

(2,1)-Total Labelling of Cactus Graphs

Nasreen Khan¹, Madhumangal Pal² and Anita Pal³

^{1,2} Department of Applied Mathematics with Oceanology and Computer Programming, Vidyasagar University, Midnapore-721102, INDIA.

³Departent of Matheatics, National Institute of Technology Durgapur, Durgapur-713209, INDIA

(Received August 9, 2010, accepted October 8, 2010)

Abstract. A (2,1)-total labelling of a graph G = (V, E) is an assignment of integers to each vertex and edge such that: (i) any two adjacent vertices of G receive distinct integers, (ii) any two adjacent edges of G receive distinct integers, and (iii) a vertex and its incident edge receive integers that differ by at least 2. The *span* of a (2,1)-total labelling is the maximum difference between two labels. The minimum span of a (2,1)-total labelling of G is called the (2,1)-total number and denoted by $\lambda_2^t(G)$.

A cactus graph is a connected graph in which every block is either an edge or a cycle. In this paper, we label the vertices and edges of a cactus graph by (2,1)-total labelling and have shown that, $\Delta + 1 \le \lambda_2^r(G) \le \Delta + 2$ for a cactus graph, where Δ is the degree of the graph G.

Keywords: Graph labelling; (2,1)-total labelling; cactus graph

1. Introduction

Motivated by frequency channel assignment problem Griggs and Yeh [5] introduced the L(2,1)labelling of graphs. The notation was subsequently generalized to the L(p,q)-labelling problem of graphs. Let p and q be two non-negative integers. An L(p,q)-labelling of a graph G is a function c from its vertex set V(G) to the set $\{0,1,\ldots,k\}$ such that $|c(x)-c(y)| \ge p$ if x and y are adjacent and $|c(x)-c(y)| \ge q$ if x and y are at distance 2. The L(p,q)-labelling number $\lambda_{p,q}(G)$ of G is the smallest k such that G has an L(p,q)-labelling c with max $\{c(v) | v \in V(G)\} = k$.

The L(p,q)-labelling of graphs has been studied rather extensively in recent years [2, 8, 12, 16, 17, 18].

Whittlesey at el. [19] investigated the L(2,1)-labelling of incidence graphs. The incidence graph of a graph G is the graph obtained from G by replacing each edge by a path of length 2. The L(2,1)-labelling of the incident graph G is equivalent to each element of $V(G) \cup E(G)$ such that:

(i) any two adjacent vertices of G receive distinct integers,

(ii) any two adjacent edges of G receive distinct integers, and

(iii) a vertex and an edge incident receive integers that differ by at least 2.

This labelling is called (2,1)-total labelling of graphs which introduced by Havet and Yu [6] and generalized to the (d,1)-total labelling, where $d \ge 1$ be an integer. A $k \cdot (d,1)$ -total labelling of a graph G is a function c from $V(G) \cup E(G)$ to the set $\{0,1,\ldots,k\}$ such that $c(u) \ne c(v)$ if u and v are adjacent and $|c(u) - c(e)| \ge d$ if a vertex u is incident to an edge e. The (d,1)-total number, denoted by $\lambda'_d(G)$, is the least integer k such that G has a $k \cdot (d,1)$ -total labelling. When d = 1, the (1,1)-total labelling is well known as total colouring of graphs.

¹ E-mail address: <u>afsaruddinnkhan@gmail.com</u>

² *E-mail address*: mmpalvu@gmail.com

³ E-mail address: anita.bui@gmail.com

Let $\Delta(G)$ (or simply Δ) denote the maximum degree of a graph G.

Havet and Yu [6] proposed the following conjecture.

Conjecture 1 $\lambda_d^t(G) \leq min\{\Delta + 2d - 1, 2\Delta + d - 1\}$.

2. Some general bounds of (d,1)-total labelling

It is shown in [6] that for any graph G,

(i)
$$\lambda_d^t(G) \leq 2\Delta + d - 1$$
;

- (ii) $\lambda_d^t(G) \le 2\Delta 2log(\Delta + 2) + 2log(16d 8) + d 1$; and
- (iii) $\lambda_d^t(G) \le 2\Delta 1$ if $\Delta \ge 5$ is odd.

Again in [6] it was shown that

- (i) $\lambda_d^t(G) \ge \Delta + d 1$;
- (ii) $\lambda_d^t(G) \ge \Delta + d$ if G is Δ -regular;
- (iii) $\lambda_d^t(G) \ge \Delta + d$ if $d \ge \Delta$; and

(iv) $\lambda_d^t(G) \le \chi(G) + \chi'(G) + d - 2$, where $\chi(G)$ and $\chi'(G)$ are known as chromatic number and chromatic index of G respectively.

Let Mad (G) is the maximum average degree of G, Mad (G) = $max\{2|E(H)|/|V(G)|, H \subseteq G\}$. Montassier and Raspaud [15] proved that if G be a connected graph with maximum degree Δ , $d \ge 2$, then $\lambda_d^t(G) \ge \Delta - 2d - 2$ in the following cases:

(i) $\Delta \ge 2d + 1$ and Mad (G) $< \frac{5}{2}$; (ii) $\Delta \ge 2d + 2$ and Mad (G) < 3; (iii) $\Delta \ge 2d + 3$ and Mad (G) $< \frac{10}{2}$.

For a complete graph K_n , the result for (d,1)-total labelling is given in [6]. If n is odd then $\lambda_2^t(K_n) = min\{n+2d-2, 2n+d-2\}$; if n is even then $\lambda_2^t(K_n) = min\{n+2d-2, 2n+d-2\}$, $n \le d+5$, $\lambda_2^t(K_n) = n+2d-1$, $n > 6d^2 - 10d + 4$ and $\lambda_2^t(K_n) \in \{n+2d-2, 2n+d-1\}$ otherwise. Then they focused in (2,1)-total labelling and shown that if $\Delta \ge 2$, then $\lambda_2^t(K_n) \le 2\Delta + 2$ and therefore the (d,1)-total labelling conjecture is true when p = 2 and $\Delta = 3$. In fact, the bound for this special case is tight as $\lambda_2^t(K_4) = 7$ [6].

In [13], Molloy and Reed proved that the total chromatic number of any graph with maximum degree Δ is at most Δ plus an absolute constant. Moreover, in [14], they gave a similar proof of this result for sparse graphs.

In [7], it was shown that for any tree T, $\Delta + 1 \le \lambda_2^t(T) \le \Delta + 2$, where Δ is the maximum degree among all the vertices of the tree.

The (d,1)-total labelling for a few special graphs have been studied in literature, e.g., complete graphs [6], complete bipartite graphs [11], planar graphs [1], outer planar graphs [3], products of graphs [4], graphs with a given maximum average degree [15], etc. A more generalization of total colouring of graphs so called [r, s, t]-colouring, was defined and investigated in [9].

It is shown in [10] that for any cactus graphs, $\Delta + 1 \le \lambda_{2,1} \le \Delta + 3$. Now in this paper, we label the vertices and edges of a cactus graphs G by (2,1)-total labelling and it is shown that $\Delta + 1 \le \lambda_2^t \le \Delta + 2$.

