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Abstract. A new kind of quasi-quartic trigonometric polynomial base functions with a shape parameter λ 
over the space Ω=span {1, sint, cost, sint2t, cos2t} is presented, and the corresponding quasi-quartic 
trigonometric Bézier curves and surfaces are defined by the introduced base functions. The quasi-quartic 
trigonometric Bézier curves inherit most of properties similar to those of quartic Bézier curves, and can be 
adjusted easily by using the shape parameter λ. The jointing conditions of two pieces of curves with G2 and 
C4 continuity are discussed. With the shape parameter chosen properly, the defined curves can express 
exactly any plane curves or space curves defined by parametric equation based on{1, sint, cost, sint2t, cos2t} 
and circular helix with high degree of accuracy without using rational form. The corresponding tensor 
product surfaces can also represent precisely some quadratic surfaces, such as sphere, paraboloid, cylindrical 
surfaces, and some complex surfaces. The relationship between quasi-quartic trigonometric Bézier curves 
and quartic Bézier curves is also discussed, the larger is parameter λ, and the more approach is the quasi-
quartic trigonometric Bézier curve to the control polygon. Examples are given to illustrate that the curves and 
surfaces can be used as an efficient new model for geometric design in the fields of CAGD. 

Keywords: Bézier curves and surfaces, trigonometric polynomial, quasi-quartic, shape parameter, G2 and 
C4 continuity 

1. Introduction  
In Computer Aided Geometric Design (CAGD), lower order Bézier curves and B-spline curves have 

become the common tools for constructing free form curves and surfaces [1, 2]. But they cannot represent 
exactly some quadratic curves such as the circular arcs, parabolas, spheres, cylinders and the other conic 
curves and surfaces. Although rational Bézier curves and NURBS curves can construct some analytic curves 
and surfaces, such as conic curves and revolution surfaces, there are some defects because of theirs rational 
style, such as complexity of computing derivation and quadrature, the weights of selecting not easy to 
control [3, 4].  

In recent years, people have gained interest in trigonometric polynomial curve spline and have started to 
search the represent method to construct curves and surfaces on the space of trigonometric functions, of 
which in [5] the famous C-curves is obtained based on {1, t, sint, cost}, quadratic and cubic trigonometric 
polynomial curves with two shape parameters are given respectively in [6] and [7], a group of T-Bézier 
curves with features of Bézier curves is proposed in [8], the adjustable quadratic trigonometric Bézier curves 
with a shape parameter are presented in [9,10]. These existing trigonometric curves have similar properties to 
polynomial curves. 

In this paper, we present a class of new different trigonometric polynomial basis functions with a 
parameter based on the space Ω=span {1, sint, cost, sint2t, cos2t}, and the corresponding curves and tensor 
product surfaces named quasi-quartic trigonometric Bézier curves and surfaces are constructed based on the 
introduced basis functions. The quasi-quartic trigonometric Bézier curves not only inherit most of the similar 
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properties to quartic Bézier curves, but also can express any plane curves or space curves defined by 
parametric equation based on {1, sint, cost, sint2t, cos2t} including some quadratic curves such as the 
circular arcs, parabolas, cardioid exactly and circular helix with high degree of accuracy under the 
appropriate conditions. 

The rest of this paper is organized as follows. Section 2 defines the quasi-quartic trigonometric 
polynomial base functions and the corresponding curves and surfaces, theirs propositions are discussed. In 
section 3, we discussed the continuity conditions of quasi-quartic trigonometric Bézier curves. In section 4, 
we show the representations of some curves. Besides, some examples of shape modeling by using the quasi-
quartic trigonometric Bézier surfaces are presented also. We devote Section 5 to giving the relationship 
between quasi-quartic trigonometric Bézier curves and quartic Bézier curves. The conclusions are given in 
section 6. 

