
 ISSN 1746-7659, England, UK 

 

                                                          

Journal of Information and Computing Science
Vol. 6, No. 1, 2011, pp. 055-063

Normalized Autocorrelation based Features for Robust 
Speech Recognition in Context with Noisy Environment 

Poonam Bansal1, Amita Dev2 and Shail Bala Jain3 
1Department of Computer Science and Engineering, Amity School  of Engineering and Technology, 

 Guru Gobind Singh Indraprastha University, New Delhi, India 
2Department of Computer Science and Engineering, Ambedkar Institute of Technology, New Delhi, India 

3Department of  Electronics and Communication Engineering, IGIT, Guru Gobind Singh Indraprastha 
University, New Delhi, India 

(Received December 3, 2009, accepted December 20, 2010) 

Abstract. This paper presents a robust approach for an automatic speech recognition system (ASR) when 
both additive and convolutional noises corrupt the speech signal. Robust features are derived by assuming 
that the corrupting noise is stationary and the channel effect is fixed during the utterance. In the proposed 
method the effect of additive and convolutional distortions are minimized by two stage filtering.  The first 
filtering stage includes differential temporal filtering in the autocorrelation domain for reducing additive 
noise effects, followed by additional filtering in the logarithmic spectrum domain to reduce convolutional 
noise effects. Convolutional channel distortion is assumed to be linear and time invariant. A task of 
multispeaker isolated Hindi word recognition is conducted to demonstrate the effectiveness of using these 
robust features. The cases of channel filtered speech signal corrupted by white noise and different colored 
noises such as factory, babble and F16, which are further corrupted by channel distortion are tested.  
Experimental results show that the proposed method can significantly improve the performance of isolated 
Hindi word recognition system in noisy environment. 
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1. Introduction  
Today, a major concern in the design of speech recognition systems is their performance in noisy 

conditions. Therefore, a substantial amount of research is devoted to the development of noise-robust speech 
features. One of the domains attracted attention in this regard is the autocorrelation domain. A number of 
feature extraction algorithms have been devised using this domain as the initial domain of choice. 
Considering a noisy speech, if the speech signal and noise are considered uncorrelated, then the 
autocorrelation of their sum is equal to the sum of their autocorrelations.  Most important property of the 
autocorrelation sequence is considered to be the preservation of the original signal poles. If the original 
signal can be modeled by an all pole sequence which has been excited by an impulse train and a white noise, 
the poles of the autocorrelation sequence would be the same as the poles of the original signal [1],[2]. Which 
means that the features extracted from the autocorrelation sequence could replace the features extracted from 
the original speech signal.  Second property of the autocorrelation sequence is that as the autocorrelation of 
noise could in many cases be considered relatively constant over time, a high pass filtering of the 
autocorrelation sequence could lead to substantial reduction in its effect. Among the techniques used to 
exploit the autocorrelation properties are Short-time Modified Coherence [1], One-Sided Autocorrelation 
LPC (OSALPC) [3], Relative Autocorrelation Sequence (RAS) [4],[5] and Autocorrelation Me1 Frequency 
Cepstral Coefficient (AMFCC).  

