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Abstract. In this article, by introducing a new general ansatze, the improved  ( GG / )- expansion - 

method is proposed to construct exact solutions of  some nonlinear partial differential equations in 

mathematical physics via the generalized Zakharov equations, the coupled Maccaris equations, the (2+1)-

dimensional Wu-Zhang equations and the (1+1) dimensional Fornberg – Whitham equation  in terms of the 

hyperbolic functions , trigonometric functions and rational function, where G  satisfies a second order linear 

ordinary differential equation. When the parameters are taken special values, the solitary wave are derived 

from the traveling waves. This method is reliable, simple and gives many new exact solutions. 

Keywords:  The improved  ( GG / )- expansion method, Traveling wave solutions, The generalized 

Zakharov equations, The coupled Maccaris equations,  The (1+1) dimensional Fornberg – Whitham 

equation  ,  The (2+1)-dimensional Wu-Zhang equations. 

1. Introduction 

Nonlinear partial differential equations are known to describe a wide variety of phenomena not only in 

physics, where applications extend over magneto fluid dynamics, water surface gravity waves, 

electromagnetic radiation reactions, and ion acoustic waves in plasma, just to name a few, but also in biology 

and chemistry, and several other fields.  It is one of the important tasks in the study of the nonlinear partial 

differential equations to seek exact and explicit solutions. In the past several decades both mathematicians 

and physicists have made many attempts in this direction. Various methods for obtaining exact solutions to 

nonlinear partial differential equations had been proposed. Among these are  the inverse scattering method 

[1], Hirota’s bilinear method [2], Backlund transformation [3,4], Painlevé expansion [5], sine–cosine method 

[6], homogenous balance method [7], homotopy perturbation method [8–11], variation method [12,13], 

Adomian decomposition method [14,15], tanh - function method [16–18], Jacobi elliptic function expansion 

method [19–22], F-expansion method [23–25] and  Exp-function method [26–28]. 

Wang etal [29] proposed  a new method called the ( GG / ) expansion method to look for the traveling 

wave solutions for nonlinear partial differential equations  (NPDEs) . By using the ( GG / )  expansion 

method, Zayed etal [30,31] and  the modified ( GG / )  expansion method, Shehata [32] have successfully 

obtained more traveling wave solutions for some important  NPDEs.  Recently  Guo etal [33] had developed 

the ( GG / ) expansion method for solving the NPDEs.  In this  paper we use the  improvement  ( GG / ) 

expansion method to find the traveling wave solutions for    the generalized Zakharov equations, the coupled 

Maccaris equations,  the (2+1)-dimensional Wu-Zhang equations and  the (1+1) dimensional Fornberg – 

Whitham equation. 

2. Description of the improvement ( GG / ) expansion method  for NPDEs 
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In this section, we  give the detailed description of our method. Suppose that a nonlinear evolution 

equation, say in two  independent variables x  and t  is given by  

     ,0,..),,,,,( xtxxttxt uuuuuuP                                                                  (1) 

where ),( txuu   is an unknown function, P  is a polynomial in ),( txuu   and  its various partial derivatives,  

in which the highest order derivatives and nonlinear terms are involved. 

To determine u  explicitly, we take the following five steps [33]: 

Step 1:  We use the  following travelling wave transformation: 

   ,),( ktxUu                                                                         (2) 

where  k  is a constant to be determined latter. The NPDE  (1)  is reduced to a nonlinear ordinary differential 

equation (NODE) in )(U : 

0,...),,(  UUUP  .                                                                         (3)  

Step 2.  We  suppose the following series expansion as a solution of Eq. (3): 
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where  ),...,1,0( mii  ,   are constants to be determined later,  m is a positive integer and  )(G  

satisfies  a second order linear ordinary differential equation 

                  ,0)()(   GG                                                                           (5) 

where    is  a real constants. The general solutions of Eq. (5), can be listed as follows. When ,0 we 

obtain the hyperbolic function solution of Eq.(5) 

)sinh()cosh()( 21   CCG .                                                     (6) 

When ,0 we obtain the trigonometric function solution of Eq.(5)  

)cos()sin()( 21  CCG   .                                                          (7) 

 When ,0 we obtain the rational function solution of Eq.(5)  

21)( CCG   .                                                                          (8)   

where 1C  and 2C  are arbitrary constants.     

Step 3.  Determine the positive integer m  by balancing the highest order nonlinear term(s) and the highest 

order derivative in Eqs. (1) or (3).   

Step 4.  Substituting Eq. (4) along with (5) into (3) ,  cleaning  the denominator and then  setting all  the 

coefficients of  ,..2,1,0,))(/)((  iiGG  to be zero, yield a set of algebraic equations  for which the 

constants ),...,1,0( mii  , k   and   . 

Step 5.  Assuming that the constants  ),...,1,0( mii  , k   and    can be obtained by solving  the 

algebraic equations in Step 4, then substituting these constants and the known general solutions of Eq. (5) 

into (4), we can obtain the explicit solutions of Eq. (1) immediately. 