2. Construction and related properties of quasi-quartic trigonometric Bézier 
curves and surfaces 

Definition 1 For [0, ]
2

t π
∈ , 0,4 ( )b t , 1,4 ( )b t , 2,4 ( )b t , 3,4 ( )b t and 4,4 ( )b t are called quasi-quartic trigonometric 

polynomial base functions with a shape parameter λ which can be defined to be 

     

0,4

1,4

2,4

3,4

4,4

(1 ) (1 )sin cos 2
2 2

3 1 1(1 )( 2sin cos sin 2 cos 2 )
2 2 2

12(1 )(1 sin cos sin 2 )
2

3 1 1(1 )( sin 2cos sin 2 cos 2 )
2 2 2

(1 ) (1 )cos cos 2
2 2

b t t

b t t t t

b t t t

b t t t t

b t t

λ λλ

λ

λ

λ

λ λλ

⎧ = + − + −⎪
⎪
⎪ = + − + + − +⎪
⎪⎪ = + − − +⎨
⎪
⎪

= + − + + − −⎪
⎪
⎪ = + − + +⎪⎩

                                                                       (1) 

where 1 1.5λ− ≤ ≤ . 
From Eq. (1), it is easy to check that 
 1) Weight property: 0,4 1,4 2,4 3,4 4,4( ) ( ) ( ) ( ) ( ) 1b t b t b t b t b t+ + + + ≡ ; 

 2) Symmetry: ,4 4 ,4( ) ( )
2i ib t b tπ

−− = , 0,1,2,3,4i =  

 3) Nonnegative property: when 1 1λ− ≤ ≤ , ,4 ( ) 0 ( 0,1, 2,3, 4)ib t i≥ = . 

The above results show that the quasi-quartic trigonometric polynomial base functions have the most of 
properties similar to quartic Bernstein basis functions. 
Definition 2 Let 0P , 1P , 2P , 3P and 4P be given control points, the following curves are called quasi-quartic 
trigonometric Bézier curve, 

4
,40

( ) ( )j jj
t b t∑

=
=B P                                                                      (2) 

where ,4 ( )jb t ( 0,1, 2,3, 4)j = are quasi-quartic trigonometric polynomial base functions. 
Let [t] = [1 sint cost sint2t cos2t], [P] = [P0 P1 P2 P3 P4] and 

[ ]

3(1 ) 3(1 )   1     -      2(1 )    -        1
2 2 2 2

(1 )     2(1 )     -2(1 )         1           0   
     0             1       -2(1 )      2(1 )     -(1 )

1     0           -          
2

λ λ λ λλ

λ λ λ λ
λ λ λ λ
λ

+ +
+ + +

− + + + +
= + + + +

+
b

11          -            0      
2

1 1                        0            -             
2 2 2 2

λλ

λ λ λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+

+⎢ ⎥
⎢ ⎥

+ +⎢ ⎥−⎢ ⎥⎣ ⎦
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then Eq. (2) can be transformed into matrix form as follows: 
T( ) [ ][ ][ ]B t = t b P  

It’s not difficult to prove that the rank of matrix [b] equal 5 for an arbitrary parameter λ, thus the matrix 
[b] is linear independent. 

From the properties of quasi-quartic trigonometric polynomial base functions, the properties of quasi-
quartic trigonometric Bézier curves can be obtained as follows. 

1) Geometric properties at the endpoints:  

0(0) =B P ， 4( )
2
π

=B P ， 1 0(0) (1 )( )λ′ = + −B P P ， 4 3( ) (1 )( )
2
π λ′ = + −B P P                         (3) 

2) Symmetry: Assume we keep the location of control points ( 0,1,2,3,4)i i =P  fixed, invert their orders, 
and then the obtained curve coincides with the former one with opposite directions. In fact, from the 
symmetry of quasi-quartic trigonometric polynomial base functions, we have 

4 4
,4 4 ,40 0

( ) ( ) ( ) ( )
2 2i i i ii i

t b t b t tπ π
∑ ∑ −= =

− = − = =B P P B  

3) Affine invariance: The shapes of quasi-quartic trigonometric Bézier curves are independent of the 
choice of coordinates. This property can be easily verified by considering an affine map ( )     x Ax vΦ = +  
where A is 4 4× matrix and v is in R3. Now 

4 4 4 4
4, 4, 4, 4,0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ( ))i i i i i i i ii i i i
b t A v b t A b t v b t∑ ∑ ∑ ∑

= = = =
Φ = + = + = ΦP P P P  

4) V.D. property: No plane more intersections with the curve than with the control polygon in a quasi-
quartic trigonometric Bézier curve segment. 
Proof. We use the method presented by [11]. First, we need to prove that the base functions (1) fulfill the 

Descartes' rule of signs on[0, ]
2
π , that is, for an arbitrary set of const sequence {c0, c1, c2, c3, c4},  

4
0 1 2 3 40

(0, ){ ( )} ( , , , , )
2 k kk

Zeros c B t SA c c c c cπ
∑
=

≤                                                  (4) 

where (0, ){ ( )}
2

Zeros f tπ means the number of zeros of function ( )f t on (0, )
2
π , 4

0
( ) ( )k kk

f t c B t∑
=

= . SA (c0, c1, c2, 

c3, c4) denotes the number of sign changed. Let's suppose c0>0, SA (c0, c1, c2, c3, c4) would be 4, 3,2,1,0. 