To overcome the problem of additive noise and the channel distortion, techniques proposed are parallel 
model combination (PMC) [6], Stochastic matching (SM) [7]-[9] and combining channel identification with 
power spectrum estimation [10],[11]. Recently, several novel techniques for handset and channel 
compensation are also proposed for speaker identification. [12] proposed a robust feature extraction using a 
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non-linear artificial neural network to optimize the speaker recognition performance. Some approaches have 
used magnitude spectrum of higher lag autocorrelation coefficients [13] and others have stressed upon 
preservation of spectral peaks  [14]. Furthermore, for normalization various techniques are developed such as 
cepstral mean normalization (CMN), RelAtive SpecTrAl (RASTA) [15] and Blind Equalization (BE) [16]. 
Each of the above-mentioned autocorrelation-based methods has their own disadvantages. The PMC method 
needs a prior knowledge of the noise and SM  takes time for iterative estimation of noise statistics. The RAS 
method, works well in low SNRs but does not perform as well in high SNRs. RAS and AMFCC methods 
considers distortion only due to additive noises, the convolutional noise in the form of channel distortion has 
not been considered.  The AMFCC method works well for car and subway noises, but in babble and 
exhibition noises does not work as well. The reason could be that for the two later noise types, the noise 
properties are very similar to speech properties. Authors have already proposed a double fold additive noise 
suppression method for reducing the effect of additive noise. It is based upon the Differentiated Relative 
Autocorrelation Sequence Spectrum Mel Frequency Cepstral Coefficients (DRASS-MFCC) [17]. In this 
paper a novel dual filtering method on autocorrelation sequence is proposed to nullify the effects of both 
additive as well as convolutional noise. A temporal filtering method on autocorrelation domain is  done to 
nullify the effect of additive noise plus an  additional filtering has been suggested in the logarithmic 
spectrum domain by mean subtraction method to remove the channel effect. New derived parameters are 
called Channel Adaptive Relative Autocorrelation Sequence (CARAS). From the magnitude of CARAS the 
mel-scale frequency cepstral coefficients (MFCCs) of CARAS are derived. These MFCC are denoted as 
CARAS-MFCC. Comparisons in the recognition rate are made with DRASS-MFCC, RAS-MFCC and 
standard MFCC. It is well known that cepstral mean normalization (CMN) and delta cepstral coefficients are 
two effective methods for removing bias in traditional MFCC feature vector set. Here we have used  CMN 
for that. CARAS-MFCC shows remarkable results in recognition accuracy for the signals corrupted by both 
additive as well as convolutional noises.  

The remainder of the paper is organized as follows. Mathematical fundamentals for extracting RAS, 
DRASS and CARAS are derived in section 2. Block diagram of the proposed front end is described in 
section 3. In section 4 experiments conducted in clean and noisy environment with the proposed method are 
discussed. Finally a conclusion is given in section 5. 

2. Robust features extraction 

2.1. Extraction of RAS 
 Let m be the frame index and n be the time index within a frame. The clean speech x(m,n) corrupted by 

the additive noise u(m,n) result in a noisy speech expressed by 

                                        y(m,n) = x(m, 1n) + u(m,n), 0mM-1,0nN-                                                        (1) 

Where M denotes the number of frames in an utterance and N denotes the number of samples in a frame. 
If the noise is uncorrelated with the speech, it follows that the autocorrelation of the noisy speech y(m,n) is 
the sum of autocorrelation of the clean speech x(m,n) and autocorrelation of the noise u(m,n), i.e. 

                           ryy(m,k) = rxx(m, 1k )+ ruu (m,k), 0mM-1, 0kN-                                               (2) 

where ryy(m, k), rxx(m, k) and ruu(m, k) are the one-sided  autocorrelation sequences of  noisy speech, clean 
speech and noise respectively, and k is the autocorrelation sequence index within each frame. If the  additive 
noise is assumed to be stationary, the autocorrelation sequence of noise can be considered to be identical for 
all frames.  Hence, the frame index m can be dropped out, and (2) becomes  

                                  ryy(m,k) = rxx(m,  k) + ruu (k), 0mM-1 , 0kN-1                                                     (3) 
Here the N-point ryy (m,k) is computed from  N-point y(m,n) using the following equation,    

                                                                ryy(m,k) = 
i=0

 
N-1-k

 y(m,i) y(m, i+k), 0kN-1                                                       (4) 

Applying the temporal filtering on both sides of (3), it comes out 

                                        ryy(m,k) = rxx(m,  k) , 0mM-1 , 0kN-1                                                           (5) 

where 

ryy(m,k) = ryy(m+1,  k) - ryy(m-1,k)  and  rxx(m,k) = rxx(m+1,   k) - rxx(m-1,k)
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The sequence,  








ryy(m,k)
N-1
 k=0  is named the Relative Autocorrelation Sequence (RAS) of noisy speech 

at the mth frame.  

