
 

Published by World Academic Press, World Academic Union 

ISSN 1746-7659, England, UK
Journal of Information and Computing Science

Vol. 6, No. 4, 2011, pp. 295-302

 

 

A Novel Sparse Learning Method: Compressible Bayesian 
Elastic Net Model 

Ke-Yang Cheng1, 2, Qi-rong Mao2,Xiao-yang Tan1,Yong-zhao Zhan2 

1 School of Information Science & Technology, Nanjing University of aeronautics & astronautics, Nanjing, 
Jiangsu, China,210016 

2 School of Computer Science & Telecommunications Engineering, Jiangsu University, Zhenjiang, Jiangsu, 
China,212013 

(Received February 10, 2011, accepted May 22, 2011) 

Abstract. In this paper, we study the combination of compression and Bayesian elastic net. By including a 
compression operation into the ℓ1 and ℓ2 regularization, the assumption on model sparsity is relaxed to 
compressibility: model coefficients are compressed before being penalized, and sparsity is achieved in a 
compressed domain rather than the original space. We focus on the design of compression operations, by 
which we can encode various compressibility assumptions and inductive biases. We show that use of a 
compression operation provides an opportunity to leverage auxiliary information from various sources. The 
compressible Bayesian elastic net has another two major advantages. Firstly, as a Bayesian method, the 
distributional results on the estimates are straightforward, making the statistical inference easier. Secondly, it 
chooses the two penalty parameters simultaneously, avoiding the “double shrinkage problem” in the elastic 
net method. We conduct extensive experiments on braincomputer interfacing, handwritten character 
recognition and text classification. Empirical results show clear improvements in prediction performance by 
including compression in Bayesian elastic net. We also analyze the learned model coefficients under 
appropriate compressibility assumptions, which further demonstrate the advantages of learning compressible 
models instead of sparse models. 
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1. Introduction 
Regularization was initially proposed to solve ill-posed problems (Tikhonov & Arsenin, 1977)[1]. In 

statistical learning, regularization is widely used to control model complexity and prevent overfitting (Hastie 
et al., 2001)[2]. Regularization seeks a trade-off between fitting the observations and reducing the model 
complexity, which is justified by the minimum description length (MDL) principle in information theory 
(Rissanen, 1978)[3] and the bias-variance dilemma in statistics (Sullivan, 1986)[4]. Since the introduction of 
lasso (Tibshirani, 1996)[5], ℓ1-regularization has become very popular for learning in high-dimensional 
spaces. A fundamental assumption of ℓ1-regularization is the sparsity of model parameters, i.e., a large 
fraction of coefficients are zeros. While demonstrating promising performance for many problems, the lasso 
estimator does have some shortcomings.  

Zou and Hastie (2005) [6] emphasized three inherent drawbacks of the lasso estimator. Firstly, due to the 
nature of the convex optimization problem, the lasso method cannot select more predictors than the sample 
size. But in practice there are often studies that involve much more predictors than the sample size, e.g. 
microarray data analysis (Guyon et al. 2002)[7]. Secondly, when there is some group structure among the 
predictors, the lasso estimator usually selects only one predictor from a group while ignoring others. Thirdly, 
when the predictors are highly correlated, the lasso estimator performs unsatisfactorily. Zou and Hastie 
(2005) proposed the elastic net (en) estimator to achieve improved performance in these cases. The en 
estimator can also be viewed as a penalized least squares method where the penalty term is a convex 
combination of the lasso penalty and the ridge penalty.  

Another shortcoming of Lasso is that the sparsity assumption on model coefficients might be too 
restrictive and not necessarily appropriate in many application domains. Indeed, many signals in the real 
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world (e.g., images, audio, videos, time series) are found to be compressible (i.e., sparse in certain 
compressed domain) but not directly sparse in the observed space. Naturally, the assumption of sparsity can 
be relaxed to compressibility. Inspired by the recent development of compressive sampling (or compressed 
sensing) (Candes, 2006[8]; Donoho, 2006[9]), we study learning compressible models: a compression on 
model coefficients can be included in the ℓ1 and ℓ2 penalty, and model is assumed to be sparse after 
compression. 