1) When SA (c0, c1, c2, c3, c4)=4, c4>0. On the other hand, ( )f t is continuous on[0, ]
2
π , thus 0(0)f c= , 

4( )
2

f cπ
= . Suppose ( )f t has five zeros over (0, )

2
π , then 4( ) 0

2
f cπ

= < , it is contradictious with pervious result, 

hence Eq. (4) is true. 
2) When SA (c0, c1, c2, c3, c4)=3,2,1 , we can prove that Eq. (4) is true using the same method. 
3) When SA (c0, c1, c2, c3, c4)=0, it is obvious that Eq. (4) comes true. So we can come to a conclusion 

ultimately that Eq. (4) is true. 
Next we will prove the V.D. property. Let L is a line (or plane) that through point Q and whose normal 

vector is v, Np and Nc are numbers of intersection points between control polygon<P0 P1 P2 P3 P4> and curve 
segment Bi(t) with L respectively. 

If L intersects the control polygon <P0 P1 P2 P3 P4> at the side PkPk+1, then Pk, Pk+1 must be flanked by L, 
hence ( )kP Q⋅ −v and 1( )kP Q+⋅ −v have contrary sign. So,  

0 1 2 3 4{ ( ), ( ), ( ), ( ), ( )} pSA P Q P Q P Q P Q P Q N⋅ − ⋅ − ⋅ − ⋅ − ⋅ − ≤v v v v v                                   (5) 
on the other hand, according the Descartes' rule of signs, 

4
,4 0 1 2 3 40

(0, ){ ( )( ) } { ( ), ( ), ( ), ( ), ( )}
2c k kk

N Zeros b t P Q SA P Q P Q P Q P Q P Qπ
∑
=

= − ⋅ ≤ ⋅ − ⋅ − ⋅ − ⋅ − ⋅ −v v v v v v         (6) 

from Eq.(5) and (6), we can get easily that c pN N≤ . This completed the proof. 

5) Convexity preserving: From V.D. property, when the control polygon is convex, because the 
maximum of intersection points between a line with control polygon not exceeds 2, the maximum of 
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intersection points between an arbitrary line in a plane with curve not exceeds 2, hence the corresponding 
quasi-quartic trigonometric Bézier curve is convex. 

6) Approximation: for [0, ]
2

t π
∈ , when parameter λ increases gradually, then 0,4 ( )b t and 4,4 ( )b t decrease 

gradually, while 1,4 ( )b t , 2,4 ( )b t and 3,4 ( )b t increases gradually; thus when parameter λ increases gradually, the 
curve approach to P1P2 and P2P3. Especially, the curve goes back to the straight line when λ=-1. (See Fig. 1) 

 
Fig.1 A family of quasi-quartic trigonometric Bézier curves 

Definition 3 Given the control mesh [Prs] ( , , 3;   , , 3)r i i s j j= + = +K K , ( 0,1, , 1; 0,1, , 1)i n j m= − = −K K , tensor 
product quasi-biquartic trigonometric Bézier surfaces can be defined as 

4 4
,4 1 ,4 2( , ) ( , ) ( , )i, j r s rsr i s j

u v b u b vλ λ∑ ∑
= =

=B P   ( , ) [0, ] [0, ]
2 2

u v π π
∈ ×  

where ,4 1( , )rb uλ ,4 2( , )sb vλ are quasi-quartic trigonometric polynomial base functions. Many properties of quasi-
quartic trigonometric Bézier curves can be extended to the quasi-quartic trigonometric surfaces. For example, 
the symmetry, affine invariance and the convexity preserving property also hold for the surface scheme. 

3. Jointing of quasi-quartic trigonometric Bézier curves 
Suppose there are two segment of quasi-quartic trigonometric Bézier curves 4

,40
( ) ( )i ii
t b t∑

=
=P P , 

4
,40

( ) ( )i ii
t b t∑

=
=Q Q ; where P4=Q0, parameters of Pi(t) and Qi(t) are λ1 and λ2 respectively. 

