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Abstract. A new kind of characteristic-difference scheme for Sobolev equations is constructed by 

combining characteristic method with the finite-difference method and with the skew linear interpolation 

method. The convergence of the characteristic-difference scheme is studied. The advantage of this scheme is 

very effectual to eliminate the numerical oscillations and have potential advantages in other equations.  
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1. Introduction  

Many mathematical physics problems can be described by Sobolev equations, such as in fluid flow, heat 

diffusion and other areas of application. The primal numerical solution of using finite difference method and 

finite element method for one dimensional Sobolev equations is in [1],[2]. In the year of 1982, Douglas and 

Russel
[3]

 presented the method of characteristics with finite element or finite difference procedures to solve 

convection diffusion equations, and then You
[4]

 applied this characteristics difference element method to 

solve Sobolev equation. During the computation, this method used the algebraic interpolation of the last time 

step, thus for some problems the stability of the computational scheme is not good enough, even can cause 

some numerical oscillation. To avoid happen the phenomena of numerical oscillation, Qin
[5]

 introduced a 

new linear interpolation method (see figure 1 ) in solving convection diffusion problem: use the values of 

four points 
1 1j nx t 

   
 ,

1j nx t 
  

 ,
1j nx t 

  
 ,

j nx t 
 
 

  to make bilinear interpolation for the value of point P .  

 
In this paper, we present a improved characteristic-difference method of [5](see figure 2) in solving the 

Sobolev equations: only use the values of two points 
1j nx t 

  
 ,

1j nx t 
  

  (see figure 2) to make Skew linear 

interpolation of point P . Compare with the method in [3],[4], our new method show itself more stability. 

Compare with [5], our method is easier to realize in algorithm. This method can also be applied to solve 
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convection dominated diffusion equations. 

2. Construction of the finite difference scheme  

Consider one dimensional initial-boundary Sobolev equations:  

 

       

 

       

2

0

0 1

( ) ( ) (0 ) (0 ]

( 0) ( ) 0

0 0

u u u u
c x b x a x d x f x t x t L T

t x x x x t

u x u x x L

u t g t u L t g t T

      
            

      


    


       



                (1) 

where ( ) ( ) ( ) ( ) [0 ]a x b x c x d x C L     , 
2( ) ([0 ] [0 ])f x t L L T     , and there exists positive constants 

0 0 0a b c d   ,   0 0a x a  , ( )b x b ,   0 0c x c  , 0( ) 0d x d  , for [0 ]x L      

The solvability and uniqueness of (1) can be found in [2]. We assume that (1)  has a unique solution and 

have some necessary smoothness. Denote the characteristic direction of operator    
u u

c x b x
t x

 


 
 to 

be  x  , and then the characteristic derivative is defined by  

 
 

   
1

c x b x
x t x 

   
      

 

where      
1 2

2 2
x b x c x



   
 

 Therefore, the first equation of (1) can then be write as the following 

form:  

      
2

( ) 0 0
u u u

x a x d x f x t x L t T
x x x t




    
           

     
                            (2) 

In figure 2, suppose the values on 1n  time step is either initial value or already be computed by initial 

value. When ( ) 0b x  , the characteristic direction at point 0P  is the direction along 0P P , where P  is the 

intersection point of 0 1Q P  and characteristic direction. Thus by using linear interpolation, we can use the 

values at points 0Q  and 1P  to get the value at point P , and then applying finite difference method and 

characteristic method to construct an implicit difference scheme. The advantage of this method is: we only 

need to make skew linear interpolation in the segment 0 1Q P , need not do other extra work to determine the 

interpolation point. This technique is better than the normal finite difference method by decreasing the 

truncation error along time.  

