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Abstract. We prove the existence of nontrivial nonnegative solutions to the following nonlinear elliptic 

problem: 
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is a bounded function with 0|||| m  and 

a(x), b(x) are continuous functions which change sign in  . 

1. Introduction 

We are concerned with the existence and multiplicity of nontrivial nonnegative solutions to the nonlinear 

elliptic problem: 
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are satisfying  max ,0a a    0and  max ,b b     0 . 

Problems involving the “p-Laplacian” arise from many branches of pure mathematics as in the theory of 

quasiregular and quasiconformal mapping (see[8,13]) as well as from various problems in mathematical 

physics notably the flow of non-Newtonian fluids: pseudo-plastic fluids correspond to )2,1(p while 

dilatant fluids correspond to 2p . The case p = 2 expresses Newtonian fluids [5].  

We are motivated by the paper of Wu [14], in which problem (1) was discussed when 

2,1,1  pbm , and  221  . The authors proved that, there exists 00  such that if the 

parameter   satisfy  

00   , then problem (1) for 2,1,1  pbm  and  221  , has at 

least two positive solutions. Using the technique of Brown and Wu [7], in [15] the author discussed problem 

(1) with m 1,b 1 , 2p ,and  pp 2 .They obtained at least two positive solutions. In this 

paper, we discuss the problem (1) with m 1,b 1 , 21  p  and  pp 21  . The change in 
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  completely changes the nature of the solution set of (1). In fact, we shall prove that the problem (1) has at 

least two solutions 

0u and 

0u such that 00 
u

 
in  and 00 

u when the parameter  belongs to a certain 

subset of  R.  

 In the case when 2p , similar problems (with Dirichlet or Neuman boundary condition) have been 

studied by Binding et al. [6], Ambrosetti et al. [3], and Tehrani [11,12] , by using variational methods and by 

Amman and Lopez-Gomez [4] used global bifurcation theory to study the problem. Similar problem in the 

ODE case (semilinear or quasilinear) have been studied in [1,9]. We refer to [2,10] for additional results on 

elliptic problems involving the p-Laplacian. 

2. Variational setting 

Let ss WW ,1

0

,1

0 )(  ,  0s  , denote the usual Sobolev space. In the Banach spac WW p )(,1

0
we 

introduce the norm 
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which is equivalent to the standard one. First we give the definition of the weak solution of  Eq. (1). 

Definition 2.1. We say that Wu is a weak solution to (1) if for any Wv we have 
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It is clear that Problem (1) has a variational structure. Let RWJ :  
be the corresponding energy 

functional of problem (1) is defined by 
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It is well known that the weak solutions of Eq. (1) are the critical points of the energy functional J . Let 

I be the energy functional associated with an elliptic problem on a Banach space X. If I is bounded below and 

I has a minimizer on X, then this minimizer is a critical point of I. So, it is a solution of the corresponding 

elliptic problem. However, the energy functional J , is not bounded below on the whole space W, but is 

bounded on an appropriate subset, and a minimizer on this set (if it exists) gives rise to solution to Eq. (1). 

Consider the Nehari minimization problem for }0{\R , 

  NuuJ  :)(inf , 

where  0)(),(:}0{\  uuJWuN 
. It is easy to see that 

Nu if and only if 

                                               )()()( uBuAuM  .                                                      (2) 

Note that N  contains every nonzero solution of problem (1). Define 

uuJug ),()( 
 . 

Then for u N , 
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Now, we split N into three parts: 

 0),(:  uugNuN 
 

 0),(:0  uugNuN 
 

 0),(:  uugNuN   

To state our main result, we now present some important properties of 0,  NN   and 
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Lemma 2.2. There exists 0  such that for 
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This implies 
0||||  a , which is a contradiction. Thus, we can conclude that there exists 0  such 

that for 
 ||||0 0 a , we have  

0N .    

By Lemma 2.2, for  ||||0 0 a
we write 

   NNN
 and define 

;)(inf;)(inf uJuJ
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Lemma 2.3. We have 

(i) If ,u N

  then 0)( uB ; 

(ii) If ,u N

  then 0)( uA . 

Proof. (i) We consider the following two cases: 

Case ( )i a : ( ) 0A u  . We have 

0)()(  uMuB . 

Case ( )i b : ( ) 0A u  . Since  Nu  , by (5), we have 

0)()()()(  uBuMp   

which implies 

0)()( 



 uM
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(ii) We consider the following two cases: 
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Case ( )ii a : ( ) 0B u  , we have 

0)()()(  uBuMuA  

Case ( )ii b : ( ) 0B u  . By (4), we have 

0)()()()(  uBPuAp  , 

which implies 

0)()( 
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p

p
uA



 . 

It follows that the conclusion is true.      

Lemma 2.4. Suppose that 0u  is a local minimizer for J on N . Then, if ,0 Nu 
0u is a critical point of 

J
. 