To achieve 1G  continuity of the two curve segments, it is required that not only the last control point of 
Pi(t) and the first control point of Qi(t) must be the same, but also the direction of the first order derivative at 
jointing point should be the same, namely 

'( ) '(0)    ( 0)
2

k kπ
= >P Q  

Substituting Eq. (3) into the above equitation, one can get 

1 4 3 2 1 0(1 )( ) (1 )( )kλ λ+ − = + −P P Q Q  

Let 2

1

(1 )
1

k λ
δ

λ
+

=
+

，substituting it into the above equitation, then 

4 3 1 0( ) ( )   ( 0)δ δ− = − >P P Q Q  

Especially, for k=1, namely, 2

1

1
1

λ
δ

λ
+

=
+

, the first order derivative of two segment of curves is equal .Thus, 

1G continuity has transformed into 1C continuity. Then we can get following theorem1. 
Theorem1 If 3 4P P and 0 1Q Q is collinear and have the same directions, i.e. 

4 3 1 0( ) ( )   ( 0)δ δ− = − >P P Q Q                                    (7) 

Then curves of ( )tP  and ( )tQ  will reach 1G  continuity at a jointing point and when 2

1

1
1

λ
δ

λ
+

=
+

, they will 
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get 1C continuity. 
Then we will discuss continuity conditions of 2G and 4C when 1 2 1λ λ= = . 

First, we’ll discuss conditions of 2G continuity which is required to have common curvature, namely 

3 3

( / 2) ( / 2) (0) (0)

( / 2) (0)

π π

π

′ ′′ ′ ′′× ×
=

′ ′

P P Q Q

P Q
              (8) 

Let 1 2 1λ λ= = , second derivatives of two segments of curves can be get 

2 3 4( / 2) 4 6 2π′′ = − +P P P P , 0 1 2(0) 2 6 4′′ = − +Q Q Q Q           (9) 

Substituting Eq. (3) and (9) into Eq. (8), simplifying it, then 

4 3 3 2 1 0 2 1
3 3

4 3 1 0

( ) ( ) ( ) ( )− × − − × −
=

− −

P P P P Q Q Q Q

P P Q Q
                                               (10) 

Substituting Eq. (7) into the above equitation, one can get 
2

1 2h hδ=   
where 1h is the distance from 2P to 3 4P P and 2h is the distance from 2Q to 0 1Q Q . Hence we can get theorem 2. 

Theorem 2 Let parameters 1 2,λ λ are all equal one, if they satisfy Eq. (7) and (10), five points 2 3 4 1 2, , , ,P P P Q Q  
are coplanar and 2P , 2Q  are in the same side of the common tangent, then jointing of curves ( )tP and ( )tQ  
reach 2G continuity. (See Fig. 2) 

 
Fig.2 G2 continuity of two pieces of curves (δ=1.5, h2=2.25h1) 

Next, we will discuss the conditions of 4C continuity. When curves ( )tP and ( )tQ  reach 1C  continuity at 
the linked point, i.e. 0 4=Q P and 1 0 4 3-  -=Q Q P P .Under such circumstances, if ( / 2) (0)π′′ ′′=P Q , 

( / 2) (0)π′′′ ′′′=P Q , ( / 2) (0)π =(4) (4)P Q , then two curves will become 4C continuity. Combine all the above 
conditions, we get 

2 2 3 4

3 1 2 3 4

4 0 1 2 3 4

3 3
4 6 4

4 8 8 4

= − +

= − + − +

= − + − +

Q P P P
Q P P P P
Q P P P P P

                                                         (11) 

Theorem 3 Let parameters 1 2,λ λ are all equal one and satisfy (11) in theorem 1, curves ( )tP and ( )tQ  will 
reach 4C continuity at the linked point. (See Fig. 3) 
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Fig.3 C4 continuity of two pieces of curves 

4. Applications of quasi-quartic trigonometric Bézier curves and surfaces 

4.1. Exact Expressions of some curves 
Theorem 4 When 1λ −≠ , quasi-quartic trigonometric Bézier curves can express any plane curves or space 
curves defined by parametric equation based on {1, sint, cost, sint2t, cos2t}. 
Proof. Let any plane curves defined by parametric equation based on {1, sint, cost, sint2t, cos2t} defined as 

( ) ( ( ), ( ))x yt t t=p p p  
and let T( ) [ ][ , , , , ]x a b c d et x x x x x=p t , T( ) [ ][ , , , , ]y a b c d et y y y y y=p t , where [t]=[1 sint cost sint2t cos2t], 

,...,a ex x R∈ , ,...,a ey y R∈ , and both vector are non-zero vector. 