2.2. Extraction of DRASS 
 In order to preserve spectral peaks of speech signal, we use spectrum differentiation of the filtered signal, 

which we get from previous step (RAS). This further contributes to immunization against noise. By this 
approach the flat parts of the spectrum are almost removed while each spectral peak is split into two, one 
positive and one negative. If we call the output of the filtered signal in time domain as z(m,n), we can write  

                  z(m,n) = x(m,  n) + v(m,n), 0mM-1,0nN-1                        (6) 

Where x(n) and v(n) are clean speech and the remaining noise after filtering, respectively. Then we calculate 
the autocorrelation function as follows 

rzz(m,k) = rxx(m,  k) + rvv (m,k), 0kN-1,                                                                   (7) 

Applying  the  Fourier transform to both sides of  (7) yields           

FT{ }rzz(m,k)  = FT{ }rxx(m, ,k)   + FT{ }rvv(k) }  or 

Z() = X() + V()                                                                                (8) 

where FT{ } represents the Fourier Transform and  indicates radian frequency. The Differential Power 
Spectrum (DPS) will then be defined as  

                        DZ() = 
dZ()

d  = 
dX()

d  +
dV()

d  = DX() +DV ()                                              (9) 

where DX() and  DV()are the differential power spectra of the given frame of noise free speech and noise 
signal.  

2.3. Extraction of CARAS 
Any  speech signal x(m,n) , first corrupted by additive noise and then distorted by channel distortion can 

be written as 

                                   y(m,n) = [ ]x(m,  n) + u(m,n)  h(n),   0mM-1 , 0nN-1                                          (10) 

Where  u(m, n) is the additive noise, and h(n) is the channel distortion  and “” represents the 
convolution operation. Note that we have assumed the channel effect is fixed in an utterance, and thus h(n) is 
independent of frame index m. If  x(m,n), u(m, n) and h(n) are considered uncorrelated, the autocorrelation 
of the noisy speech can be expressed as 

                    ryy(m,k) = [ ]rxx(m,  k) + ruu (m,k)  h(k)h(-k), 0mM-1 , 0k2N-1                                          (11) 

where ryy(m, k), rxx(m, k) and ruu(m, k) are the two-sided  autocorrelation sequences of the noisy speech, 
clean speech and additive noise, respectively, and k is the autocorrelation index within a  frame. Since 
additive noise is assumed to be stationary, the frame index m, can be dropped out and (11) becomes  

                          ryy(m,k) = rxx(m,  k)  h(k)h(-k) + ruu (k)  h(k)h(-k), 0mM-1,0k2N-1           (12)  
By applying the temporal filtering on both sides of (12), we obtain : 

                        ryy(m,k) = rxx(m,  k)  h(k)h(-k)  0mM-1,0k2N-1                                                  (13)  
where ryy(m,k) = ryy (m+1,k) – ryy(m-1,k)  and rxx(m,k) = rxx (m+1,k) – rxx(m-1,k). Note that while 
applying the temporal filtering we have removed the  noise term  ruu(k)  h(k)h(-k)  

Taking the 2N- Point DFT on both sides of (13) with respect to k, we get 

                                       S

yy(m,  f) = S


xx(m,f). H(f)2, 0f2N-1                                                       (14) 

where S

yy(m, )f), S


xx(m,f)  and H(f  denotes the spectra of  ryy(m,k) ,   rxx(m,k) and h (k), respectively

Taking the logarithm of (14) we obtain 
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                                   log S

yy(m,  f) = log S


xx(m,f) + 2logH(f), 0f2N-1                                                            (15) 

As the channel noise becomes an additive term in the logarithmic power spectrum . Taking the 2N point 
inverse DFT with respect to f, we get CARAS 

        ryy (m,   k) =

                      = Inverse DFT









exp









log S

yy(m,f) - 

1
M

m=0

M-1

log S

yy(m,f) , 0k2N-1 , 0f2N-1, 0mM-1    (16) 

Channel Adaptive Relative Autocorrelation Sequence (CARAS). CARAS can be considered as an 
alternative representation of the original speech signal in the time domain that is robust to additive noise and 
the effects of channel distortion. 