The rest of this paper is organized as follows. In section 2 we will briefly introduce naïve elastic net. In 
Section 3 we discuss the definition, computation issues and potential benefits of learning compressible 
Bayesian elastic net model. In this Section, we propose some classes of model compressibility assumptions 
and model hierarchy distributions. In Sections 4, we empirically study some real-world problems using 
compressibility as a more appropriate inductive bias than sparsity. Experimental results also demonstrate the 
advantages of compressible Bayesian elastic net (cben) than compressible Bayesian lasso (cbl), elastic net 
(en) and lasso. Section 5 concludes and mentions some discussions. 

2. Naive elastic net 
Suppose that the data set has n observations with p predictors. Let T

nyyy ),...,( 1=  be the response and 

),...,( 1 pxxX =  be the model matrix, where pjxxx T
njjj ,...,1,),...,( 1 == , are the predictors. After a 

location and scale transformation, we can assume that the response is centred and the predictors are 
standardized. 
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For any fixed non-negative λ1 and λ2, we define the naive elastic net criterion 
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The naive elastic net estimator β̂  is the minimizer of equation (1): 

)}.,,({minargˆ
11 βλλβ

β
L=  

This procedure can be viewed as a penalized least squares method. Let α=λ1+λ2; then solving β̂  in 
equation (1) is equivalent to the optimization problem 

,||minargˆ 2ββ
β

Xy −=        subject to t≤+− 2
21 ||||)1( βαβα  for some t. 

We call the function 2
21 ||||)1( βαβα +−  the elastic net penalty, which is a convex combination of the 

lasso and ridge penalty. When α=1, the naive elastic net becomes simple ridge regression. In this paper, we 
consider only α<1. For all α∈[0, 1), the elastic net penalty function is singular (without first derivative) at 0 
and it is strictly convex for all α>0, thus having the characteristics of both the lasso and ridge regression. 
Note that the lasso penalty (α=0) is convex but not strictly convex. These arguments can be seen clearly from 
Fig. 1. 
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Fig 1. The α-ball with α> 0 (solid line，contour of the elastic net penalty), the square (ℓ1-ball), which is the α-ball with 
α= 0 (dashed line，contour of the lasso penalty), and the disc (ℓ2-ball), which is the α-ball with α→∞(dotted line，
shape of the ridge penalty). we see that singularities at the vertices and the edges are strictly convex; the strength of 

convexity varies with α. 

3. Compressible Bayesian Elastic Net Model 

3.1. Learning Compressible Model 
Assuming the model to be sparse and shrinking model coefficients to exactly zero might not be the most 

appropriate inductive bias in many problems. For example, real-world signals (such as audio, images, videos 
and time series) are usually compressible but not directly sparse in the observation domain. Interestingly, 
compressive sampling (Candes, 2006)[8] or compressed sensing (Donoho, 2006) [9]was recently developed 
in signal acquisition. The target signal is assumed to be compressible and sparse after being compressed. We 
consider the problem of learning compressible models as follows: 

2
2211 ||)(||||)(||)1,(min βλβλβα WWXyL +++                                                (2) 

The loss function L depends on the prediction model, e.g., sum of squares loss for linear regression, log-
likelihood loss for logistic regression, hinge loss for SVMs, and so forth. The compression operation W() 
encodes our assumption on compressibility: model coefficients are compressed by W() before being 
penalized, and thus tend to follow the compression pattern (i.e., sparse in the compressed domain) rather than 
simply shrink to zero. 

For simplicity, we restrict our attention to linear compression. Given that the compression operation is a 
linear and invertible transform, learning compressible models is represented by eq. (2). 

The p×p matrix W denotes the linear and invertible compression transform, where p is the 
dimensionality of model coefficients. The optimization of eq. (2) can be achieved by applying the inverse 
compression transform (i.e., the decompression operation) to the feature space and solving the elastic net 
model in the transformed space. First, transform the training examples by  

1~ −= XWX                                                                                   (3) 
Second, solve the following standard elastic net model: 

2
2211 ||~||||~||)~~1,(min βλβλβα WWXyL +++                                                    (4) 

Finally, the solution for eq. (2) is obtained by: 

ββ ~1−=W                                                                                   (5) 
αα =                                                                                          (6) 