If quasi-quartic trigonometric Bézier curves ( )tB can express ( )tp , i.e. ( ) ( )t t=B p . 

So, for x, y coordinate, we have ( ) ( )t t=x xB p and ( ) ( )t t=y yB p , namely, 
T[ ][ ][ ] [ ][ ,..., ]x a ex x=t b P t , T[ ][ ][ ] [ ][ ,..., ]y a ey y=t b P t  

Simplifying them, one can get 
T[ ][ ] [ ,..., ]x a ex x=b P , T[ ][ ] [ ,..., ]y a ey y=b P                                                (12) 

Because 0b ≠ when 1λ ≠ − , and the rank of matrix [b] equal 5, the above two systems of linear 
inhomogeneous equations must have solutions, and the solutions are unique when the expression of solutions 
without λ. Therefore, quasi-quartic trigonometric Bézier curves ( )tB can express ( )tp . 

For curve in space, the proof is the same as the plane curve, and this completed the proof. 
Then, only one example which exact expression of circular or ellipse is to be given as follow. 
Let ( ) ( cos , sin )t u t v t=p or ( ) ( cos 2 , sin 2 )t u t v t=p , where 0 / 2t π≤ ≤ .Obviously, ( )tp is circular parametric 

or ellipse equation. We discuss the second form of ( )tp here. 

It is easy to get 
T( ) cos 2 [ ][0 0 0 0 ]x t u t u= =p t , T( ) sin 2 [ ][0 0 0  0]y t v t v= =p t  

then 
[ ,..., ] [0 0 0 0 ]a ex x u= , [ ,..., ] [0 0 0  0]a ey y v=  

Substituting the above equations into Eqs. (12), we can solve the system of linear equations and get 
T[ ] [     0 -  - ]x u u u u=P , T2 3 2[ ] [0          0]

1 1 1y
v v v
λ λ λ

=
+ + +

P  

Clearly, when 1λ ≠ − , given the five control points determined by above[ ]xP and[ ]yP the curve express 
exactly the up-semicircular or up-semi ellipse. In the same way, one can get the five control points 
expressing the down-semicircular or down-semi ellipse 

T[ ] [-   -   0    ]x u u u u=P , T2 3 2[ ] [0  -    -    -   0]
1 1 1y

v v v
λ λ λ

=
+ + +

P  

Note：It’s important that the joining of two arcs of circular or ellipse is C4 continuous because of satisfying 
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the theorem 3, and it’s not difficulty to verify it. 

4.2. Approximation of Helix 
Theorem 5 Let 1λ = , 0 ( ,0,0)a=P , 1 ( , , )a a b=P , 2

3 3(0, , )
2 2

a b=P , 3
7( , , )
3

a a b= −P , 4
8( ,0, )
3

a b= −P  are given, 

then the curve defined by (2) is the approximate expression of circular helix. 
Proof. Substituting 0 1 2 3 4, , , ,P P P P P  into Eq. (2), then  

8 1( ) ( cos 2 , sin 2 , sin sin 2 )
3 3

t a t a t b t b t= −B  

Clearly, the curve ( )tB must be on the cylinder 2 2 2+ =x y a . 

And we have 
3 5 2 1

1sin - ( 1)
3! 5! (2 1)!

n
nt t tt t

n

−
+= + − − +

−
L L ,

3 5 2 1
18 32 (2 ) sin 2 2 - ( 1)

3! 5! (2 1)!

n
nt t tt t

n

−
+= + − − +

−
L L , 

then we can get 

58 1sin sin 2 2 ( )
3 3

t t t O t− = +  

Control the error in the given ( )tε by controlling the scope of t, then ( )tB can be transformed into: 

cos 2
sin 2

2

x a t
y a t
z bt

=⎧
⎪ =⎨
⎪ ≈⎩

    

This is an approximate equation of helix, and this was to be proved. 

When [0, ]
4

t π
∈ ， 1a b= = , a segment of curves which approximate expression of helix is presented in 

Fig. 4 (the red lines). 