3. Description of proposed method  
       In this section, description of the proposed method to get new robust features for speech recognition 

is presented. First, the speech signal is split into frames of 256 samples each, and a pre-emphasis filter is 
applied on each frame. A Hamming window is applied and after that, the autocorrelation sequence of the 
framed signal is obtained using an unbiased estimator. A temporal filtering is then applied to the 
autocorrelation sequence to get the relative autocorrelation sequence (RAS). When a speech is corrupted by 
the additive noise, the noise component is additive to the speech not only in the autocorrelation domain but 
also in the power spectrum domain. By calculating RAS, we broadly remove the additive noise. Then 
differentiated relative autocorrelation sequence spectrum (DRASS) is calculated by taking the differential 
power spectrum of the relative autocorrelation coefficients (RAS). Further a set of cepstral coefficients 
(DRASS-MFCC) are derived from the magnitude of the relative autocorrelation power spectrum by applying 
it to a conventional mel-frequency filter-bank and finally passing its logarithm to the DCT block. For speech 
signals corrupted by the additive noise and channel distortion RAS is transformed  to CARAS, to remove the  
channel  effect  by applying  mean  subtraction in the logarithmic 
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Figure 1. Block Diagram showing Feature Extraction by CARAS
 

 

JIC email for contribution: editor@jic.org.uk 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22696 | Generated on 2025-04-20 15:36:09



Journal of Information and Computing Science, Vol. 6 (2011) No. 1, pp 055-063 59
 
 
 

spectrum domain. A set of cepstral coefficients (CARAS-MFCC) can be derived from the magnitude of the 
CARAS by applying it to a conventional mel-frequency filter-bank and finally passing its logarithm to the 
DCT block. CMN is further used for removing the bias in the traditional MFCCs. Block diagram in Figure 1. 
displays the proposed front-end diagram of our method.  

4. Experiments 
A digital database of 200 Hindi words spoken by 30 speakers (Table 1) was used for the experiments of 

speaker- independent isolated word recognition system. The spoken samples were recorded by 15 male, 10 
female and 5 child speakers in a studio environment condition using Sennheiser microphone model MD421 
and a tape recorder model Philips AF6121. Each speaker uttered 5 repetitions of words. The database was 
partitioned for the use of training and testing. The 1200 utterances from 20 speakers were used for training 
the HMM model. The test set contained similar utterances from 10 speakers that were not included in the 
training set. The features in all the cases of training and testing are computed using 16 msec. frame length 
with 8 msec. of frame shift. Pre-emphasis coefficient used is 0.9375. For each speech frame, a 20-channel 
Mel-scale filter bank is used. First, word models of training database are created by seven state left-right 
Hidden Markov model using MFCC.  While testing, features are extracted using MFCC (for comparison 
purposes), RAS-MFCC, DRASS-MFCC and CARAS-MFCC. Word recognition rates for testing database 
are computed with RAS-MFCC, DRASS-MFCC and CARAS- MFCC under different noise conditions and 
compared with the traditional MFCC.  

4.1. Clean Speech Testing 
This experiment is to evaluate the performance of MFCC, RAS-MFCC, DRASS-MFCC and CARAS-

MFCC when the training data & the testing data are in clean environment (S/N> 40dB). The results are 
shown in Table 2. These are the baseline results for comparison purposes. Performance on the basis of 
recognition rate is observed to be more or less same in the case of  MFCC, RAS-MFCC or CARAS-MFCC. 
But DRASS-MFCC shows a prominent increase. The recognition rate gets improved to 99.64% as compared 
to above three MFCC and with CMN it reaches  99.84%. This is due to the peculiar property of DRASS, 
which combines the features of RAS and Differential Power Spectrum (DPS). By taking differentiation, the 
spectral peaks, which convey the most important information are preserved, hence show better recognition 
rate. Secondly it is found that CMN optimization works well with each type of feature vector set. 