Lemma 1 [6] If H is a subgraph of G, then $\lambda_2^t(H) \leq \lambda_2^t(G)$.

3. The (2,1)-total labelling of induce sub-graphs of cactus graphs

Let G = (V, E) be a given graph and U is a subset of V. The *induced subgraph* by U, denoted by G[U], is the graph given by G[U] = (U, E'), where $E' = \{(u, v) : u, v \in U \text{ and } v \in U \}$

 $(u,v) \in E$.

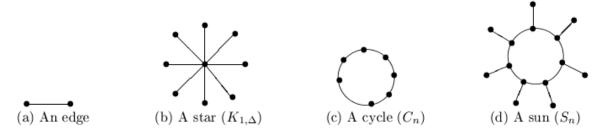


Figure 1: Some induce subgraphs of cactus graph.

The star graph $K_{1,\Delta}$ is a subgraph of $K_{n,m}$. For any star graph $K_{1,\Delta}$ one can verify the following result. **Lemma 2** For any star graph $K_{1,\Delta}$, $\lambda_2^t(K_{1,\Delta}) = \Delta + 2$.

3.1. (2,1)-total labelling of cycles

3.1.1 (2,1)-total labelling of one cycle

Lemma 3 For any cycle C_n of length n, $\lambda_2^t(C_n) = 4 = \Delta + 2$.

Proof. Let $v_0, v_1, \ldots, v_{n-1}$ be the vertices of the cycle C_n . We classify C_n into two groups, viz., C_{2k} , C_{2k+1} . Then the (2,1)-total labelling of vertices and edges of the cycle are as follows.

Case 1. Let n = 2k (see Figure 2(a)).

 $c(v_{2i}) = 0$, $c(v_{2i+1}) = 1$, $c(v_{2i}, v_{2i+1}) = 3$, for $i = 0, 1, 2, \dots, k-1$; $c(v_{2i+1}, v_{2i+2}) = 4$, for $i = 0, 1, 2, \dots, k - 2$ and $c(v_{2k-1}, v_0) = 4$.

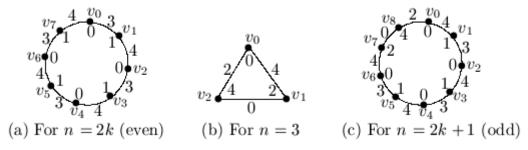


Figure 2: Illustration of Lemma 3

Case 2. Let n = 3 (see Figure 2(b)).

 $c(v_0) = 0$, $c(v_1) = 2$, $c(v_2) = 4$, $c(v_0, v_1) = 4$, $c(v_1, v_2) = 0$ and $c(v_2, v_0) = 2$.

Case 3. Let n = 2k + 1 (see Figure 2(c)).

We label the vertices as $c(v_{2i}) = 0$, for i = 0, 1, 2, ..., k - 1; $c(v_{2i+1}) = 1$, for i = 0, 1, 2, ..., k - 2; $c(v_{2k-1}) = 2$ and $c(v_{2k}) = 4$. And we label the edges as

$$c(v_{2i-1}, v_{2i}) = 3$$
, $c(v_{2i}, v_{2i+1}) = 4$, for $i = 0, 1, 2, ..., k - 1$, $c(v_{2k-1}, v_{2k}) = 0$ and $c(v_{2k}, v_0) = 2$.
From all above cases, we conclude that, $\lambda_2^t(C_n) = 4 = \Delta + 2$.

From all above cases, we conclude that, $\lambda_2^t(C_n) = 4 = \Delta + 2$.

3.1.2 (2,1)-total labelling of two cycles

Lemma 4 If a graph $G(=C_n \cup C_m)$ contains two cycles having a common cutvertex with degree 4, then,

$$\lambda_2^t(G) = \begin{cases} 6, \text{ when length of each cycle is even,} \\ 5, \text{ otherwise.} \end{cases}$$

Proof. Let G contains two cycles C_n and C_m of lengths n and m respectively. Again let v_0 be the cutvertex and v_0, v_1, \dots, v_{n-1} and $v_0, v'_1, \dots, v'_{m-1}$ be the vertices of C_n and C_m respectively. Now we label the vertices and edges of the graph as follows.

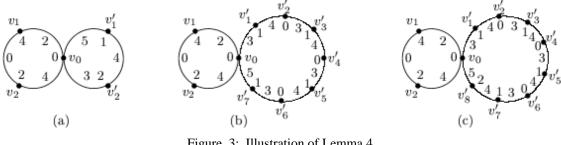


Figure 3: Illustration of Lemma 4

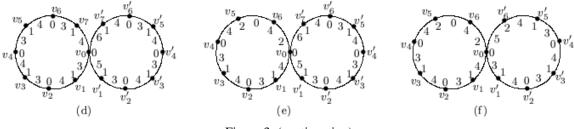


Figure 3: (continuation)

Case 1. For n = 3, m = 3 (shown in Figure 3(a)).

At first we label the cutvertex v_0 by 0. Then we label the vertices and edges of first C_3 (i.e., C_n) as same as given in case 2 of previous lemma. And then we label other vertices and edges as $c(v'_1) = 1$, $c(v'_2) = 2$, $c(v_0, v'_1) = 3$, $c(v'_1, v'_2) = 4$ and $c(v'_2, v_0) = 5$.

Case 2. For n = 3, m = 2k + i, i = 0, 1.

We label the edges and vertices of C_3 as same as in the above case. Then we label the second cycle as follows.

When *m* is even, i.e., m = 2k (shown in Figure 3(b)), then

 $c(v'_{2i}) = 0$, $c(v'_{2i+1}) = 1$, $c(v'_{2i}, v'_{2i+1}) = 3$, for $i = 0, 1, 2, \dots, k-1$; $c(v'_{2i+1}, v'_{2i+2}) = 4$, for $i = 0, 1, 2, \dots, k - 2; c(v'_{2k-1}, v_0) = 3 \text{ and } c(v_0, v'_1) = 5.$

When *m* is odd, i.e., m = 2k + 1 (shown in Figure 3(c)), then

we label the vertices v'_i , i = 1, 2, ..., 2k - 1 and the edges (v'_i, v'_{i+1}) , i = 1, 2, ..., 2k - 2, (v_0, v'_1) , (v_0, v'_{2k}) as same as in the above except the label of the vertex v'_{2k} and the edge (v'_{2k-1}, v'_{2k}) . We label that vertex and that edge as $c(v'_{2k}) = 2$ and $c(v'_{2k-1}, v'_{2k}) = 4$.

Case 3. For n = 2k + i, m = 2k + i, i = 0, 1.

When n = 2k (even), m = 2k (even) (shown in Figure 3(d)), then we label the vertices and edges of C_n as same as in case 1 of Lemma 3. Now we label all the vertices of the cycle C_n as the labelling of the vertices of the cycle C_n . Now we label the edges of C_m as follows.

$$c(v_0, v'_1) = 5$$
, $c(v'_{2k-1}, v_0) = 6$ and $c(v'_{2i}, v'_{2i+1}) = 3$, for $i = 0, 1, 2, ..., k - 1$,
 $c(v'_{2i+1}, v'_{2i+2}) = 4$, for $i = 0, 1, 2, ..., k - 2$.