This equivalence is derived from βββ ~~~1 XXWX == − , 11
1
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Why do we want to learn compressible models, which are not necessarily sparse in the original space? 
Compressible models are useful in several aspects. The first is model fitting and prediction accuracy. The 
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inductive bias of model compressibility might be more appropriate than model sparsity, especially if an 
informative compression operation is specified based on additional information from domain knowledge, 
unlabeled data or related problems. The second reason, as claimed for standard sparse models, is 
interpretability. Model coefficients that are sparse in a compressed domain can still be insightful in the 
original space in many problems, as later shown by our empirical studies on brain-computer interface (in 
Section 5) and handwritten digit recognition (in Section 4). The third reason is that, when the compression 
operation is known in advance, compressible models are very efficient for storage and transmission in the 
compressed domain. This advantage has been widely recognized in compressive sensing (Candes, 2006[8]; 
Donoho, 2006[9]) for general signals and thus also valid when signals are model coefficients. 

3.2. Compression Operation 
In this section, we discuss how to get the compression operation matrix W. The local smoothness 

assumption on models is related to compression operation. Smoothness characterizes the properties of 
derivatives of a function. For example, a constant (or piecewise constant) function has zero first-order 
derivatives at all (or most) locations, and a quadratic function has zero third-order derivatives at all locations. 
Here we will show that use of a compression transform is very flexible and can represent various smoothness 
assumptions on model coefficients. 

Suppose we have a natural order over model coefficients p
jj 1}{ =β , e.g., in temporal domains where each 

dimension corresponds to a time point, or spectral domains where each dimension corresponds to a 
frequency. Order-1 smoothness assumes the coefficients “do not change very often” along the natural order. 
Such an assumption characterizes the first-order derivatives. It has been studied in fused lasso (Tibshirani et 
al., 2005[5]) where absolute values of the difference of successive coefficients, i.e., ∑ = −−

p

j jj2 1 || ββ , are 

penalized. This idea was also explored in total variation minimization for noise removal and image 
enhancement (Rudin et al., 1992[10]). As a motivating example, we show that the fused lasso penalty can be 
approximated by a linear and invertible compression in the ℓ1 penalty. 

The p × p matrix W for model compression based on order-1 smoothness can be defined as: 
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Model coefficients in the compressed domain ],...,,[ 121 ppW ββββββ −−= −  tend to be sparse due to 
ℓ1 regularization, which achieves the order-1 smoothness. The averaging operation in the first row of W 
makes the transform invertible. Note that if the first row of W is multiplied by a small constant (e.g., 0.001), 
||Wβ||1 approximates the fused lasso penalty. In our study, we will use the compression in eq. (7) without 
scaling the averaging operation. Also, we keep the compression operation invertible to make the 
optimization efficient, as discussed in eq. (3) - eq. (5). 

Smoothness of higher orders is also common. For example, a piecewise linear function has piecewise 
constant first-order derivatives, indicating zero second-order derivatives at most locations. This is defined as 
order-2 smoothness. In this case, the p × p compression transform W can be: 
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where 0 is a (p−1)×1 column vector. By this definition, model coefficients in the compressed domain are 

]Δ−ΔΔ−ΔΔ[= −−− ppppW ,11,23,22,1

____
,...,,, βββββββ , where 11, ++ −=Δ iiii βββ . In this sense, sparsity of the 

compressed model coefficients corresponds to order-2 smoothness assumption in the original space. Also, 
2
pS  is invertible since both 1

1−pS  and 1
pS  are invertible. Finally, model compression for higher-order 

smoothness can be defined recursively. 
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Sometimes features under consideration do not follow a universal order, but can be divided into groups, 
where each group of features has an order or at least some groups of features are ordered. The compression 
operation can be defined as a block matrix to handle the use of different groups of features. For example, 
suppose features can be divided into three groups. We assume p1 model coefficients on the first group of 
features satisfy order-1 smoothness, p2 coefficients on the second group of features satisfy order-2 
smoothness, and we have no knowledge about the third group of p3 features. In this case, model compression 
is defined as: 
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3.3. Model hierarchy and prior distributions of Compressible Bayesian Elastic Net Model  
Consider the linear model ββ XXyE =),|( ; where we assume that the response  variables follow the 

normal distribution conditionally, i.e. ),(~,| 2
nIXNXy σββ We assume that all analysis hereafter is 

conditional on X. Zou and Hastie (2005)[6] pointed out that, under these assumptions, solving the cben 
problem is equivalent to finding the marginal posterior mode of β|y when the prior distribution of β is given 
by: 