Table 1.  Hindi speech Database for a vocabulary of 200 
words used in the experiment 

 

Table 2. Recognition rates (%) under clean 
enrollment 

1. Language Standard Hindi (Khari Boli)   Recognition 
Rate (%) 

Recognition Rate 
(%) with CMN 

2. Vocabulary Size 
A set of 200 most frequently occurring 
Hindi words 

 
MFCC                98.24 99.27 

3. Speakers 30 Speakers  RAS-MFCC 98.24 99.32 

4. Utterances 
(15 male, 10 female and 5 children) 5 
repetitions each 

 
DRASS-MFCC 99.64 99.84 

5. Audio Recording 
Recording on a casette tape in studio 
S/N > 40 

 
CARAS-MFCC 98.73 99.78 

6. Digitization 16 kHz., Sampling 16 bit quantization.     

4.2. Noisy Speech Testing - Corrupted by Additive Noise  
In this experiment the testing speech is polluted by the additive noise.  RAS-MFCC and DRASS-MFCC 

are evaluated and compared with the traditional MFCC. The testing utterances are generated by adding the 
artificial noises in five SNR levels. The white noise is generated by using a random number generation 
program, and other colored noises, i.e., factory noise, F16 noise, and babble noise, are extracted from the 
NATO RSG-10 corpus [18]. MFCC, RAS-MFCC and DRASS-MFCC with Cepstral Mean Normalization 
(CMN) are also evaluated. The results are summarized in Table 3(a-d). For the case of white noise corruption 
the performance of MFCC degrades most significantly among all features. Although MFCC with CMN can 
make some improvement, its performance is still worse than RAS-MFCC and  DRASS-MFCC Additionally 
DRASS with CMN shows the best performance. Table 3(b),(c) and (d), shows the recognition rates when the 
testing speech is corrupted by factory, babble and F16 noise, respectively. Figure 2. Plots the average 
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recognition rates shown in Table 3. It is observed from the figure that the performance of MFCC degrades 
significantly. The best performance comes from DRASS-MFCC combined with CMN. As the speech is 
corrupted by additive noise, the noise component is additive to the speech not only in the autocorrelation 
domain but also in the power spectral domain. Broadly the additive noise is removed  in the autocorrelation 
domain while calculating RAS. By differentiating the Relative Autocorrelation Power Spectrum (in DRASS), 
the flat part of the spectrum is transformed into some values approximating to zero, and the spectral peaks 
which convey the most important  information in speech signal are preserved, which gives the enhanced 
information of the speech signal. Further CMN also enhances the rate of recognition.     

Table 3. Recognition rate(%) for testing speech corrupted by additive noise  (all MFCCs compensated with CMN) 

 (a) White noise 

 
SNR (dB) 

40 20 15 10 5 0 

MFCC 98.24 67.24 33.64 14.01 7.69 3.03 
MFCC(CMN) 99.27 71.05 40.62 22.85 15.38 11.23 

RAS-MFCC 98.24 91.66 85.18 58.42 32.31 12.70 
RAS-MFCC(CMN) 99.32 92.10 87.50 64.81 32.91 13.19 
DRASS-MFCC 99.64 97.01 89.00 71.10 39.13 16.12 

DRASS-MFCC(CMN) 99.84 97.91 91.94 73.02 41.16 17.98 

 (b) Factory noise 

SNR (dB) 40 20 15 10 5 0 

MFCC 98.24 90.90 61.06 29.5 7.95 4.87 
MFCC(CMN) 99.27 92.19 63.04 31.41 9.05 5.87 
RAS-MFCC 98.24 94.09 83.09 57.76 29.05 5.87 

RAS-MFCC(CMN) 99.32 95.89 84.97 59.00 30.95 7.06 
DRASS-MFCC 99.64 98.65 97.00 84.83 46.86 12.59 

DRASS-MFCC(CMN) 99.84 98.00 96.06 86.90 48.06 14.91 

(c) Babble  noise 

SNR (dB) 
 