Take space step 0h  , mesh grid
jx jh , 0 1 2 [ ]j M L h      , time step 0  , mesh grid 

nt n , 0 1 N [T ]n       , along the characteristic line 0P P , we make following finite difference 

discrete:  

               
 

0

n
j n

j

j

u x t u x tu

P P
 



 
    



   
  

 
                                                             (3) 

where  x t   denotes the coordinate at point P , 
j j jx x b c    , 

j jx   
 
 

 . Denote
j jc c x 

 
 

 , 

j jb b x 
 
 

 , 
j ja a x 

 
 

 , ( )jd d x , 1 2j M    . Thus from
0

0 0 0 1

Q Q PQ

Q P P P

  



 , we have
j

j j

c h

c h b








, 

t n    . Therefore from  

 
2

2
0 j j jP P x x c 
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we can get the exact expression of (3)  

   

0

n
j n j nj jn n

j j j

j

u x t u x t u x t u x tc h bu
r r

P P h


 

 

   
         



      
     

 
                         (4) 

where 
n

jr  is the local truncation error:  

         
 n

j nj jn

j

j

u x t u x tc h bu
r

h




 

 
    

   
   

 
                                                    (5) 

Let 
xx

   be the backwards and forward finite difference quotients along x  direction respectively, and 

t
  denote the backwards finite difference quotient along t  direction, denote by  

  
1 1

1 2 1 2

1n j n j n j n j n

j jxx j

u x t u x t u x t u x t
a aa u

h h h
 

       
               

   

      
   

  

 

 
n

xx t j
d u      

 
1 1

1 2 1 2

1 j n j n j n j nt t t t

j j

u x t u x t u x t u x t
d d

h h h

          
               

   

      
   

  

 

    
2

( )

n

n
n
j x xx t j

j

u u
a x d x a u d ur

x x x t
   

    
               

                                                     (6) 

By  4 -  6 , we have  

    
  nj nj j n n

x x j jx t j

u x t u x tc h b
a u d u f R

h


   



 
    

  
                                           (7) 

where  

                    ( )n

j j nf f x t                                                                                 (8) 

                    
n n n

jj jR r r                                                                                    (9) 

Omit 
n

jR  in  7 , and then the characteristic difference scheme of solving problem  1  can be established as 

follows  

           0

0 0 1 2

0 1 2 1 2

n
nj j j j n

x x jx t j

n n

j j n M n

c h b U U
a U d U f

h

U u x U g t U g t

j M n N


   





 
 
 

  
      




     


          


                                             (10) 

where 
n

jU  is the numerical solution of 
j nu x t 

 
 

 .  

3. skew linear interpolation  

We first point out that jU 
 in  10  are determined by the skew linear interpolation with two 

points 0Q , 1P , let  jU w x t

   , where    1

1 1

n n

j jw x t I U U x t 
 

 
     denotes the linear function obtained 

by interpolation data 
1

1

n n

j jU U  
 

 
 , 1I is the linear interpolation operator. The result is as follows:  
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1 0

0 11

1 1

1 0 1 0

n n

j j P Q

Q P P P
I U U x t U U

P Q P P

   
 

   
 

                                                     (11) 

where  

                
0 0

1 0 0 0

j

j j

bQ P Q Q

P Q Q P c h b





 



  


                                                               (12) 

                
1 0

1 0 1 0

1
j

j j

c hP P Q P

P P P Q c h b 

  

 

   


                                                          (13) 

Apply  12 ,  13  to  11 , then  

        
1 0

1

1 1

j jn n

j j P Q

j j j j

b c h
I U U x t U U

c h b c h b



 

 
 

   
    

 
                                           (14) 

i.e.  

            
1

1

j jn n

j j j

j j j j

b c h
U U U

c h b c h b



 

 

  
 

                                                         (15) 

Apply  15  to  10 , we obtain a computational scheme. When ( )h O  , the coefficient matrix formed 

by difference scheme  10  is strictly diagonal dominated, therefore  10  has a unique solution.  