When n = 2k + 1 (odd), m = 2k (even) (shown in Figure 3(e)), then we label the vertices and edges of C_n as same as in case 3 of previous lemma. Then we label another cycle as same as in the above subcase except the label of the edges (v_0, v'_1) and (v'_{2k-1}, v_0) and we label that edges as

$$c(v_0, v_1') = 3$$
 and $c(v_{2k-1}', v_0) = 5$

When n = 2k + 1 (odd), m = 2k + 1 (odd) (Figure 3(f)), then the labelling procedure of the C_n as same as given in case 3 of Lemma 3. And then we label the cycle C_m as same as given in case 2 (for n = 3, m = 2k + 1).

Here the degree of the cutvertex v_0 is 4. Then from all the above cases, it follows that

$$\lambda_2^t(G) = \begin{cases} 6, \text{ both cycles are of even length;} \\ 5, \text{ otherwise.} \end{cases} \square$$

3.1.3 (2,1)-total labelling of three cycles

Lemma 5 Let G be a graph contains three cycles and they have a common cutvertex v_0 with degree $\Delta = 6$, then

$$\lambda_2^t(G) = \begin{cases} \Delta + 2, \text{ when three cycles are of even lengths;} \\ \Delta + 1, \text{ otherwise.} \end{cases}$$

Proof. Let C_n , C_m and C_l be three cycles and $v_0, v_1, \ldots, v_{n-1}$; $v_0, v'_1, \ldots, v'_{m-1}$; $v_0, v''_1, \ldots, v''_{l-1}$ be the vertices of them. They joined with a common cutvertex v_0 with degree $\Delta(=6)$. The labelling procedure of two cycles are given in previous lemma. Now according to the previous lemma we have to label the vertices and edges of the remaining cycle C_l . When we label C_l , there are three cases arise, viz., l = 3, l = 2k (even) and l = 2k + 1 (odd). Here the label of the cutvertex is 0. Then we label the third cycle as follows.

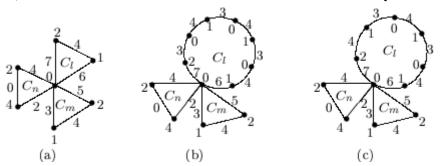


Figure 4: Illustration of some cases of Lemma 5

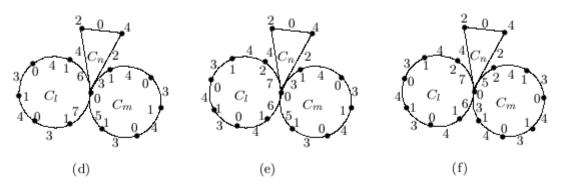


Figure 3: (continuation)

Case 1. When l = 3, then we relabel (v_0, v_1') , v_1'' , (v_1'', v_2'') , v_2'' and (v_2'', v_0) by 6, 1, 4, 2 and 7 respectively. **Case 2.** When l = 2k (even), then we label the vertices of C_{2k} as

 $c(v_{2i}'') = 0$, for i = 1, 2, ..., k - 1; $c(v_{2i+1}'') = 1$, for i = 0, 1, ..., k - 2; and $c(v_{2k-1}'') = 2$.

And the edges as

 $c(v_{2i}'', v_{2i+1}'') = 3, \text{ for } i = 1, 2, \dots, k-1;$ $c(v_{2i+1}'', v_{2i+2}'') = 4, \text{ for } i = 0, 1, \dots, k-2;$ $c(v_0'', v_1') = 6 \text{ and } c(v_{2k-1}'', v_0) = 7.$

If the cycle C_l attach with two cycles of even lengths then the label of two edges incident on v_0 of C_l are different. And the labels are

 $c(v_0, v_1') = 7$ and $c(v_{2k-1}'', v_0) = 8$ respectively.

Case 3. When l = 2k + 1 (odd), then the labels of the vertices and edges of C_l are same as the labelling of the cycle C_m given in case 2 (for n = 3 and m = 2k + 1) of lemma 4 except the labels of two edges (v_0, v_1') and (v_{2k-1}', v_0) . And we relabel these two edges as

 $c(v_0'', v_1') = 6$ and $c(v_{2k-1}'', v_0) = 7$ respectively.

Here we see that the values of λ_2^t are 7 and 8.

Therefore we conclude that,

$$\lambda_2^t(G) = \begin{cases} \Delta + 2, \text{ when three cycles are of even lengths;} \\ \Delta + 1, \text{ otherwise.} \end{cases} \square$$

3.1.4 (2,1)-total labelling of finite number of cycles

We can extend the lemmas 4 and Lemma 5 for the finite number of cycles when they are joined at a common cutvertex.

Lemma 6 If a graph G contains finite number of cycles of finite lengths and if they are joined with a common cutvertex with degree Δ , then,

$$\lambda_2^t(G) = \begin{cases} \Delta + 2, \text{ when all cycles are of even lengths;} \\ \Delta + 1, \text{ otherwise.} \end{cases}$$

Proof. Let us consider a graph *G* contains *n* number of cycles of length 3 (triangles). The *n* triangles joined with a common cutvertex say v_0 with degree $\Delta = 2n$, then we have to prove that $\lambda_2^t(G) = \Delta + 1$. Let $T_0, T_1, \ldots, T_{n-1}$ be the *n* number of triangles and v_0 be the cutvertex (see Figure 5). Then *G* is equivalent to $\bigcup_{v_0} T_i$. Again let v_{ij} , i = 1, 2 and $j = 0, 1, \ldots, n-1$, be the vertices of *G*. We label the vertices v_{1j} , v_{2j} and (v_{1j}, v_{2j}) , for $j = 1, 2, \ldots, n-1$, using the same procedure of labelling of v_1' , v_2' and the edge (v_1', v_2') of C_3 in case 1 of Lemma 3. Then we label the remaining two edges as

$$c(v_0, v_{ij}) = \begin{cases} 2j+2, \text{ if } i = 1; \\ 2j+3, \text{ if } i = 2, \text{ for } j = 0, 1, \dots, n-1 \end{cases}$$

Then the (2,1)-total number of G is 2n+1 which is exactly equal to $\Delta+1$.

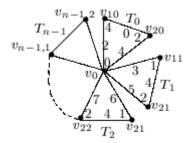


Figure 5: The graph contains n triangles

Now we consider the graph G which contains n number of cycles of length 3 and m number of cycles of length 4. They joined with a cutvertex with degree $\Delta = 2(n+m)$. Then the λ_2^t -value for that graph is $\Delta + 1$.