Proof. If 0u  is a local minimizer for J  on N , then 0u  is a solution of  the optimization 

Problem minimize ( )J u
 subject to  ( ) 0g u  . 

Hence, by the theory of Lagrange multipliers, there exists R such that 

)()(  uguJ 
  in )(1 W  

Here )(1 W is the dual space of the Sobolev  space W . Thus, 

WW uuguuJ  ),(),(  . 

   But 0),(  Wuug
, since 0

Nu . Hence 0 . This completes the proof.   

 Then we have the following result. 

Lemma 2.5. J is coercive and bounded below on .N
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Thus )(uJ  is coercive and bounded below on N .     
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Thus, if *0 || ||a    , then 0J k  , for all u N

 , for some 0 0 1 2( , , , ) 0k k C C   . This 

completes the proof.     

For each Wu  with 0)( uB , we write 
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Then we have the following lemma. 

Lemma 2.7. For each Wu with 0)( uB  and  ||||0 0 a , we have 

(i) if 0)( uA , then there is a  unique 
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we have ( ) 0E t   at maxtt  , ( ) 0E t  for ),0[ maxtt and ( ) 0E t  for ),( max  tt . Then ( )E t  
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maxt , increasing for ),0[ maxtt and decreasing for 

  
),( max  tt . Moreover, 

                 

 
 

  p

p

p

p

w

p

p

W
p

p

w

p

p

C

pp

b
u

uB

upp
u

uB
uA

uMp
uM

uB

uMp
tE

































































































































































































2

max

)(||||

1
||||

)(

||||
||||

)(
)()(

)()(
)(

)()(

)()(
)(

                        

(15) 

(i) ( ) 0A u  : There is a unique 
max0 tt   such that ( ) ( )E t A u   and ( ) 0E t  . Now, 

 
0)()(

)())(()())((

)()()()()(

1

11

1













tEt

uBtuMtp

tutButMp

p











, 

and 

 
  0)()()(

)()()()()()(

)()()()()()(),(













uAtEt

uAuBtuMtt

uBtuAtuMtututJ

p

p








 

Thus, t u N

  .  

Since for maxt t , we have 

0)(

0)()()()(

2

2





tuJ
dt

d

tuBtuMp




 

and 

0)()()()( 111   uBtuAtuMttuJ
dt

d p 


 for  tt . 

Thus, 
max0

( ) sup ( )
t t

J t u J tu 


 

 . 

(ii) ( ) 0A u  . By (15) and 

 

 

)(

)(||||

1
||||

||||||||

)(0)(

max

2

1

tE

C

pp

b
u

uaC

uAE

p

p

p

p

w

w













































































 

for 
00 || ||a    , there are unique t  and t  such that 

max0 t t t    , 

)(0)(

)()()(









tEtE

tEuAtE
 

We have    NutNut , , and )()()(
_

utJtuJutJ   for each   ttt , and 

)()( tuJutJ  

 
for each  tt0 . Thus, 

  )(inf)(),(sup)(
00 max

tuJutJtuJutJ
ttt








  . 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22688 | Generated on 2025-04-09 07:43:37



G.  A.  Afrouzi, et al: Existence of Multiple Solutions for a Class of Nonlinear Elliptic Problems Involving the P-Laplacian  
 

JIC email for contribution: editor@jic.org.uk 

158 

This completes the proof.     

3. Existence of solutions 

Now we can state our main result. 

Theorem 3.1. If the parameter λ satisfy 
 ||||0 0 a , then problem (1) has at least two   solutions 



0u and 

0u such that 00 
u  in   and 00 

u . 

The proof of this Theorem will be a consequence of the next two propositions. 

Proposition 3.2. If  ||||0 0 a , then the functional J
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By (16) and (17) we obtain 0)( 0 tk
nu

for n sufficiently large. Since  Nun
 , we have 1)(max nut . 
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for all   ,1t  and n sufficiently large. 
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We obtain 1)( 0max  tut . But   Nut 00
 and 
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   ,by Lemma 2.4 we 

may assume that 


0u
 is a nontrivial nonnegative solution of Eq. (1).    

Next, we establish the existence of a local minimum for J  on 

N . 

Proposition 3.3. If 
 ||||0 0 a , then the functional J
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Proof.  Let  nu
 
be a minimizing sequence for J on 

N , i.e )(inf)(lim uJuJ
Nun

n





 . Then by Lemma 
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By (12) and (18) there exists a positive number 
0  such that 

0)( nuB . 

This implies 

                    00 )( uB  .                                                          (19) 

Now we prove that  0uun
strongly in W. Suppose otherwise, then 
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nonnegative solution of  Eq. (1).     

Proof of Theorem 3.1. By Propositions 3.2 and 3.3, we obtain Eq. (1) has two nontrivial nonnegative 

solutions 

0u and 

0u such that   Nu0
and   Nu0

. It remains to show that the solutions found in 

Propositions 3.2 and 3.3 are distinct. Since    NN , this implies that 

0u  and 

0u are distinct. This 

concludes the proof. 
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