4. convergence analysis  

Let 
m pW 

 denotes Sobolev space with norm
m p

 . For grid function v w , define inner product and norm:  

1
2

1

( ) ( )
M

j j

j

v w v w h v v v




       

1 2

0

[ ) [ )
M

j j

j

v w v w h v v v




        

1 2
1 2

1 2

0

[ ) [ )
M

x x j x j x j x x x

j

a v w a v w a v a v v      




 



     
  

By Taylor formula
[4]

, when 
2 4(0 (0 ))u W T W L     ,  

                 2 4

2

1 ( )
( )n

j W W
u hr M                                                                        (16) 

Apply the Taylor formula with integral remaining term, we get  

    
 

 

2 2

2
,

2

n
j nj j jn

j

j j j j

u x t u x tc h b hu u
r

h c h b

  


  

 
    

      
     

    
                           (17) 

where 

2

2

j

u





 
 
 

 is the second tangent derivative of u  along segment 0P P  at some point of line 0P P . 

Combine (9), (16) and (17), then when 
2 4( )u W W  ,  

        2 4

2
2

1 2 ( )

( )

( )n

j W W

L L

u
R K u h


 

 

 
    

  

                                          (18) 

where 1K  is positive constant, 
   

2 2

2 2
0 0( )

max
L TL L

u u

     

 
 

 
   

Denote
n n

j j n je u x t U 
 
 

   , then from  7  and  10  we get the error equation  
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0 0
0

0 0 0 01 2 1 2

n
nj j j j n

x x jx t j

n
j M

c h b e e
a e d e R

h

e e e j M n N


   



  
      


                 

                                                (19) 

where    je u x t w x t

       , then from  19   

n
nj j j j n

x x jx t j

c h b e e
a e d e R

h


   



 
        

Denote
j j

j

c h b
g

h


 , then 

0 ( 0 1 2 )jg c j M      . Multiply the last equation by
n

jt
e h , and sum for 

j  from 1 to 1M  , then  

    ( ) [ ) [ ) ( )
n

n n n n n n n

x x x xt t t t t

e e
g e a e e d e e R e        




                                      (20) 

where  

1
2

0

1

( ) ( ) [ )

nn M
j jn n n n n

j j x x xt t t t t
j

e ee e
g e g e h d e e d e       

 

 




       

1
1 11

[ ) [ ) {[ ) [ )}
2

n n
n n n n n n n

x x x x x x x xt

e e
a e e a e a e e a e e        

 


 

         

2 2

1( )n n n n

t t
R e e M R        

The difficulty is the estimate of first term in (20) . Since  

        1

1 1

n n

j j je u x t w x t u x t I U U x t  
 

         
          

   1 1 1j n j nu x t I u x t u x t x t
     
              

      
 

   1

1 1 1 1 1

n n

j n j n j jI u x t u x t x t I U U x t
        
                   

         

         1

1 1

n nn
j j jI e e x tr

 
 

   
                                                                                               (21) 

where    1 1 1
n
j j n j nu x t I u x t u x t x tr

     
              

       , from  15  and  21 , we have:  

 
1 1[ { }( )]

n

j j nn n n

j j j j jj

e e
g g e I e e x tr 





  


       

 
1

1[ ]
j jnn n n

j j j jj

j j j j

b c h
g e e er

c h b c h b




 



    
 

 

   
1

1[ ( ) ( ) ]
j j j j nn n n n

j j j j j

j j j j

c h b b c h
e e e e r

h c h b c h b

 

  






    

 
 

  1( )
j j j nn n n

j j j j jt

b c h b
e e c e r

h h








      

( )
n

n

t

e e
g e






1 1

1

1 1

( ) ( )
M M

j j nn n n n n n

j j j j jjt t t t
j j

c h b
c e e b e e e er


   



 



 


                          (22) 

Therefore  

 
2 2

1 1

0 0

1
{[ ) [ )}

2

n n n n n n

x x x x xt t
c e d e a e e a e e      



       

 
2 2

1

n n

t
e M R    
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1 1

1

1 1

( )
M M

j j nn n n n

j j j j jjt t
j j

c h b
b e e e er


 



 



 


                                                    (23) 

We also need to estimate error term n
jr  of the skew linear interpolation.  