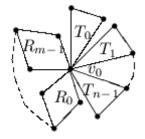


Figure 6: The graph contains $n C_3$'s and $m C_4$'s

Let $T_0, T_1, ..., T_{n-1}$ be the *n* number of cycles of length 3 and $R_0, R_1, ..., R_{m-1}$ be the *n* number of cycles of length 4 (shown in Figure 6). They are joined with a common cutvertex say v_0 . Let v_{ij} , i = 1, 2 and j = 0, 1, ..., n-1, be the vertices of all T_i 's and v_0, v'_{kp} , k = 1, 2 and p = 0, 1, ..., m-1, be the vertices of all R_p 's are same as the labelling of vertices of even number of cycles. Then we label the edges as follows:

 $c(v'_{1p}, v'_{2p}) = 4$, $c(v'_{2p}, v'_{3p}) = 3$, for p = 0, 1, ..., m-1 and then we label the edges (v_0, v'_{kp}) , for k = 1, 3 and p = 0, 1, ..., m-1 as follows:

$$c(v_0, v'_{kp}) = \begin{cases} 2n+2(p+1), \text{ if } k = 1; \\ 2n+2(p+1)+1, \text{ if } k = 2, \text{ for } p = 0, 1, ..., m-1. \end{cases}$$

We have $c(v_0, v'_{3,m-1}) = 2n + 2m + 1 = \Delta + 1$.

Lastly we prove that if a graph contains *n* number of cycles of length 4 and all the cycles joined with a cutvertex then the value of λ_2^t is $\Delta + 2$.

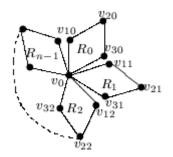


Figure 7: The graph contains n number of cycles of length 4

Let us denote the *n* number of cycles of length 4 by $R_0, R_1, \ldots, R_{n-1}$ (see Figure 7), joined with a

common cutvertex say v_0 . Again let v_0 , v_{ji} , j = 1, 2, 3 and i = 0, 1, ..., n-1 be the vertices of R_i 's. We label all the vertices of each cycle as same as the label of the vertices of even cycle. And $c(v_{1i}, v_{2i}) = 4$, $c(v_{2i}, v_{3i}) = 3$, for i = 0, 1, ..., n-1. Then we label the edges which are incident to the cutvertex v_0 as

$$c(v_0, v_{ji}) = \begin{cases} 2(i+1)+1, & \text{if } j = 1; \\ 2(i+1)+2, & \text{if } j = 2, & \text{for } i = 0, 1, ..., n-1 \end{cases}$$

We have $c(v_0, v'_{3,n-1}) = 2(n-1+1) + 2 = 2n+2 = \Delta + 2$.

By using the above results, the general form can be proved by mathematical induction. That is, if a graph G contains finite number of cycles of finite lengths, then

$$\lambda_2^t(G) = \begin{cases} \Delta + 2, \text{ when all cycles are of even lengths;} \\ \Delta + 1, \text{ otherwise.} \end{cases} \square$$

Lemma 7 If a graph G contains finite number of cycles of any length and finite number of edges joined with a common cutvertex of degree Δ , then $\lambda_2^t(G) = \Delta + 1$.

Proof. At first we prove that if a graph G contains n number of cycles of length 3, m number of cycles of length 4, p number of edges and they are joined with a common cutvertex with degree $\Delta (= 2n + 2m + p)$, then the value of λ_2^t will be $\Delta + 1$. Let v_i'' , i = 0, 1, ..., p-1 be the other end vertices of each edge. We label all v_i'' 's as $c(v_i') = 1$, for i = 0, 1, ..., p-1. Then according to the previous lemma we label the edges (v_0, v_i') , for i = 0, 1, ..., p-1 as

$$c(v_0, v'_i) = 2n + 2m + p - 1 + 2 = 2(n + m) + p + 1 = \Delta + 1.$$

Again let us consider that the graph G contains n number of cycles of length 4 and p number of edges joined with a cutvertex with degree $\Delta = 2n + p$. Then we have to prove that $\lambda_2^t(G) = \Delta + 1$.

Now we label the vertex v'_0 and the edge (v_0, v'_0) by 4 and 2 respectively. Then according to the previous lemma we label the edges as $c(v_0, v'_i) = 2n + 2 + j$, for j = 0, 1, ..., p - 1.

Then we have $c(v_0, v'_{p-1}) = 2n + 2 + p - 1 = 2n + p + 1 = \Delta + 1$.

By the above results, generally we conclude that if a graph contains finite number of cycles of any length and finite number of edges, then $\lambda_2^t(G) = \Delta + 1$.

Lemma 8 Let G be a graph, contains a cycle of any length and finite number of edges and they have a common cutvertex v_0 . If Δ be the degree of the cutvertex, then $\lambda_2^t(G) = \Delta + 2$, if the cycle is of even length and $\Delta + 1$, otherwise.

Proof. We consider that G contains an cycle C_n of length n and p number of edges. Let v_0, v_1, \dots, v_{n-1} are the vertices of C_n and $v'_0, v'_1, \dots, v'_{p-1}$ are the end vertices of all edges, joined with the cutvertex. Let Δ be the degree of G, then $\Delta = 2 + p$. Then we label the vertices and edges of G as follows.

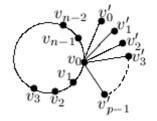


Figure 8: Illustration of Lemma 8

Case 1. Let n = 2k (even).

JIC email for contribution: editor@jic.org.uk

Here $c(v_0) = 0$, then we label all the endvertices of the edges as $c(v'_i) = 1$, for i = 0, 1, ..., p-1. Now we label the edges (v_0, v'_i) as $c(v_0, v'_i) = 5 + j$ for j = 0, 1, ..., p-1.

Now $c(v_0, v'_{p-1}) = p + 4 = \Delta + 2$.

Case 2. Let n = 3 and n = 2k + 1 (odd).

Here we label the first edge (v_0, v'_0) by 3. Then the labelling procedure of all endvertices are same as given in the above case. And we label the remaining edges as follows

 $c(v_0, v'_k) = 4 + k, \ k = 1, \ 2, \dots, p-1.$

Here $c(v_0, v'_{p-1}) = 3 + k = \Delta + 1$.

From the above two cases we see that $\lambda_2^t(G) = \Delta + 2$, if the cycle is of even length and $\Delta + 1$, otherwise.

3.2. (2,1)-labelling of sun

Let us consider the sun S_{2n} of 2n vertices. This graph is obtained by adding an edge to each vertex of a cycle C_n . So C_n is a subgraph of S_{2n} . The result for any sun S_{2n} is given below.

Lemma 9 For any sun S_{2n} , $\lambda_2^t(S_{2n}) = 5 = \Delta + 2$.

Proof. Let $v_0, v_1, ..., v_{n-1}$ be the vertices of C_n and v_i is adjacent to v_{i+1} and v_{i-1} . To complete S_{2n} , we add an edge (v_i, v'_i) to the vertex v_i , i.e., v'_i 's are the pendent vertices. To label this graph we consider the following three cases.

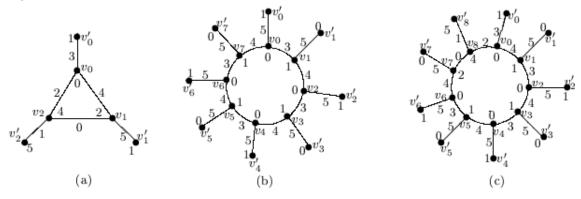


Figure 9: Illustration of Lemma 9

Case 1. Let n = 3 (shown in Figure 9(a)).

