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Abstract. In this paper,we study Wiener processes with N(0,1)-random trend uesing wavelet transform.we
study its some properties and wavelet expansion.
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1. Introduction

The stochastic system is very importment in many aspacts. Wiener processes is a sort of importment
stochastic processes.Wiener processes with N(0,1)- trend is a class of useful stochastic processes in
practies,its study is very value.

We will take wavelet and use them in a series expansion of signal or function. Wavelet has its energy
concentrated in time to give a tool for the analysis of transient,nonstationary,or time-varying phenomena.lt
still has the oscillating wavelike characteristic but also has the ability to allow simultaneous time and
frequency analysis with a flexible mathematical foundation.We take wavelet and use them in a series
expansion of signals or functions much the same way a Fourier series the wave or sinusoid to represent a
signal or function.In order to use the idea of multiresolution ,we will start by defining the scaling function
and then define the wavelet in terms of it.

With the rapid development of computerized scientific instruments comes a wide variety of interesting
problems for data analysis and signal processing.In fields ranging from Extragalactic Astronomy to
Molecular  Spectroscopy to Medical Imaging to computer vision,One must recover a
signal,curve,image,spectrum,or density from incomplete,indirect,and noisy data .Wavelets have contributed
to this already intensely developed and rapidly advancing field .

Wavelet analysis consists of a versatile collection of tools for the analysis and manipulation of signals
such as sound and images as well as more general digital data sets ,such as
speech,electrocardiograms ,images .Wavelet analysis is a remarkable tool for analyzing function of one or
several variables that appear in mathematics or in signal and image processing .With hindsight the wavelet
transform can be viewed as diverse as mathematics ,physics and electrical engineering .The basic idea is
always to use a family of building blocks to represent the object at hand in an efficient and insightful way,the
building blocks themselves come in different sizes,and are suitable for describing features with a resolution
commensurate with their size .

There are two important aspects to wavelets,which we shall call ‘“mathematical” and
“algorithmical” .Numerical algorithms using wavelet bases are similar to other transform methods in that
vectors and operators are expanded into a basis and the computations take place in the new system of
coordinates .As with all transform methods such as approach hopes to achieve that the computation is faster
in the new system of coordinates than in the original domain,wavelet based algorithms exhibit a humber of
new and important properties .Recently some persons have studied wavelet problems of stochastic process or
stochastic system ([1]-[14]).

2. Basic definitions
Definition 1. Let y(t) =W(t)+X(t) (1)
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where W(t) is Wiener processes,stochastic processes X(t) L N(0,1),X(t) and W(t) are independent each

other.we call y(t) is N(0,1)-trend Wiener processes.
We have

E[y(0)] = E(w(t) +x(t)) =0
E(y(t)y (%)) = E((W(t,) + x(@)(W(E,) + (%))

= E(W(L)(t,)) + EW(L)x(t,)) + E(W(t,)X(t) + E(x(t)x(t,))

=g’ min(t,,t,) +tt,,t,t,>0
We let t, > t, in following.

Definition 2 Let {x(t),tER} is a stochastic processes on probability space (Q, g, P) ,we call

1 —t
wm@—gLumuérmt

is wavelet transform of x(t) . where,p is mather wavelet([11]).
Then,we have

X+7-t
S

w®m+ﬂ:%Lxmw( dt

Definition 3 Let mather wavelety (x) is function:
10< x<l
2
1
Yy (X): *1,ESX<1

0,other

we call g (x) is the Haar wavelet.
Then, we have

Lx—§£t<x
2

X—t
W(T)Z s
1 X—Ss<t<Xx——
2
S
LXx+r—=<t<X+r7
X+7—t
w( S )=

S
—1,x+r—s§t<x+r—§

3. Some results about density degree
We have
R(7) = E[w(s, y)w(s, y +7)]
y+7-1

- EL [ yOw D [, yew )

_1 y—t, y+r-t
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We may let t>t, ,then

sizILz[oz min(t,to+tt1]w(ys“>w<y+:‘ti)dtdtl
- siZHR [, +tt1]‘/'(ys_t)!//(er:_ti)dtdfi

1 2 y_t y+T—t1 y_t y+T_t1
= SlJ. oty = dtat + [ty (P ()]
=l +1,

2 y—t y+7-t 1 y—t y+7-t
1= [ o w1, =S [ty (o (),

Then, we have

1 oY y+z y y+7-s/2 y—s/2 y-s/2 y-s/2 yiros/2
Il B S_ZO- [J.ny/Z dtJ.err—s/Ztldtl - dtJ‘ tldt - dtJ. t dt + dtJ.

y—s/2 y+7r-5 1 y-s y+7-5/2 —-s

tdt,]

y+7-S
We may let o =1 then
1 3 1 S 1 3
=—[——y—r]——[s(y+r)——s21—4—[2r(y——)+r2]+—[s(y+r)——s2]
S 2 4s 4
=2 _y—r—27(y-=
43[4 y z(y ) ’]
The same time,we have
1 -t +7— y—s/2 y-s/2 y—s/2 y+7-5/2
|2:S_2[ﬂRz ttll//(y e ti)dtdtl]—fi YR B {1

=SIf) a7 - L R

y+7-S

1
S
—i{ —[sy——][52/2—2r(y——)+rz+s(y+r)—§sz] }
st 4 4 2 4
1
s

—{ %[y—z][sz/2—27(y—§)+72+S(y+r)—%82] !
Then, the relational function of W(s,y)
R(r) = [s/4—y—r—2e(y—) = 7]
4s 2

2 Ay 220y - sty o0 -5 )
Then, we have

dR 1 S 1.1 S S
—=—f]-1-2(y—-2)-2 [=(y=—)(-y+2)+2
- 43[ (y=2) =221+ (y =)y + ) +20+5]

2s S
R'(r)=R“(r)=0
Then
RO = -y + (- RO =+
2s s
Then, the zero density degree of W(s : y) is

R"(0) | 96 E

= 2
7*R(0)| | 20s —16+5s(2y —s) |
The averge density degree of w(s,y) is zero:
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R(4) (0)
7*R?(0)

4. Wavelet expansion of system

In order to use the idea of multiresolution ,we will start by defining the scaling function and then define
the wavelet in terms of it.