)(βπ ∝ }||||||||exp{ 2
2211 βλβλ −−                                                      (10) 

a compromise between Gaussian and Laplacian priors. Specifically, the conditional posterior distribution has 
the probability density function (pdf) 
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However, under (10), neither the conditional posterior mode of y,| 2σβ  nor the marginal posterior 

mode of y|β  would be equivalent to the cben estimator ENβ̂  unless the analysis is conditional on 2σ  or 
2σ  is given a point-mass prior. Instead we propose a prior for β, which is conditional on 2σ , as  
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+−                                                   (12) 

A noninformative prior is then assigned for 2σ ,i.e. )( 2σπ ∝ 2/1 σ  In this setup, the marginal posterior 
distribution for y|β  has the pdf 
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where ),(C 2
21 σλλ ，  is the normalizing constant later mentioned in Lemma 1. From (13), we can see that 

the cben estimator β̂  maximizes the integrand for each 2σ , and thus equals the marginal posterior mode of 
y|β . This conditional prior specification is also used by Park and Casella (2008)[11] for the sake of 

accelerating the convergence of the Gibbs sampler in that paper. Based on the discussion above, we have the 
following hierarchial model. 
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4. Experimental Results and Analysis  
We use data set IV, self-paced tapping, of BCI Competition 2003 (Blankertz et al., 2004[12]), which is a 

binary classification task. The task contains a training set of 316000 examples and a testing set of 100000 
examples. Each example has 1400 features, corresponding to 28 channels and 50 measurements from each 
channel. The number of features is much larger than the number of training examples, indicating the 
importance of regularization. Each example is measured when a healthy subject, sitting in a chair with 
fingers in the standard typing position, tries to press the keys using either the left hand or right hand. The 
objective is to classify an Electroencephalography (EEG) signal to either a left-hand movement or right-hand 
movement. 
 

 
(a) Sparse LGR coefficients 

 
(b) Compressible LGR coefficients 

Fig. 2: Model coefficients of sparse and compressible (i.e., piecewise smooth) logistic regression on brain-computer 
interfacing (EEG signal classification) 

We plot the model coefficients learned by a sparse logistic regression and a compressible logistic 
regression in Figure 1. From the plot we have several interesting observations. 1) Sparse logistic regression 
learns sparse coefficients, and compressible logistic regression (LGR) leads to (piecewise) smooth 
coefficients. These two different patterns represent the inductive biases we incorporate into the learning 
process (via different regularization penalties). 2) Although in the compressible logistic regression we 
mainly penalize the difference of successive coefficients, most learned coefficients are actually close to zero. 
The proposed regularization (piecewise local smoothness) effectively controls the model complexity not only 
in terms of smoothness but also in terms of the norm of coefficients. 3) In the compressible logistic 
regression, there still exist a few large coefficient jumps over successive dimensions (within the same 
channel): we plot in Fig. 2b the boundaries (vertical dashed lines) of three selected channels that contain 
large coefficient jumps. These jumps correspond to large coefficients in the compressed domain (recall that 
the compressed domain defined by our compression operation is composed of the difference of successive 
coefficients within the same channel in the original space). The existence of a few large coefficients in the 
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compressed domain is consistent with the notation of compressibility: most information of the original signal 
is concentrated on a few components after being compressed. 

We also carry out Monte Carlo simulations and use the median of the prediction mean-squared errors 
(MMSE) to compare the performance of cben, cbl, en and lasso in prediction accuracy and variable selection. 
For cben, instead of using the penalty parameters (λ1; λ2), it is equivalent to use (s,λ2), where 

11 ||||/|||| OLSs ββ=  with OLSβ being the ordinary least squares (ols) estimate (Zou and Hastie 2005[6]). 
Similarly, s instead of λ1 is used in lasso. 

The data are simulated from the following linear model, 

),0(~, 2INXy σεεβ +=                                                                  (15) 
Each simulated sample was partitioned into a training set, a validation set and a testing set. The 

validation set is used to select s for lasso and ),( 2λS for en. After the penalty parameter is selected, we 
combine the training set and the validation set together to estimateβ . For Bayesian methods, we directly 
combine the training and validation sets together for estimation. 