We label the cycle C_3 according to the Case 2 of Lemma 3. Then we label other vertices and edges as follows:

 $c(v'_0) = 1$, $c(v'_1) = 5$, $c(v'_2) = 0$, $c(v_0, v'_0) = 3$, $c(v_1, v'_1) = 1$ and $c(v_2, v'_2) = 5$.

Case 2. Let n = 2k (even) (see Figure 9(b)).

We label the cycle C_n as per Case 1 of Lemma 3. And we label other vertices and edges of S_{2n} as follows:

 $c(v'_{2i}) = 1$, $c(v'_{2i+1}) = 0$ for i = 0, 1, ..., k - 1 and $c(v_i, v'_i) = 5$ for i = 0, 1, ..., n - 1.

Case 3. Let n = 2k + 1 (odd) (see Figure 9(c)).

Here the labelling procedure of the cycle C_{2k+1} is same as the Case 3 of Lemma 3. Now the labelling of other vertices and edges are as follows:

$$\begin{split} c(v_{2i}') = 1 \ , \ c(v_{2i+1}') = 0 \ \text{ for } i = 0, 1, \dots, k-1 \ , \ c(v_{n-1}') = 5 \ , \ c(v_i, v_i') = 5 \ \text{ for } i = 1, 2, \dots, n-1 \ , \\ c(v_0, v_0') = 3 \ \text{and} \ c(v_{n-1}, v_{n-1}') = 1. \end{split}$$

Here we see that (2,1)-total number for that graph is 5.

Hence
$$\lambda_2^t(S_{2n}) = 5 = \Delta + 2$$
.

Lemma 10 Let G be a graph obtained from S_{2n} by adding an edge to each of the pendent vertex of S_{2n} , then

$$\lambda_2^t(S_{2n}) = \Delta + 2 = 5.$$

Proof. Follows from Figure 10.

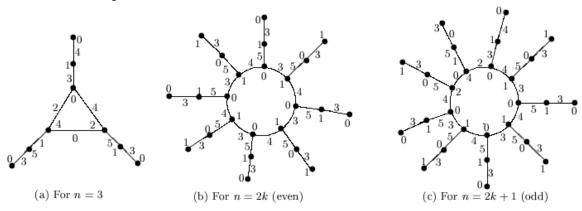


Figure 10: Illustration of Lemma 10

Lemma 11 Let a graph G contains two cycles of any length and they are joined by an edge. If $\Delta(=3)$ be the degree of G, then,

$$\lambda_2^t(G) = 5 = \Delta + 2.$$

Proof. Let the graph G contains two cycles C_n and C_m with vertices $v_0, v_1, \ldots, v_{n-1}$ and $v'_0, v'_1, \ldots, v'_{m-1}$ respectively. And the cycles are joined by an edge (v_0, v'_0) . The degree of the graph is $\Delta(=3)$ Now we label the vertices and edges of the graph as follows.

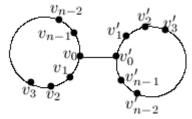


Figure 11: The graph G

Case 1. Let n = 3, m = 3.

First we label the vertices and edges of C_3 as same as given in case 2 of Lemma 3. Now we label the edge (v_0, v'_0) by 3 and then we label the other cycles as follows.

$$c(v'_0) = 1, \ c(v'_1) = 0, \ c(v'_2) = 2$$

$$c(v'_0, v'_1) = 4$$
, $c(v'_1, v'_2) = 3$, $c(v'_2, v'_0) = 5$.

Case 2. Let n = 3, m = 2k + i, i = 0, 1.

We label the vertices and edges of C_3 as same as given in the above case. Then we label the edge

 (v_0, v'_0) by 5 and other cycles as follows.

When *m* is even, i.e., m = 2k, then

$$c(v'_{2i}) = 1, c(v'_{2i+1}) = 0, \text{ for } i = 0, 1, \dots, k-1,$$

 $c(v'_{2i}, v'_{2i+1}) = 3, \text{ for } i = 0, 1, \dots, k-1,$
 $c(v'_{2i+1}, v'_{2i+2}) = 4, \text{ for } i = 0, 1, \dots, k-2$
and $c(v'_{n-1}, v'_{0}) = 4.$

When *m* is odd, i.e., m = 2k + 1, then we label the vertices and edges of C_m as same as given in the above subcase except the label of the vertex v'_{m-1} , i.e., v'_{2k} and the edge (v'_{m-2}, v'_{m-1}) , i.e., (v'_{2k-1}, v'_{2k}) . We label the vertex and the edge as follows.

$$c(v'_{2k}) = 2$$
 and $c(v'_{2k-1}, v'_{2k}) = 5$.

Case 3. Let n = 2k + i, m = 2k + i, i = 0, 1.

When n = 2k and m = 2k, then we label the cycle C_n as same as given in Case 1 of Lemma 3. Then we label the edges (v_0, v'_0) by 5 and the cycle C_m as same as in the subcase (when m is even) in Case 2 of this lemma.

When n = 2k and m = 2k+1, then we label the edges and vertices of C_m as same as given in the subcase (when m is odd) of the above case.

When n = 2k + 1 and m = 2k + 1, then we label the vertices and edges of C_n as same as given in Case Finally, we get $\lambda_2^t(G) = 5 = \Delta + 2$.

Corollary 1 Let a graph G contains two cycles of any lengths and they are joined by two edges. If Δ be the degree of the graph G, then

$$\lambda_2^t(G) = \Delta + 2$$

Lemma 12 Let a graph G contains a cycle of any length and each vertex of the cycle contain another cycle of any length, then

$$\lambda_2^t(G) = 6 = \Delta + 2$$

Proof. At first we take the main cycle are of two types, viz., C_{2k} , i.e., even and C_{2k+1} , i.e., odd. Let v_0, v_1, \dots, v_{n-1} be the vertices of C_n .

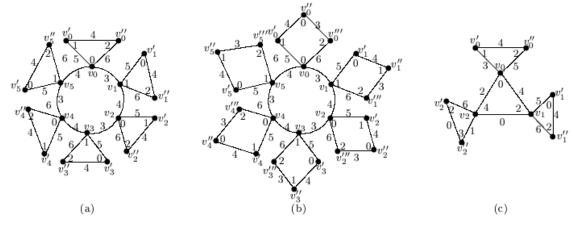


Figure 12: Illustration of Lemma 12

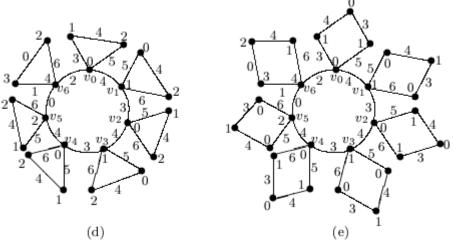


Figure 12: (continuation)

Case 1. Let n = 2k (even).