3. Applications of the improved ( GG / ) expansion method  for NPDEs  

In this section, we apply the improved  ( GG / )- expansion method to construct the traveling wave 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22686 | Generated on 2025-04-09 07:43:25



Journal of Information and Computing Science, Vol. 6 (2011) No. 2, pp 129-142 

 

 

JIC email for subscription: publishing@WAU.org.uk 

131 

solutions for some nonlinear PDEs  vie the generalized Zakharov equations, the coupled Maccaris equations, 

the (2+1)-dimensional Wu-Zhang equations and  the (1+1) dimensional Fornberg – Whitham equation which 

are very important in the mathematical physics and have been paid attention by  many  researchers. 

3.1. Example 1.  The  generalized- Zakharov equations   
In this section, the  generalized- Zakharov equations  for the complex envelope [34] reads: 

,0)(
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                                                               (9) 

where   is nonzero constant. Let us assume the traveling wave solution of Eqs (9) in the form: 

),2(,),(),(),(),( txktxVtxvUetx i                                          (10) 

where )(U  , )(V  are real functions and k,, are constants to be determined later. Substituting (10) into 

Eqs.(9), we have: 

.0)()14(
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                                                       (11) 

By balancing the highest order derivative terms and nonlinear terms in Eqs. (11), we suppose that Eqs. 

(11) own the solutions in the following forms: 
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                  (12) 

where )(G  satisfies Eq.(5)  and  , , 0a , 1a , 2a , 0b , 1b , 2b , 3b , 4b  are  constants to be determined latter. 

Substituting Eqs. (12)  along with (5) into Eqs. (11) and cleaning  the denominator and collecting all terms 

with the same order of  ( )(/)(  GG ) together, the  left hand side of Eqs. (11) are converted into 

polynomials in ( )(/)(  GG ). Setting each coefficient of these polynomials to zero , we derive a set of 

algebraic equations for  , 0a , 1a , 2a , 0b , 1b , 2b , 3b , 4b ,  , and k  .  Solving the set of algebraic equations 

by using Maple or Mathematica , we have  

Case 1. 
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where 
2

1
   and  , 2a ,  ,,, k  are arbitrary constants. 
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Case 2. 
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where 
2

1
   and  , 0a ,  ,,, k  are arbitrary constants. 

Note that, there are other cases which are omitted here. We just list some exact solutions corresponding 

to cases 1,2   to illustrate  the effectiveness of  the  improved  ( GG / ) – expansion  method. 

Using case 1, (12) and the general solutions of Eq.(5), we can find the following traveling wave solutions 

of the generalized- Zakharov equations (9).  When ,0  we obtain the hyperbolic function solutions of 

Eq.(9) 
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where )2( txk   .  

In particular setting 01 C  , 02 C  the following solitary wave solutions of  generalized- Zakharov 

equations (9) are discovered 

),tanh(),( )(2 
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V .                         (16)   

Setting again 0,0 1  C  , 2
2

2
1 CC   ,   then the solitary wave solutions of generalized- Zakharov 

equations (9) take the following form: 

]coth[),( 0
)(2 
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and 

][coth
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where )(tanh
1

21
0

C

C .  It is easy to see that if ,,
21

CC  and    are taken as other special values in a 

proper way, more solitary wave solutions of Eq. (9) can be obtained, here we omit them for simplicity. 

When ,0  we  get the trigonometric function solutions of Eq.(9) 
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In particular setting 01 C  , 02 C , the following solitary wave solutions of  generalized- Zakharov 

equations (9) are discovered 

)cot()(2),( 
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Setting again 0,0 1  C  , 2
2

2
1 CC  ,  then the solitary wave solutions of generalized- Zakharov 

equations (9) take the following form: 
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where )(tan
1

21
0

C

C . 

When  0 , we get the exact  wave solutions of Eq.(9) take the following form:  
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and 
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In the case 2, (12) and the general solutions of Eq.(5), we can find the following traveling wave solutions 

of the generalized- Zakharov equations (9).  When ,0  we obtain the hyperbolic function solutions of 

Eq.(9) 
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When ,0  we  get the trigonometric function solutions of Eq.(9) 
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where  )2( txk   .  It is easy to see that if ,,
21

CC  and    are taken as other special values  in a proper 

way, more solitary wave solutions of Eq. (9) can be obtained,  here  we omit   them for simplicity. 

3.2. Example 2.  The coupled Maccaris  equations 
In this subsection we study the coupled Maccaris equations [34]. 
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In order to seek the exact solutions of Eqs.(24), we suppose 
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)]([),,(),,( ltykxietyxutyxQ  

,                                                     (25)  

where  ,,k  and l  are constants to be determined later. Substituting Eq.(25) into Eqs.(24), we  have : 
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uRukukuui 
                                                   (26)  

We use the following traveling wave transformations  

)2(),(),,(),(),,( 0xktyxwVtyxRUtyxu    ,                                   (27) 

where  w  and   are constants  to be determined later, 0x  is an constant , Eqs. (26) become the following 

NODEs:  
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                                                                  (28) 

By balancing the highest order derivative terms and nonlinear terms in Eqs. (28), we suppose that Eqs. 