 
Fig.4 Approximation of Helix 

4.3. Some Modeling examples of surfaces 
Because the quasi-quartic trigonometric Bézier curves can represent precisely straight line segment, 

circular arc, elliptic arc, parabola, cardioid; therefore the corresponding tensor product quasi-biquartic 
trigonometric Bézier surfaces can represent some quadratic surfaces such as cylindrical surfaces, sphere, 
ellipsoid, parabolic surfaces, torus. Furthermore, some complex surfaces can be constructed by these basic 
surfaces exactly. While the method of traditional quartic Bézier curves needs joining with many patches of 
surface in order to satisfy the precision of users for designing. Therefore the method presented by this paper 
can raise the efficient of constituting surfaces and precision of representation in a large extent. 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22664 | Generated on 2025-04-09 07:03:16



Journal of Information and Computing Science, Vol. 7 (2012) No. 1, pp 072-080 
 
 

JIC email for subscription: publishing@WAU.org.uk 

79

     
Fig.5 A right angle pipe modeled by twelve pieces of C1 continuous quasi-biquartic trigonometric Bézier surfaces 

 
Fig.6 A bowl-shaped surfaces modeled by four pieces of C4 continuous quasi-biquartic trigonometric Bézier surfaces 

 
Fig.7 A tread surface modeled by four pieces of C4 continuous quasi-biquartic trigonometric Bézier surfaces  

Some modeling examples of by tensor product quasi-biquartic trigonometric Bézier surfaces are given as 
follows: Fig.5 shows the precise reconstruction of right angle pipe with twelve pieces of C1 continuous 
quasi-biquartic trigonometric Bézier surfaces. Fig.6 denotes a bowl-shaped surface by four pieces of C4 
continuous quasi-biquartic trigonometric Bézier surfaces. Fig.7 depicts a tread surface by four pieces of C4 
continuous quasi-biquartic trigonometric Bézier surfaces. 

5. Relationship between quasi-quartic trigonometric Bézier curves and quartic 
Bézier curves 
Suppose iQ , i+1Q , i+2Q and i+3Q are not collinear, considering the symmetry of basis functions of quasi-

quartic trigonometric Bézier curves, to obtain the relationships between quasi-quartic trigonometric Bézier 
curves segment ( )tP and quartic Bézier curves segment ( )tB , we can set 

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

( ) ( )( )
4
1( ) ( )
2

i i i i i i i i i i

i i i i i i i i i i

a b c b a x y d e f e d

a b c b a z d e f e d

π λ+ + + + + + + +

+ + + + + + + +

⎧ − − − − − = + + + + +⎪⎪
⎨
⎪ − − − − − = + + + +
⎪⎩

P Q Q Q Q Q Q Q Q Q Q

B Q Q Q Q Q Q Q Q Q Q
              (13) 

For iQ , from Eq. (2) and (13), we can get 
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2(1 ) (1 ) ( )
2 2

a x y dλ λ λ+ − + − = + , 
1

16
a zd− =  

For i+1Q , from Eq. (2) and (13), we can get 

3 2(1 )( 2) ( )
2

b x y eλ λ+ − − = + , 
1
4

b ze− =  
For i+2Q , from Eq. (2) and (13), we can get 

32(1 )( 2) ( )
2

c x y fλ λ+ − − = + , 
3
8

c zf− =  

We can get a group of approximate solution of the above system of equations by solving non-linear 
system using MATLAB2010b is 

0.7071a = , -0.1213b = , -0.1716c = , 
-0.1953d = , -0.1144e = , 0.1618f =  

2.1212x = , 1.0606y =  

Let 1( ) ( )
4 2
π

=P B , Substituting it into Eq. (13), one can get 

1.1124λ =  
So, when 1.1124λ = , the quasi-quartic trigonometric Bézier curves segment ( )tP is most close to the 

quartic Bézier curves segment ( )tB , when1.1124 1.5λ< ≤ , the larger is λ, and the more approach is the quasi-
quartic trigonometric Bézier curves segment ( )tP to the control polygon. 

6. Conclusion 
In this paper, we proposed a class of quasi-quartic trigonometric Bézier curves and surfaces which 

inherit most of properties similar to those of quartic Bézier curves and surfaces. With the shape parameter 
chosen properly, the curves and surfaces can express exactly some quadratic curves and surfaces without 
using rational form. The jointing of two pieces of curves can reach G2 and C4 continuity under the 
appropriate conditions. Finally, the relationship between quasi-quartic trigonometric Bézier curves and 
quartic Bézier curves is discussed. 
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