When each vertex of C_n contains the cycles of length 3 (shown in Figure 12(a)).

Let v_0, v'_0, v''_0 ; v_1, v'_1, v''_1 ;...; $v_{n-1}, v'_{n-1}, v''_{n-1}$ are the vertices of the cycles of length 3. Now the labelling of the cycle C_n is same as the labelling procedure of the cycle of even length. Then we label the other vertices and edges as follows:

$$\begin{split} c(v_{2i}') &= 1 \ , \ c(v_{2i+1}') = 0 \ \text{ for } i = 0, 1, \dots, k-1 \ \text{ and } c(v_{2i}'') = 2 \ \text{ for } i = 0, 1, \dots, n-1 \ . \ c(v_i, v_i') = 5 \ , \\ c(v_i', v_i') &= 4 \ , \ c(v_i'', v_i) = 6 \ \text{ for } i = 0, 1, \dots, n-1 \ . \end{split}$$

When each vertex of C_n contains the cycles of length 4 (see Figure 12(b)).

Let v_0, v'_0, v''_0, v'''_0 ; v_1, v'_1, a''_1, v'''_1 ;...; $v_{n-1}, v'_{n-1}, v''_{n-1}$ be the vertices of all the cycles of length 4. We label the cycles as follows:

$$c(v'_{2i}) = 1, \ c(v''_{2i}) = 0 \text{ and } c(v''_{2i}) = 1 \text{ for } i = 0, 1, \dots, k-1;$$

$$c(v'_{2i+1}) = 0, \ c(v''_{2i+1}) = 1 \text{ and } c(v''_{2i+1}) = 0 \text{ for } i = 0, 1, \dots, k-1;$$

$$c(v_i, v'_i) = 5, \ c(v'_i, v''_i) = 4, \ c(v''_i, v''_i) = 3 \text{ and } c(v''_i, v_i) = 6 \text{ for } i = 0, 1, \dots, n-1;$$

Case 2. Let n = 2k + 1 (odd).

When n = 3 and all cycles are of length 3 (see Figure 12(c)).

The labelling procedure of the cycle C_n is same as given in case 2 of Lemma 3. Now we label the other vertices and edges as follows:

$$c(v'_{0}) = 1, \ c(v''_{0}) = 2, \ c(v_{0}, v'_{0}) = 3, \ c(v'_{0}, v''_{0}) = 4, \ c(v''_{0}, v_{0}) = 5;$$

$$c(v'_{1}) = 0, \ c(v''_{1}) = 1, \ c(v_{1}, v'_{1}) = 5, \ c(v'_{1}, v''_{1}) = 4, \ c(v''_{1}, v_{1}) = 6;$$

$$c(v'_{2}) = 3, \ c(v''_{2}) = 2, \ c(v_{2}, v'_{2}) = 1, \ c(v'_{2}, v''_{2}) = 0, \ c(v''_{2}, v_{2}) = 6.$$

When each vertex of C_n contains the cycles of length 3 (shown in Figure 12(d)).

The labelling procedure for the vertices v'_i , v''_i and the edges (v_i, v'_i) , (v'_i, v''_i) , (v''_i, v_i) for i = 1, 2, ..., 2k - 2 are same as the labelling of the graph which contains a cycle of even length and each vertices of the cycle contain cycles of length 3 given in case 1. And the labelling of v'_i , v''_i , (v_i, v'_i) , (v'_i, v''_i) , (v''_i, v''_i) , (v''_i, v''_i) , for i = 0, 2k - 2, 2k as same as the labelling of the above graph for i = 0, 1, 2 respectively.

When all the cycles are of length 4 except the main cycle (shown in Figure 12(e)).

JIC email for contribution: editor@jic.org.uk

We label the vertices and edges v'_i , v''_i , v''_i , (v_i, v'_i) , (v'_i, v''_i) , (v''_i, v''_i) and (v''_i, v_i) for i = 1, 2, ..., 2k - 1 as same as the labelling procedure of the graph which contains a cycle of even length and each vertex contains another cycle of length 4 except the label of the vertex v_{2k-1} . We label this vertex as $c(v_{2k-1}) = 2$. For i = 0, 2k, we label the remaining vertices and edges of the graph as follows:

$$c(v'_0) = 1, \ c(v''_0) = 0, \ c(v''_0) = 1, \ c(v_0, v'_0) = 3, \ c(v'_0, v''_0) = 4, \ c(v''_0, v''_0) = 3, \ c(v''_0, v_0) = 5;$$

$$c(v'_{2k}) = 3, \ c(v''_{2k}) = 2, \ c(v''_{2k}) = 1, \ c(v_{2k}, v'_{2k}) = 1, \ c(v'_{2k}, v''_{2k}) = 0, \ c(v''_{2k}, v''_{2k}) = 4, \ c(v''_{2k}, v_{2k}) = 6.$$

Here we see that the minimum label number is 6 which is exactly equal to $\Delta + 2$.

Finally, we conclude that if a graph G contains a cycle of any length and each vertex of the cycle contains another cycle of any length then,

 $\lambda_2^t(S_{2n}) = \Delta + 2 = 5$, Δ be the degree of the graph.

An edge is nothing but P_2 , so $\lambda_2^t(G) = 3$.

3.3. (2,1)-labelling of paths

Lemma 13 For any path P_n of length n,

$$\lambda_2^t(P_n) = 4 = \Delta + 2.$$

Proof. Let $v_0, v_1, \dots, v_{n-2}, v_{n-1}$ be the vertices of the path P_n of length *n* (shown in Figure 13). We classify the path into two cases, viz., even and odd.

Figure 13: (2,1)-total labelling of path P_n

Case 1. When n = 2k, i.e., the path is even.

We label the vertices and edges of P_n according to the following rules.

$$c(v_{2i}) = 0$$
, for $i = 0, 1, ..., k - 1$;
 $c(v_{2i+1}) = 1$, for $i = 0, 1, ..., k - 1$;
 $c(v_{2i}, v_{2i+1}) = 3$, for $i = 0, 1, ..., k - 1$;
and $c(v_{2i+1}, v_{2i+2}) = 4$, for $i = 0, 1, ..., k - 1$.

Case 2. When n = 2k + 1, i.e., the path is odd.

The labelling of the vertices and edges of the path is same as in the above case, only the label of the last vertex v_{2k} and last edge (v_{2k-1}, v_{2k}) are different. We label that vertex and edge as follows:

$$c(v_{2k}) = 1$$
 and $c(v_{2k-1}, v_{2k}) = 3$.

From all above cases we see that $\lambda_2^t(G) = 4 = \Delta + 2$.

3.4. (2,1)-total labelling of caterpillar graph

Now, we label another important subclass of cactus graphs called caterpillar graph.

Definition 1 A caterpillar C is a tree where all vertices of degree ≥ 3 lie on a path, called the backbone of C. The hairlength of a caterpillar graph C is the maximum distance of a non-backbone vertex to the backbone.

Lemma 14 For any caterpillar graph G, $\lambda_2^t(G) = \Delta + 2$, where Δ is the degree of the caterpillar graph.