(28) own the solutions (12) .  Substituting Eqs. (12)  along with (5) into  Eqs. (28) and cleaning  the 

denominator and collecting all terms with the same order of  ( )(/)(  GG ) together, the  left hand side of 

Eqs. (28) are converted into polynomials in ( )(/)(  GG ). Setting each coefficient of these polynomials to 

zero , we derive a set of algebraic equations for  , 0a , 1a , 2a , 0b , 1b , 2b , 3b , 4b ,  , , lw ,,  and k  .  

Solving the set of algebraic equations by using Maple or Mathematica , we have 
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where  ka ,,,,0   and w  are arbitrary constants. 

Case 2. 

,0

,2

,4,22

,
2

4
,

211

22
4

22
3

22222
0

22

2
2

22

20










bba

wb

wbwwkb

w

akw
aa










                                     (30) 

where  ka ,,,,2   and w  are arbitrary constants. 

Using case 1, (29) and the general solutions of Eq.(5), we can find the following traveling wave solutions 

of the coupled Maccaris  equations (24).  When ,0  we obtain the hyperbolic function solutions of Eq.(24) 
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 In particular setting 01 C  , 02 C  the following solitary wave solutions of the  coupled Maccaris  

equations are discovered 
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When ,0  we obtain the hyperbolic function solutions of Eq.(24)  
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In particular setting 01 C  , 02 C  the following solitary wave solutions of the  coupled Maccaris  

equations are discovered 
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and 
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3.3. Example 3.  The (2+1)-dimensional Wu-Zhang equations 
  In this subsection, we study the (2+1)-dimensional Wu-Zhang equations [35,36]. 
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Let us assume the traveling wave solutions of Eqs (39) in the following  forms: 

,),(),,(),(),,(),(),,( tkyxWtyxwVtyxvUtyxu                                   (40) 

where  k  is an arbitrary constant.  Substituting (40) into Eqs. (39), we have: 
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where L  is  the integration constant. By balancing the highest order derivative terms and nonlinear terms in 

Eqs. (41), we suppose that Eqs. (41) own the solutions in the following forms:  
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where 3210210210 ,,,,,,,,, ccccbbbaaa  and 4c  are constants to be determined later.  Substituting Eqs. (42)  

along with (5) into  Eqs. (41) and cleaning  the denominator and collecting all terms with the same order of  

( )(/)(  GG ) together, the  left hand side of Eqs. (41) are converted into polynomials in ( )(/)(  GG ). 

Setting each coefficient of these polynomials to zero , we derive a set of algebraic equations for 

Lkcccccbbbaaa ,,,,,,,,,,,, 43210210210  and .   Solving the set of algebraic equations by using Maple or 

Mathematica , we have 
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where   ,,0a  and k  are arbitrary constants. 
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Using case 1, (42) and the general solutions of Eq.(5), we can find the following traveling wave solutions 

of the (2+1)-dimensional Wu-Zhang equations (39).  When ,0  we obtain the hyperbolic function 

solutions of Eqs.(39) 
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and 
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where ktyx  .  In particular setting 01 C  , 02 C  the following solitary wave solutions of the  

(2+1)-dimensional Wu-Zhang equations  are discovered 
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When ,0  we  get the trigonometric function solutions of Eqs.(39) 
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and 
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In particular setting 01 C  , 02 C  the following solitary wave solutions of the  (2+1)-dimensional Wu-

Zhang equations  are discovered 
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By the similar manner, we can obtain the exact solutions for the case 2. We omitted the results of case 2. 

for convenience.  

3.4. Example 4  The (1+1) dimensional Fornberg – Whitham equation 
  In this subsection, we study the (1+1) dimensional Fornberg – Whitham equation [37].  

.03  xxxxxxxxxxtt uuuuuuuuu                                                         (57) 

The traveling wave  transformation (2) permits us converting Eq.(57) to the following ODE: 

.03  UUUUUUUUkUk                                                      (58)  

By balancing the highest order derivative terms and nonlinear terms in Eqs. (58), we get  
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On substituting Eq.(59) along with (5) into  Eqs. (58) and cleaning  the denominator and collecting all 

terms with the same order of  ( )(/)(  GG ) together, the  left hand side of Eq. (58) are converted into 
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polynomial in ( )(/)(  GG ). Setting each coefficient of this polynomial to zero, we derive a set of algebraic 

equations for kaaa ,,, 210  and .   Solving the set of algebraic equations by using Maple or Mathematica , 

we have 

0,
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8 201  aaka                              (60) 

where  k  and 0a  are arbitrary constants.  Consequently, the traveling wave solution takes the following form: 
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where BA,  are arbitrary constants  and ktx . 

4. Conclusion 

The proposed method in this paper is more general than the ansätz in (G'/G)-expansion method [30,31] 

and modified (G'/G)- expansion method [32]. If we set the parameters in (2.4) and (2.5) to special values, the 

above two methods can be recovered by our proposed method. Therefore, the new method is more powerful 

than the (G'/G)-expansion method  and modified (G'/G)- expansion method and some new types of travelling 

wave solutions and solitary wave solutions would be expected for some PDEs. This method is concise, 

effective and can be applied to other nonlinear evolution equations in mathematical physics. 
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