    1 1 1
n
j j n j nu x t I u x t u x t x tr

     
              

        

              

 

2 22 2

1 0 22 2

1 1

2 2

n n

j

j jj j

b h hu u
P P PQ

c h b

 

 

 
 
 

  

  
   

   
                                   (24) 

where   denotes the direction of 1 0P Q , 

2

2

n

j

u



 
 
 

 denote the value at some point on segment 1 0P Q  of 

second direction derivative along the direction of 1 0P Q . When  h O  , by  24 , we have  

               

1 1

2

2 2max max
j j n n

n
j

j x x t t

u
M hr 

   
    
  


 


                                                       (25) 

where 2M  is a positive constant. Notice that the boundedness of ( )b x , apply  25  to (23) ,  

 
2 2

1 1

0 0

1
{[ ) [ )}

2

n n n n n n

x x x x xt t
c e d e a e e a e e      



       

 
22 2 2

13 ( )
nn n n

t x
e M R C e gr          

where constant C  depends on  .   

Multiply by 2 , take 0

8

c
  , and sum for n , applying  18 ,  25 , we have  

22 2

0 0 0

1 1

n n
n n n

x xt t
m m

c e d e a e     




 

    

                    2 4

2
2 2

1 1 2 ( )

( )
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W W
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u
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1 1

2
2

2
2

2
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n
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j jx
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u
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Denote
   

2 2

2 2
0 0( )

max
L TL L

u u

     

 


 
, notice that

n n

xx
e e 





 , and then applying discrete Gronwall 

inequality, we have  

 
1 1
2 2

2 2

1 1

( ) ( )
n n

n n n

x xt t
m m

e e e     




 

    

        2 4

2 2
2

2 2( )

( ) ( )

{[ ]( ) ( )}
W W

L L L L

u u
M u h h 

 
 

   

 
     

 
       (26) 

where M  is positive constant.  

The upward discussion based on 0jb  . When 0jb  , similar discussions can also be made and establish 

the corresponding computational schemes.  

Theorem 1 Suppose that the solution of problem (1) satisfies  
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2 2
2 4

2 2
( ) ( )

u u
u W W L L

 

    
    

 
 

{ }n

jU  is the solution of skew linear interpolation characteristic difference scheme (10), then while ( )h O  , 

the error estimates satisfies (26) .  

Remark If ( ) 0d x  , the problem (1)  degenerate to a convection diffusion problem, the computation 

scheme (10)  and the conclusion of theorem 1 also hold for convection diffusion equations.  

5. Numerical examples  

Consider following Sobolev equation:  

2

( ) ( ) ( ) [0 1] (0 0 99)
u u u u

f x t x t
t x x x x t

    
            

     
 

Take the solution of this equation to be:  

16 20( )( ) 10 x tu x t e     

The initial-boundary value conditions and ( )f x t  be determined by solution ( )u x t . Solve this problem 

by using skew linear interpolation characteristic difference method (10) and the characteristic difference 

method given in[4], when 
1 1

30 10
h    , we can compare the numerical result with the accurate solution. 

For example, for 0 99t   , denote err=
1
22

1

( ( ) )
M

j j

j

u U h


  the average absolute errors, then the average 

absolute errors are 0.0212 and 0.0352 with respect to the two methods. Table 1 listed some results at certain 

grid points for 0 99t   :  

Table 1. The numerical compare of finite difference schemes  

x  0.1                0.2                0.3                 0.4             0.5               0.6                 0.7             0.8              0.9 
u  2.935e-7    2.169e-6      1.603e-5      1.185e-4      8.749e-4      6.465e-3      4.777e-2      3.530e-1       2.609 

LCD 2.932e-7    2.168e-6      1.614e-5      1.180e-4      8.753e-4      6.471e-3      4.781e-2      3.576e-1       2.621 

SLCD 2.933e-7    2.170e-6      1.612e-5      1.182e-4      8.750e-4      6.467e-3      4.779e-2      3.538e-1       2.613 

Computations show the skew linear interpolation characteristic difference method is an efficient 

algorithm, compared with [4], this method is more stable, and it is simpler than [5]. This method can also be 

used to solve convection diffusion equations with variable coefficients.  
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