Proof. Let P_n be the backbone of length n of the caterpillar graph G and $v_0, v_1, \ldots, v_{n-2}, v_{n-1}$ be the vertices of P_n . We label the vertices and edges of the path by using the previous lemma. Let v_k be a vertex on the path P_n with degree k. Then k-2 different paths (other than backbone) are originated from v_k of variable lengths. We denote such paths by P_j^{ki} , where $i (= 0, 1, \ldots, k-2)$ represents the i th path originated from the vertex k and j is the length of the path. Let us take the first path P_m^{k1} and $v_k, v_1^1, v_2^1, \ldots, v_{m-1}^1$ be the vertices of it. We label all the vertices of P_m^{k1} by 0 or 1 and label all the edges adjacent to v_k by $5, 6, 7, \ldots, k+2$ because the label of the edges incident on the vertex v_k of the path P_n are either 3 and 4 respectively. We label the first edge of P_m^{k1} by 5 and other edges of P_m^1 by using the labelling procedure given in the previous lemma. All the labels are allowed to label the vertices of the remaining portion of the path P_m^{k1} . Now we take the second path P_l^{k2} . Here also the labelling procedure for the path is same as given in Lemma 13 except the label of the edge incident on the vertex v_k . We label of the edge by 6 and so on. Lastly, we label the first edge of the (k-2) th path incident on the vertex v_k by k+2. Here $\Delta = k$, so the value of λ_2^t is $\Delta + 2$. Similar method apply to all paths joined with the vertices of the path P_n .

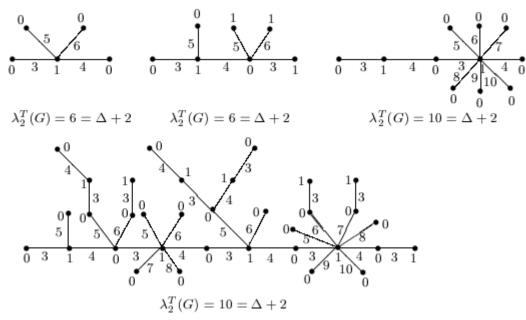


Figure 14: Labelling of caterpillar graphs

Therefore, we conclude that, for any caterpillar graph, $\lambda_2^t(G) = \Delta + 2$.

The proof of lemma 14 is illustrated in Figure 14.

4. (2,1)-total labelling of lobster

Another subclass of cactus graphs is the lobster graph. The definition of lobster graph is given below.

Definition 2 A lobster is a tree having a path (of maximum length) from which every vertex has distance at most k, where k is an integer.

The maximum distance of the vertex from the path is called the diameter of the lobster graph. For the above definition k is the diameter. There are many types of lobsters given in literature like diameter 2, diameter 4, diameter 5, etc. Figure 16 shows a lobster of diameter 4.

Lemma 15 For any lobster G, $\lambda_2^t(G) = \Delta + 2$, where Δ is the degree of the lobster.

Proof. Assume that P_n be a path of length n of the lobster graph G and v_0, v_1, \dots, v_{n-1} be the vertices of it. Let us consider a vertex v_k on P_n from which p number of trees be originated. Let T_1, T_2, \dots, T_p be such trees. Without lose of generality let the label of the vertex v_k be 0. Again, let Δ_i , i = 1, 2, ..., p be the degrees of these trees. We know that $\lambda_2^t(T_i)$ is $\Delta_i + 2$ (if $\Delta_i \ge 4$) [7].



Figure 15: Illustration of Lemma 15

Now we label the edge of the tree T_i (i = 1, 2, ..., p) originated from v_k by i + 4. Let v_{k-1} and v_{k+1} be two adjacent vertices of v_k on P_n . We label these vertices v_{k-1} and v_{k+1} by 1 (or 0) because the label of v_k can be assigned to 0 (resp. 1). And we label the edges (v_k, v_{k-1}) and (v_k, v_{k+1}) by 3 and 4 respectively. So we see that there are no extra labels are required to label the edges incident on v_k of the path P_n . So, the value of λ_2^i of the lobster is $\Delta + 2$, where $\Delta = max\{\Delta_1, \Delta_2, ..., \Delta_p\}$.

Figure 16 is an example of 4-diameter lobster and the proof of Lemma 15 is illustrated here.

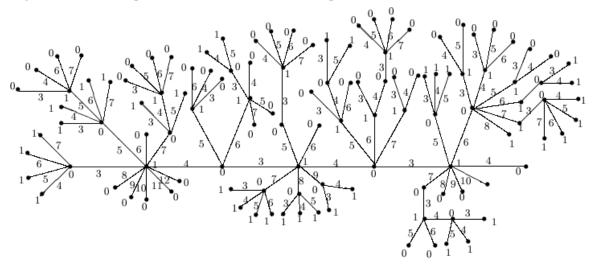


Figure 16: (2,1)-total labelling of 4-diameter lobster

Lemma 16 Let G_1 and G_2 be two cactus graphs. If $\Delta_1 + 1 \le \lambda_2^t(G_1) \le \Delta_1 + 2$ and $\Delta_2 + 1 \le \lambda_2^t(G_2) \le \Delta_2 + 2$, then $\Delta + 1 \le \lambda_2^t(G) \le \Delta + 2$, G is the union of two graphs G_1 and G_2 , they have only one common vertex v and max $\{\Delta_1, \Delta_2\} \le \Delta \le \Delta_1 + \Delta_2$.

Proof. Let G_1 and G_2 be two cactus graphs and Δ_1 , Δ_2 be the degrees of them. Now if we merge two cactus graphs G_1 and G_2 with the vertex v then we get a new cactus graphs $G \ (= G_1 \bigcup_v G_2)$. Let Δ be the degree of new cactus graph G and it can be shown that $\max \{\Delta_1, \Delta_2\} \le \Delta \le \Delta_1 + \Delta_2$. For the graph G_1 , $\Delta_1 + 1 \le \lambda_2^t (G_1) \le \Delta_1 + 2$ and G_2 , $\Delta_2 + 1 \le \lambda_2^t (G_2) \le \Delta_2 + 2$. Now we have to prove that the lower and upper bounds of λ_2^t will preserve for the new cactus graph G. Let u and v be two vertices of that graphs and u_0 , u_1 ; v_0 , v_1 be the adjacent vertices of u and v respectively. Let x be the label of u, then the label of u_0 and u_1 may be x+1 and x+1 or x+4. And the label of the edges (u, u_0) and (u, u_1) may be x+3

and x+4 or x+1 respectively. Similarly, if y be the label of v, then the label of v_0 and v_1 may be y+1and y+1 or y+4. And the label of the edges (v, v_0) and (v, v_1) may be y+3 and y+4 or y+1respectively.

Assume that the label of u be fixed and let it be 0, i.e., x = 0, and the label y of v lies between 0 to $\Delta_2 + 2$. That is, the label difference between x and y is one of the integer $0, 1, \dots, \Delta_2 + 2$.

