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Abstract. This paper is concerned with analysis problem for the global exponential stability of a class of 
recurrent neural networks (RNNs) with mixed discrete and distributed delays. We give the sufficient 
condition of global exponential stability of cellular neural network with mixed discrete and distributed delays 
by employing the Lyapunov-Krasovskii functional and Young inequality, in addition, the example is 
provided to illustrate the applicability of the result. 
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1. Introduction 
Cellular neural network (CNN) has become a new discipline branch since the Chua and Yang of 

California University proposed the CNN in 1988. The main function of CNN is about to change an input 
image into a corresponding output image, in order to accomplish this feature, we must first concern the 
stability of system. The various generalizations of neural networks have attracted attention of the scientific 
community due to their promising potential for tasks of classification, associative memory, parallel 
computation and the ability to difficult optimization [1-5]. Such applications rely on the existence of 
equilibrium points and the qualitative properties of neural networks. The time delay is commonly existed in 
various engineering systems such as chemical processes, hydraulic and rolling mill systems, etc[6-10]. These 
effects are unavoidably existed in the implementation of neural networks, and may cause undesirable 
dynamic network behaviors such as oscillation and instability. Therefore, it is important to investigate the 
stability of delayed neural networks. The stability analysis of neural networks plays an important role in the 
designs and applications. A large number of the criteria on the stability of neural networks have been derived 
in the literature. Neural network usually has a spatial nature due to the presence of various parallel pathways 
with a variety of axon sizes and lengths, so it is desirable to model them by introducing unbounded delays 
[11-15]. Thus, there will be a distribution of conduction velocities along these pathways and a distribution of 
propagation delays. In recent years there has been a growing research interest in study of neural networks 
with distributed delays. In fact, both discrete and distributed delays should be taken into account when 
modeling a realistic neural network [16-20]. Based on the above discussions, we consider a class of mixed 
discrete and distributed delays cellular neural network described by a neutral integro-differential equation. 
The main purpose of this paper is to study the global exponential stability for neutral-type delayed neural 
networks with unbounded distributed delays. The paper is organized as follows: In Section 2, System 
Description and Preli minaries are stated and some definitions and lemmas are listed. Based on the Lyapunov 
stability theory and Young inequality, theorems and corollary about global exponential stability of multi-
delay and distributed delay cellular neural network in Section 3. We give the conclusion of this paper in 
Section 4. 

2. Problem formulation 

Consider the following multi-delay and distributed delay cellular neural network model： 
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                         (2.1) 

where i(θ) is bounded and continuous in the sub [0,∞)，n is the number of the neurons in the neural 
network, , the constants aij, bij and cij denote, respectively, the connection weights, the discretely delayed 
connection weights and the distributively delayed connection weighted, of the jth neuron on the I neuron. xi(t) 
denotes the state of the ith neural neuron at time t, fj(xj(t)), gj(xj(t)) and hj(xj(t)) are the activation functions 
of the jth neuron at time t i, I  is the external bias on the ith neuron, i  denotes the rate with which the ith 

neuron will reset its potential to the resting state in isolation when disconnected from the network and 
external inputs. τ

d

ij ≥ 0 is a bounded time-varying delay，the kernel function Kij: [0,∞)→[0,∞) is continuous 

in the sub[0,∞) ， and satisfies  , the initial situation is x
0

( )d 1, , 1, 2, ,ijK s s i j n


   i(θ)= f i(θ), 

ρ=max(τ ij(t)), -ρθ0. 

Definition 1. * ( 1, 2, , )ix i  

)

n is the equilibrium point of (2.1) associated with a given Ii (i=1,2,…,n) is 

said to be globally exponentially stable, if there are positive constants k > 0and  > 0such that every solution 
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Assumption 1. (A1) For , the neuron activation functions in (2.1) satisfy 1, 2, ,i   n
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. 

 are constants. 

Assumption 2. (A2)  

The neuron activation functions fj(xj(t)), gj(xj(t)), hj(xj(t)) j =1,2,…,n are bounded

Lemma 1 [21] (Rogers-Holder Inequality)  
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Lemma 2 [22] (Young Inequality) if  
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3. Main results and proofs 

Theorm 3.1. , ,j j jf g h  are Lipschitz continuous and ( ) 0ij t  ， if there are constants 

, , , , , , , , , , ( 1,2,..., ),i ij ij ij ij ji ji ji ji jir q n h j n h j l p R i n, , ,ij ij jil p q   0,i r 1   (when r =1, we must let 
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Then, the equilibrium point of multi-delay and distributed delay cellular neural network x* is global 
exponential stability.  

Proof. We shift the equilibrium point * * * *
1 2( , , , )T

nx x x x  of (2.1) to the equation 
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We design the following Lyapunov functional 
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By (3.1), we calculate the Dini upper right derivative of the solution V (u, t), 
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1.when r >1, by Young inequality 
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Thus, We can learn that when r = 1, the conclusions are valid. 
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Then, the equilibrium point of multi-delay and distributed delay cellular neural network x* is global 
exponential stability.  

Proof. If we design the Lyapunov functional as follows 
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This proof is similar to the proof of Theorem 3, we can easily derive the result. Its proof is 
straightforward and hence 

 

4. Conclusion  
A new sufficient condition is derived to guarantee the global exponential stability of the equilibri

point for cellular neural network with multi-delay and distributed delay. Comparing with traditional methods,
this approach is effective. 
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