For the first two simulation studies, we simulate 50 data sets, each of which has 20 observations for the 
training set, 20 for the validation set, and 200 for the testing set. In Simulation 1, we set β = 
(3,1.5,0,0,2,0,0,0)T

 and 2σ =9. The design matrix X is generated from the multivariate normal distribution 
with mean 0, variance 1 and pairwise correlations between xi and xj equal to 0.5|i-j| for all i and j. In 
Simulation 2, we set β = (0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85)T, and leave other setups the same as in 
Simulation 1. In Simulation 3, we first generate Z1, Z2 and Z3 independently from N(0,1). Then let xi = Z1 + εi, 
i = 1,…, 5, xi = Z2 +εi, i = 6,…,10, xi = Z3 +εi, i = 11,…,15 and xi ~ N(0, 1), i = 16,…,30, where εi~N(0,0.01), i 
= 1,…,15. We perform 50 simulations, in each of which we have a training set of size 100, a validation set of 
size 100 and a testing set of size 400. The parameters are set as 2σ  = 225 and 

T)0,...,0,3,...,3,3,...,3,3,...,3(=β . 
 

       5          5         5       15 
In Simulation 4, we set the sizes of the training set and the validation set both to 200, while leaving other 

setups the same as in Simulation 3. In Simulation 5, we set the sizes of the training set and the validation set 
both to 20, and the true parameter value to 

)3,...,3,0,...,0,3,...,3(=β , 
 

      10          10        10 
while leaving other setups the same as in Simulation 3. 
 

      Table 1: Comparison of the four methods (ben, bl, en, and lasso) on prediction accuracy 

 Method   Simulation1   Simulation2    Simulation3   Simulation4   Simulation5 
 MMSE(SE)   MMSE(SE)    MMSE(SE)    MMSE(SE)   MMSE(SE) 

cben       11.99(0.28)   11.39(0.29)      232.3(3.83)    215.1(1.95)   335.3(4.17) 
en           11.29(0.53)   11.10(0.29)      281.4(6.80)    243.0(4.24)   376.9(9.81) 
cbl          10.45(0.24)   10.55(0.21)     227.1(4.20)     211.4(2.36)   352.6(13.1) 
lasso       10.99(0.20)   11.41(0.33)     280.1(8.00)     243.0(4.34)   384.9(9.61) 

 
Table 1 shows that cbl has a better prediction accuracy than other methods in most simulation studies. 

Secondly, when the true model structure is relatively simple (Simulations 1 and 2), the four methods perform 
comparably in prediction accuracy. But when the true model has a complex structure (Simulations 3, 4 and 
5), cben and cbl outperform en and lasso significantly. By comparing cben and cbl in Simulation 3 and en 
and lasso in Simulation 4 (the bolded numbers in Table 1), we can see that even with only half as many data, 
the Bayesian methods perform better than the non-Bayesian methods in prediction accuracy. One possible 
reason is that complicated models would result in highly variational estimators, and the Bayesian methods 
use prior information to integrate across uncertainty to reduce the variance, which leads to a smaller mean 
squared error. In this sense, the Bayesian methods furnish better results with less data when the true model is 
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complicated. Furthermore, with the sample size doubled from Simulation 3 to Simulation 4, the MMSE of 
the Bayesian methods decreases about 15 while that of the non-Bayesian methods decreases about 40. 

5. Conclusion and discussion 
By including a compression operation into ℓ1 and ℓ2 regularized learning, model coefficients are 

compressed before being penalized and sparsity is achieved in a compressed domain. This relaxes the 
assumption on model sparsity to compressibility, and provides an opportunity encode more appropriate 
inductive biases. Empirical results show significant improvements in prediction performance by including 
compression in the ℓ1 and ℓ2 penalty. We analyze the learned model coefficients under different 
compressibility assumptions, which further demonstrate the advantages of learning compressible models 
instead of sparse models. We also propose a Bayesian formulation of the en problem and the posterior 
inference can be obtained efficiently using Gibbs sampling. Real data examples and simulation studies show 
that cben behaves comparably to en in prediction accuracy en does slightly better than cben for simple 
models, but cben performs significantly better than en for more complicated models. Simulation studies 
suggest that cben outperforms en in variable selection when coupled with the scaled neighborhood criterion 
with a proper probability threshold, and cben gives better prediction accuracy than cbl for small samples 
from less sparse models.  
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