40 20 15 10 5 0 

MFCC 98.24 97.19 83.1 50.50 20.23 5.93 
MFCC(CMN) 99.27 97.99 85.22 50.99 22.98 7.13 

RAS-MFCC 98.24 95.03 90.25 74.05 41.98 15.80 
RAS-MFCC(CMN) 99.32 96.04 91.99 76.09 44.00 17.24 

DRASS-MFCC 99.64 99.00 98.00 87.99 60.70 16.99 
DRASS-MFCC(CMN) 99.84 99.00 96.89 89.00 65.78 18.00 

 (d) F-16 noise  

SNR (dB) 40 20 15 10 5 0 

MFCC 98.24 80.21 45.67 23.54 6.22 1.10 

MFCC(CMN) 99.27 82.00 46.99 25.98 8.79 1.37 
RAS-MFCC 98.24 92.00 78.00 35.03 13.09 3.03 
RAS-MFCC(CMN) 99.32 94.06 80.00 36.92 14.99 2.40 

DRASS-MFCC 99.64 98.92 97.70 85.11 47.00 14.6 
DRASS-MFCC(CMN) 99.84 98.94 98.00 89.00 49.07 16.9 
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Figure 2 Average Recognition rates (%) for testing speech corrupted by  Additive  noise  only 

4.3. Noisy speech testing- Corrupted by Additive noise and channel Distortion 
This is the experiment when the testing speech is polluted by additive noise and channel distortion 

simultaneously.  First the speech data is corrupted with white and colored noises at five SNR levels and then 
distorted by channel distortion. The white noise is generated by using a random number generation program, 
and other colored noises, i.e., factory noise, F16 noise, and babble noise, are extracted from the NATO RSG-
10 corpus [18]. The noises are added to the clean speech signal at 20, 15, 10 5 and 0 dB SNRs. RAS-MFCC, 
DRASS-MFCC and CARAS-MFCC are evaluated and compared with the traditional MFCC. Results are 
shown in Figure 3(a),(b),(c) and (d). It is observed that the performance of MFCC is worse than RAS-MFCC, 
DRASS-MFCC and CARAS-MFCC. For the clean data DRASS-MFCC and CARAS-MFCC shows 
comparable recognition rates, but as the noise level increases CARAS-MFCC becomes better, because  it 
takes care of additive noise and channel effect effectively. Figure 3(b), (c) and (d), depicts the performance 
in terms of recognition rate when the  testing speech is corrupted by factory, babble and  F16  noises along 
with channel distortion respectively. The best performance comes from CARAS-MFCC. This is due to the 
mean normalization in frequency-domain during the derivation of CARAS. The normalization in frequency 
domain also provides the compensation to additive noise when the testing speech is corrupted by colored 
noise. The other finding in Figure 3(d) is that the assumption of corrupting by stationary noise during the 
derivation of RAS-MFCC and CARAS-MFCC does not hurt too much to the performance of our 
experiments. The babble noise is usually the case of non-stationary noise. Figure 3(d) shows that CARAS 
can still obtain relatively high accuracy rates for babble noise corruption even in low SNR’s. 

5. Conclusion  
In this paper, a robust feature vector set CARAS-MFCC has been introduced for isolated Hindi word 

recognition. The CARAS- MFCC proves to be robust to additive noise as well as channel distortion. For the 
case of clean enrollment DRASS-CMN gives the best performance. Several types of noise corruption to the 
testing data with various levels of SNRs are evaluated. Experimental results show that proposed robust 
feature, CARAS-MFCC is effective for overcoming additive as well as channel distortion in case of low 
SNR environment. This method is effective for colored noise corruption also. As our method has used two 
step noise elimination approach, it outperforms the well known RAS approach. The limitation of the 
proposed method is that the derivation of RAS, DRASS and CARAS is based on the assumption of 
corrupting by stationary noise. This may limit the application of CARAS to a more diverse environment.  
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Figure 3(a) Recognition rate (%) for testing 
speech corrupted by  White noise and Channel 

distortion 

            

Figure 3(b) Recognition rate (%) for testing 
speech corrupted by Factory  noise and Channel 

distortion  
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