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Abstract. This paper studies the problem of the computation of common infinity-norm Lyapunov 
functions. For a set of continuous-time LTI systems or discrete-time LTI systems whose system matrices are 
upper triangular form or lower triangular form, it is proved that there exist common infinity-norm Lyapunov 
functions for them. Then four algorithms of computing common infinity-norm Lyapunov functions are 
presented. Finally, several examples are listed. 
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1. Introduction 
A switched systems is one that combines continuous (or discrete ) dynamics with a logic-based switching 

mechanism that determines abrupt mode switches in the system, operation at various points in time[1]. Most 
research has been devoted to the stability of switched systems[2-4]. As we know, Lyapunov functions play an 
important role in the stability theory of control systems for some time. In view of this, a considerable amount 
of recent work has focused on applying similar ideas to switched systems. Most recently many authors have 
derived conditions for the stability of linear switched systems based on the existence of common Lyapunov 
functions for their constituent systems[5-7]. For numerical and practical reasons, common quadratic Lyapunov 
functions are usually chosen[8-10]. However，quadratic Lyapunov functions can be too conservation and 
efforts have been devoted to the development of other types of common Lyapunov functions. Common 
infinity-norm Lyapunov functions are important one which have been studied to considerable extent[11-12] . 
How to compute common Lyapunov functions is of importance because this will provide some meaningful 
results of control systems. In this paper, we give algorithms of computing common infinity-norm Lyapunov 
functions.  

2. Preliminaries 
Throughout this note the following notation is used: 

Let nR  denote real n  dimensional space.  
nmR ×  denotes the set of nm ×  real matrices. 

1−A  is the converse of nmRA ×∈ . 

The pl  norms 
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The infinity norm of matrix nnRA ×∈  is defined by  

∑
=≤≤∞

=
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max  

Consider a family of linear systems 

                 xAx i=& ， nRx ∈ ， nn
i RA ×∈ ， Ni ,,1L= .                                            (1) 

Definition 1 A function  

∞
= WxxV )( , nmRW ×∈  

is said to be a common Lyapunov function of the linear systems (1) if there exist matrices 
mm

i RQ ×∈ , Ni ,,1L=  
such that  

                       WQWA ii =                                                                    (2) 
and 

                        0
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<+ ∑
≠
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m
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i
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jj qq                                                                (3) 

for all Ni ≤≤1 , mj ≤≤1 . −i
jkq entries of the matrix iQ . 

Given a set of stable discrete-time LTI systems described by the following equations 

           )()1( txAtx i=+ , nRx ∈ , nn
i RA ×∈ , Ni ,,1L= .                                           (4) 

Definition 2 The function of the vector norm form  

∞
= WxxV )( , nmRW ×∈ , nm ≥ , nWRank =)(  

is said to be a common infinity-norm Lyapunov function for the set of systems(4) if there exist matrices 
mm

i RQ ×∈ , Ni ,,1L=  such that w have the matrix relations 

                        WQWA ii =                                                                   (5) 
and  

                         1<
∞iQ                                                                     (6) 

for all Ni ≤≤1 . 

3. Computation of common infinity-norm Lyapunov functions 
Let  us  consider iA ,  Ni ,,1L=  in  (1) or (4) have the form as follows 
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The following we give the theorem below.   
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Theorem 1 Let nn
i RA ×∈ , Ni ,,1L=  be Hurwitz such that iA  are upper triangular matrices, then systems 

(1) share a common infinity-norm Lyapunov function  
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Proof.  From (2), we have  
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Noticing (3), we have  
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Since iA  are Hurwitz, in (8), 0<i
nna  are always true. By 0)1(1)1)(1( <+ −−−−
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Finally, we obtain 
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. This completes the proof. 

Based on the proof above, we can get the algorithm of computing common infinity-norm Lyapunov 
functions. 

Algorithm 1  
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Step 2 Set 2−= nk ; 
Step 3 Compute kA , for any ),0( kk Ap ∈ , output kp ; 

Step 4 1−= kk ;  
Step 5 If 1≥k , goto step 2, otherwise stop; 
Step 6 Output 
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When iA  are lower triangular matrices, we have the following theorem. 

Theorem 2 Let nn
i RA ×∈ , Ni ,,1L=  be Hurwitz such that iA  are lower triangular matrices, then systems 

(2) share a common infinity-norm Lyapunov function  
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and  
0,,0 11 >> −npp L . 

The proof of this theorem is similar to Theorem 1, so the proof is omitted here. 
In what follows, we give the algorithm. 

Algorithm 2  
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Step 2 Set 2=k ;  
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Next we consider discrete-time LTI systems. 

Theorem 3 Let nn
i RA ×∈ , Ni ,,1L=  be Schur such that iA  are upper triangular matrices, then systems 

(4) share a common infinity-norm Lyapunov function  
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Proof: Similar to Theorem 1, =iQ  
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Noticing (3), we have 
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Since iA  are Schur, in (9), 0<i
nna  are always true. By 1)1(1)1)(1( <+ −−−−

i
nnn

i
nn apa  , we get 

i
nn

i
nn

n a

a
p

)1(

)1)(1(
1

1
0

−

−−
−

−
<< . So 1−np  can be equal to any number in ))

1
(min,0(

)1(

)1)(1(

1 i
nn

i
nn

Ni a

a

−

−−

≤≤

−
，and we can 

fix 1−np . Similarly, in general we 
i
n

l

i
ll

i
ll

l

a
p

a

a
p

1
1

)1(

1
0

++

−
<<

+

+
L

 and 
i

l

i
ll

i
ll

Nil

a
p

a

a
p

ln
1

)1(
1

1
min,0(

++

−
∈

+

+
≤≤

L

). 

Finally, we obtain 
i

i

i

a
p
a

a
p

ln
2

12

11
1

1
0

++

−
<<

L

. Noticing iA  are Schur , so 01 >− i
lla , 1,,1 −= nl L .This 

completes the proof. 
Based on the proof above, we can get the algorithm 3. 

Algorithm 3  
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Step 2 Set 2−= nk ; 
Step 3 Compute kC . For any ),0( kk Cp ∈ , output kp ; 

Step 4 1−= kk ; 
Step 5 If 1≥k , goto step 2, otherwise stop; 
Step 6 Output 
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In what follows, we give an example. 
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Similarly, we can obtain Theorem 4. 

Theorem 4 Let nn
i RA ×∈ , Ni ,,1L=  be Schur such that iA  are lower triangular matrices, then systems 

(4) share a common infinity-norm Lyapunov function  
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Based on the proof above, we can get the algorithm 4. 
Algorithm 4  
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4. Conclusions 
In this paper, we deal with the problem of the computation of common infinity-norm Lyapunov 

functions for continuous-time LTI systems or discrete-time LTI systems. For systems matrices are upper 
triangular form or lower triangular form, we present analytical methods and feasible algorithms are 
addressed. 
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