-14 5.29e-15 1.75e-15 8.57e-16 1.22e-15 3.72e-16 2.40e-16 
1024 7.23e-16 3.25e-16 8.73e-17 2.94e-17 1.04e-16 4.87e-17 1.79e-16 

0,0,1,0 4321 ==== θθθθ  
16 6.44e-09 3.22e-09 1.61e-09 8.05e-10 4.03e-10 2.01e-10 1.01e-10 
32 4.47e-10 2.24e-10 1.12e-10 5.59e-11 2.79e-11 1.40e-11 6.99e-12 
64 2.95e-11 1.47e-11 7.37e-12 3.68e-12 1.84e-12 9.21e-13 4.61e-13 

128 1.89e-12 9.46e-13 4.73e-13 2.37e-13 1.18e-13 5.92e-14 2.96e-14 
256 1.20e-13 6.00e-14 3.00e-14 1.50e-14 7.49e-15 3.75e-15 1.87e-15 
512 7.55e-15 3.77e-15 1.89e-15 9.43e-16 4.72e-16 2.36e-16 1.18e-16 
1024 4.71e-16 2.35e-16 1.18e-16 5.88e-17 2.94e-17 1.47e-17 7.35e-18 

1,0,0,0 4321 ==== θθθθ  
16 1.20e-06 6.00e-07 3.00e-07 1.50e-07 7.50e-08 3.75e-08 1.87e-08 
32 3.13e-07 1.57e-07 7.83e-08 3.92e-08 1.96e-08 9.79e-09 4.89e-09 
64 8.01e-08 4.00e-08 2.00e-08 1.00e-08 5.01e-09 2.50e-09 1.25e-09 

128 2.03e-08 1.01e-08 5.06e-09 2.53e-09 1.27e-09 6.33e-10 3.16e-10 
256 5.09e-09 2.55e-09 1.27e-09 6.37e-10 3.18e-10 1.59e-10 7.96e-11 
512 1.28e-09 6.39e-10 3.19e-10 1.60e-10 7.98e-11 3.99e-11 2.00e-11 
1024 3.20e-10 1.60e-10 7.99e-11 4.00e-11 2.00e-11 9.99e-12 5.00e-12 

In order to illustrate the performance of the nonpolynomial spline finite difference technique in solving 
boundary value problems for singularly perturbed singular and non-singular problems (Ascher et. al. [15], 
Chang et. al. [16]) and the efficiency of the method, the following examples are considered. The right hand 
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side function and boundary conditions may be obtained using the exact solution ( ) ( )rru sinhε=  as a test 
procedure. The examples have been solved by the presented method with different values of  N  and ε . We 
have implemented Newton’s method using five inner iterations as an standard procedure and computed the 
root mean square errors(Hageman and Young [18]), defined as  

( )
∑
=

−
=

N

k

kk
u N

rUu
E

k
1

2
 

All programs are written in C and computations were carried out using Linux environment.  Table 1-2 
exhibit the root mean square errors.  
Example 1: Consider the following nonlinear non-singular problem 

( ) ( ) Ω∈=++++ rrguuuueu u ,'
4

2'
3

2
21

" θθθθε  

The root mean square errors for different values of ( )411, =kkθ  are tabulated in Table 1. 

Example 2: Consider the following nonlinear singular problem 

( ) ( ) Ω∈=++++−+ rrguuuueu
r

u
r

u u ,'2'2
2

'" λλε  

The root mean square errors for different values of λ  are tabulated in Table 2. 

     Table 2: Root Mean Square Errors for Example 2. 

ε  
N 2-4 2-5 2-6 2-7 2-8 2-9 2-10 

1=λ  
16 1.65e-06 2.77e-06 5.69e-06 1.34e-05 4.12e-05 2.97e-03 7.44e-05 
32 2.67e-07 2.74e-07 5.43e-07 1.21e-06 2.98e-06 8.75e-06 7.48e-05 
64 6.18e-08 2.97e-08 5.04e-08 1.11e-07 2.59e-07 6.42e-07 1.79e-06 

128 1.55e-08 4.83e-09 4.68e-09 9.98e-09 2.31e-08 5.52e-08 1.36e-07 
256 3.91e-09 1.11e-09 4.97e-10 8.95e-10 2.06e-09 4.88e-09 1.17e-08 
512 9.80e-10 2.74e-10 8.12e-11 8.15e-11 1.83e-10 4.33e-10 1.03e-09 
1024 2.45e-10 6.86e-11 1.85e-11 8.47e-12 1.63e-11 3.83e-11 9.13e-11 

2=λ  
16 5.53e-06 1.12e-05 2.55e-05 6.66e-05 2.51e-04 8.65e-04 1.62e-04 
32 5.47e-07 1.08e-06 2.39e-06 5.70e-06 1.48e-05 5.08e-05 1.19e-05 
64 5.79e-08 1.01e-07 2.20e-07 5.12e-07 1.24e-06 3.17e-06 9.73e-06 

128 9.02e-09 9.31e-09 1.99e-08 4.61e-08 1.09e-07 2.65e-07 6.67e-07 
256 2.03e-09 9.67e-10 1.79e-09 4.12e-09 9.74e-09 2.33e-08 5.62e-08 
512 5.03e-10 1.51e-10 1.62e-10 3.66e-10 8.65e-10 2.06e-09 4.93e-09 
1024 1.26e-10 3.40e-11 1.65e-11 3.25e-11 7.67e-11 1.82e-10 4.35e-10 

5. Conclusions 
The nonpolynomial cubic spline finite difference method can solve general singular perturbation 

problems with singularity. The method is fourth order convergent and can be easily implemented. It has been 
observed that root mean square errors confirm the order and accuracy of the proposed method. Extension of 
the method to higher dimensions is an open problem.  
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