Let real function ¢ is standard orthogonal element of multiresolution analysis {V;}j € Z (see [4]), then

exist h, € 1%, have

o(t) =2 p(2t k)

Let w(t) = \/Ez (-1)*h,_, @(2t —K) . Then wavelet express of y(t) in mean square is
k

El a
yt) =2 2> Clo 7 t-n)+> 22> diy(2 't -n)
K j<d nezZ
l _ o _
Where, Cl =2 2 jR y(t)p2 it—n)dt, d) =22 jR y(Ow (2 1t —n)dt

Then have

E[Clcy|= 2 [].. Ely®)Y()p(2 ' t=n)p(2 s —m)dsdt

E[d)d}]= 2 [[.. E[y@®)y(s)pr (2 't—n)p (2™ s —m)dsdt

Where
1L,m2 7 <t<(1/2+m)2

2lt—m) = _ _ 8
v ) {—1, @/2+m)27! <t<(@+m)2"’ ©

) 1Ln2*<s<@/2+n)2*
w(2s—n)= 9)
~1,(1/2+n)2* <s<(@+n)2*

Use (8) and (10) , we can obtain value of E [drfdr';

If we let normalized scaling function to have compact support over [0,1],then a solution is a scaling
function that is a simple rectangle function

(t) = 10<t<1 10)
%710, otherwise

Now we consider function y/(t) that exist compact support set on [—k,,K,],k;,k, >0, and exist
enough large M, have thmw(t)dt =0,0<m<M -1, then ¢ exist compact support set on [—K,,K,]
satisfy k, +k, =k, +k,,k;,k, >0.

Let b(j, k) =<y(t).wj >, a(j,k) =<y(t), ¢ >
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J

3 I
Let J is a constant, then {22 (2’ x—k),k € Z} u{Zzl//(Z‘t —k),k e Z} are a standard
29

orthonormal basis of space L*(R), then have

y(t)=22>"a(J,K)p2’t—-K)+ > > 27b(j,K)y (2"t - K) (11)

Kez j=J KeZ

Therefore, the self-correlation function of b( j, m)
R, (j, K;m,n) = E[b(j m)b(k, n)]

j [ E[y®)Y(©)]y (2 t—my (2" s—n)dtds (12)
And have also the self-correlation function of a( j, m)

R.(j,K;m,n) = E[a(j,m)a(k,n)]

ﬂ [y()y(9)]p(2't—m)p(2<s —n)dtds (13)

Then, we use (8) and (9) have
j+k

R,(Jkimm =22 [[ Ely(®)y(s)l (2t -m)y(2“s —n)dtds

J+k j+k

=2 2 jj tsy (2's —n)y (2“s —m)dtds +2 2 ” ty (2's— )y (2"s —m)dtds

R(Gkimn) =2 ¢ [[.. ELy@® y(s)kp(2't - m)p(2" s —n)dtds

j+k j+k

=2 2 [[ tsp(2's—n)p(2*s—m)dtds +2 2 [[  tp(2's—n)p(2"s—m)dtds
We have

sds

(1/2+m)2°} J-(1/2+n)2*k

n2k

R,(j,k;mn)=2 2[j

(1/2+m)27] (1+n)27¢ (1+m)27i (1/2+n)27% (1+m)27] (1+n)27*
- tdt sds — j( tdt | sds + j( tdt j( sds]
n

m27i (1/2+n)27% 1/2+m)271 27k 1/2+m)27} 1/2+n)2”

(1/2+m)2” J (/2+n)27* (1/2+m)2°} (1+n)27* (1+m)277 (1/2+n)27%
ds —[ tdt | -| tt | ds
J‘nZ’k (/2+n)27k (1/2+m)27} n2k

(1+m)27} (1+n)27*
+ j tdt j . ds]
V/2+m)27} (1/2+n)2

_Jtk ) )
=2 2 %[2-21 (%+ m)((%+ 22 +27%)— 221/ 4+ m)((3/ 4+n)2 % +27%)

+2 Z[J‘

m2-J

—272(m+3/4)((L/ 4+n)27% +27%)
+22(m+3/4)((3/4+n)27%* +27)]

5(+k)

=2 2
From (10), We obtain
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| L,n2) <t<(n+1)2’
p(2't—n)= (n+1)
0, other
1,m2" <s<(m+1)2"
p(2s—m) = ( )
0, other

Then , we have

j+k

R.(j,k;mn)y=2 2 j ij tsp(2's —n)ep(2¢'s —m)dtds

_j+k

+2 2 j ij tp(2's —n)p(2*s—m)dtds

i +Kk cnp2l (m+1)2¢
:—Lj tdtj sds

n2i m2¥
2

_itk [ (b2’ tdtj(m+1)2k ds

2 n2l m2k
=_%k 22049 (14 2n)(1+ 2m)
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