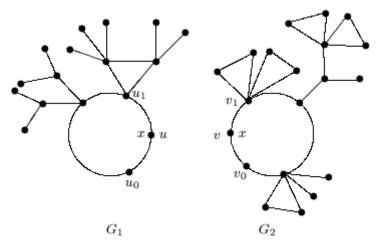
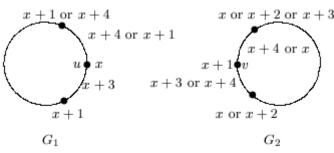


Figure 17:

Let the label of the vertices u and v be same, i.e., x = y (Figure 17). If we join two cactus graphs at v, then the label of v remains unchanged and the labels of adjacent vertices v_0 and v_1 will change to x+1 and x+1 or x+2. And the labels of the edges (v, v_0) and (v, v_1) will change to x+5 and x+6 or x+4 and x+5. If we increase the label numbers by 1 of all the vertices and edges of G_2 except v then there are at least one vertex or edge in which we adjust the labelling to preserve the lower and upper bounds of λ_2^t .

When the label difference between x and y is 1, i.e., y = x+1 (see Figure 18), then without loss of generality we assume that the label numbers of adjacent vertices of u are x+1 and x+1 or x+4. And the label of the edges (u, u_0) and (u, u_1) are x+3 and x+4 or x+1. Now the label numbers of adjacent vertices of v are x or x+2 and x or x+2 or x+3 respectively. And for the edges (v, v_0) and (v, v_1) , x+3 or x+4 and x+4 or x respectively. Now if we increase the label numbers by 1 of all the vertices and edges of G_2 except v then we get at least one vertex or edge in which we adjust the labelling to preserve the lower and upper bounds of λ_2^t , i.e. the λ_2^t -value of new cactus graph can't be less than $\Delta+1$ and greater than $\Delta+2$.



Similarly, for the label differences $2, 3, ..., \Delta_2 + 2$, the lower and upper bounds of λ_2^t for the new cactus graph will preserve.

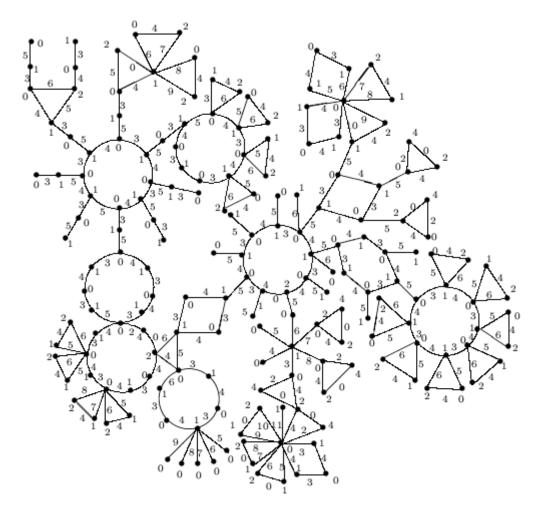


Figure 19: (2,1)-total labelling of cactus graphs

The (2,1)-labelling of all subgraphs of cactus graphs and their combinations are discussed in the previous lemmas. From these results we conclude that the λ_2^t -value of any cactus graph can not be more than $\Delta + 2$ and less than $\Delta + 1$. Hence we have the following theorem.

Theorem 1 If Δ is the degree of a cactus graph G, then

$$\Delta + 1 \le \lambda_2^t(G) \le \Delta + 2.$$

The graph of Figure 19 is an example of a cactus graph, contains all possible subgraphs and its (2,1)-total labelling.

5. Conclusion

The bounds of (2,1)-total labelling of a cactus graph and various subclass viz., cycle, sun, star, tree, caterpillar and lobster are investigated. The bounds of $\lambda_2^t(G)$ for these graphs are $\lambda_2^t(C_n) = 4$ and for sun, star, caterpillar and lobster it is $\Delta + 2$. For the cactus graph the bound for λ_2^t is $\Delta + 1 \le \lambda_2^t(G) \le \Delta + 2$, where Δ is the maximum degree of the cactus graph G.

6. References

- [1] F. Bazzaro, M. Montassier and A. Raspaud. (*d*,1)-total labeling of planar graphs with large girth and high maximum degree. *Discrete Math.* 2007, **307**: 2141-2151.
- [2] G. J. Chang and David Kuo. The L(2,1)-labelling problem on graphs. *SIAM J. Discrete Math.* 1996, **9**(2): 309-316.

- [3] D. Chen and W. Wang. (2,1) -total labelling of outerplanar graphs. *Discrete Appl. Math.* 2007, **155**: 2585-2593.
- [4] D. Chen and W. Wang. (2,1) -total labelling products of two kinds of graphs. J. Zhejiang Normal Univ. (Natural Sci.). 2006, **29**(1): 26-31.
- [5] J. R. Griggs and R. K. Yeh. Labelling graphs with a condition at distance two. *SIAM Journal on Discrete Math.* 1992, **5**(4): 586-595.
- [6] F. Havet and M. L. Yu. (p,1) -total labelling of graphs. *Discrete Math.* 2008, **308**: 496-513.
- [7] J. Huang, H. Sun, W. Wang and D. Chen. (2,1) -total labelling with sparse vertices of maximum degree. *Information Processing Letters*. 2009, **109**: 199-203.
- [8] J.H. Kang. L(2,1)-labelling of Hamiltonian graphs with maximum degree 3. *SIAM J. Discrete Math.* 2008, **22**: 213-230.
- [9] A. Kemintz and M. Marangio. [r, s, t]-coloring of graphs. Discrete Math. 2007, **307**: 119-207.
- [10] N. Khan, A. Pal and M. Pal. L(2,1)-labelling of cactus graphs, communicated, 2010.
- [11] K.-W. Lih, Daphne D.-F. Liu and W. Wang. On (d, 1)-total numbers of graphs. Discrete Math., in press.
- [12] M. Molloy and M.R. Salavatipour. A bound on the chromatic number of the square of a planar graph. *J. Combin. Theory Ser. B.* 2005, **94**: 189-213.
- [13] M. Molloy and B. Reed. A bound on the total chromatic number. Combinatorica. 1998, 2: 241-280.
- [14] M. Molloy and B. Reed. Graph colouring and the probalilistic method, Algorithms and Combinatorics. Springer-Verlag, 2003.
- [15] M. Montassier and A. Raspaud. (2,1) -total labelling of graphs with a given maximum average degree. *J. Graph Theory*. 2006, **51**: 93-109.
- [16] C. Schwarz and D. S. Troxell. L(2,1)-labelling of products of two cycles. *Discrete Appl. Math.* 2006, **154**: 1522-1540.
- [17] W. F. Wang and K. W. Lih. Labelling planar graphs with conditions on girth and distance two. *SIAM J. Discrete Math.* 2004, **17**: 499-509.
- [18] W. Wang and K.W. Lih. *L*(2,1) -labelling of trees. *Discrete Appl. Math.* 2006, **154**: 598-603.
- [19] M. A. Whittlesey, J. P. Georges and D. W. Mauro. On the λ -number of Q_n and related graphs. *SIAM J. Discrete Math.* 1995, **8**: 499-506.