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Abstract. We present a new 6-point ternary interpolating scheme with a shape parameter. The scheme is 
C2 continuous over the parametric interval. The differentiable properties of proposed as well as two other 
existing 6-point ternary interpolating schemes have been explored. Application of proposed scheme is given 
to show its visual smoothness. 
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1. Introduction 
Computer Aided Geometric Design (CAGD) is a branch of applied mathematics, which deals with 

algorithms for the shape and structure of smooth curves and surfaces and for their competent mathematical 
demonstration. Subdivision is a very common approach which is related to CAGD. We can survey 
subdivision as process of taking a coarse shape and refining it to produce another shape that is more visually 
nice-looking and smooth. We can divide the subdivision schemes into two major types: one is interpolating, 
in which original points stay undistributed while new points are included and the other is approximating, in 
which new points are included as well as old points are moved at each refinement level. 

Now a days wide variety of 6-point interpolating binary/ternary schemes have been introduced in the 
literature. Deslauries and Dubuc [1] introduced 6-point ternary interpolating scheme in 1989. In [7] Weisman 
described a 6-point binary interpolating scheme. Khan and Mustafa [6] introduced ternary 6-point 
subdivision scheme. Lian [5] generalized classical 4-point and 6-point interpolating schemes to a-ary 
interpolating schemes for any integer a   3. The Laurents polynomial method has been used by [2] to 
discuss analysis of binary/ternary schemes. 

A general ternary subdivision scheme S which maps a coarse polygon   Zi

k
i

k ff   to a refined 

polygon   Zi

k
i

k ff 
  11  is defined by  

,,3
1 Zifaf

Zj

k
jij

k
i  





                                 (1.1) 

where the set  Zi| aa i   of coefficients is called mask of the scheme. A necessary condition for 

uniform convergence of the subdivision scheme (1.1) is that 
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The  z -transform of the mask  a  of subdivision scheme can be given as 

                



Zi

i
i zaza ,                                       (1.3) 

which is called the symbol or Laurent polynomial of the scheme. From (1.2) and (1.3) the Laurent 
polynomial of a convergent subdivision scheme satisfies 
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    03/43/2   ii eaea   and    31 a .                (1.4) 
The existence of associated subdivision scheme for the divided differences of the original control 

polygon and of related Laurent polynomial  za1  is assured by this condition 
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The subdivision scheme 1S  with symbol  za1  is connected to scheme  S  with symbol  za  by the 
following theorem. 

Theorem 1.1.  [3] Let a subdivision scheme is denoted by S with symbol  za  satisfying (1.4). Then there 

exist a subdivision scheme 1S  with the property  

1
1

 kk fSf , 

where 0fSf kk   and     Ziffff k
i
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kk   :3 1 . Moreover, S is uniformly convergent if and 

only if 13
1 S  converges uniformly to the zero function for all initial data 0f , such that 
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We define the norm of scheme as 
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Theorem 1.2. [3] Let S be subdivision scheme with a characteristic II-polynomial 

      II,2

2

3
1   qzqza

n

z
zz . If the subdivision scheme nS , corresponding to the II-polynomial  zq , 

converges uniformly then  RCfS n 0  for any initial control polygon 0f . 

Corollary 1.3.  [3] If S is a subdivision scheme of the form above and 13
1

nS  converges uniformly to the 

zero function for all initial data 0f  then  RCfS n 0  for any initial control polygon 0f  

2. A 6-point ternary interpolating scheme 
In this section, we construct a 6-point ternary interpolating subdivision scheme. 

2.1. Construction of the scheme 
Consider the following three recursive relations which refine given kth level polygon   Zi

k
i

k ff   to 

(k+1)th level polygon   Zi
k

i
k ff 
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We get following mask from above recursive relations 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22711 | Generated on 2025-04-12 04:00:46



Journal of Information and Computing Science, Vol. 5 (2010) No. 3, pp 199-210 
 
 

JIC email for subscription: publishing@WAU.org.uk 

201

 , ..., , a, a, , a, a, , a, a, , a, a, , a, a, , a, a...,   a  } 0001000 { 504132231405 . 

The Laurent polynomial of this mask is 
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We require   31 a , to generate 0C  functions, which gives the following condition 

1543210  aaaaaa .                              (2.3) 

In order to find the mask of our scheme, first we find Laurent polynomial  zan  corresponding to the 

subdivision scheme nS  by (1.7), subject to the condition that mask of na  satisfy (1.2). By taking n = 1, 2, 3, 

4 in (1.7) we get 
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  ,aaa ,a , aaa , a , aa    a 3/1184126464{81 54004055054   

 ,a,aa,aa ,aa }4466 5500504                        (2.4) 

where 

   196336 54310  aaaaa , 

   1279927 5410  aaaa , 

     0245421 5410  aaaa , 

                       19936 540  aaa .                         (2.5) 

Solving (2.3) and (2.5) by taking wa 5 ,  we get the following mask of 6-point ternary interpolating 

subdivision scheme (2.1). 

     wa 
243

5
0 , wa 5

243

35
1  ,  wa 10

81

70
2  , 

wa 10
243

70
3  ,  wa 5

243

7
4  ,   wa 5 . 

By taking 729
7w , we get mask of DD 6-point ternary interpolating scheme [1]. 

2.2. Smoothness analysis 
All Let  S  be a scheme defined by (2.1) then its Laurent polynomial can be written as 
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If 4,3,2,1; iSi  are divided difference subdivision schemes of S corresponding to the Laurent 

polynomials   4,3,2,1; izai  then by (2.4) we get 
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It is easy to show that  za  and   4,3,2,1; izai  satisfies (1.4). 

Using (1.6) for  L  = 1, we get 
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so by (1.5) 
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As we see for 1, 13
1
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Sw  then by Theorem 1.2 for this range of shape parameter w  

the scheme is 0C . Similarly 1944
23
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wS , then by Corollary 1.3, the scheme is 1C  

and for 1215
11

972
7  w , 133

1 


S , then by Corollary 1.3, the scheme is 2C . 

For 3C -continuity, the condition 143
1 


S  must be satisfied. This condition is true for 
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S . In the 

same way, we can show that for L = 2 , 3  . . . ,  we  have 1
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L

S  therefore scheme S is not 3C -

continuous. 

By summarizing above discussion, we get following result. 

Theorem 2.1.  Given initial control points  0
i i Z

f


, let k
i i Z

f


 defined by (2.1) be 
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the values corresponding to k
i

3
 and let f(t) be the limit function of scheme (2.1), then f(t) is 0C , 1C  and 

2C -continuous for the ranges 243
13

3888
35  w , 1944

23
486
1  w  and 1215

11
972
7  w , respectively.  

3. Differentiability of 6-point Ternary Interpolating Scheme  
In this section, we will find exact expressions for the first and the second derivatives of the limit 

functions of the proposed scheme, DD [1] and Khan & Mustafa [6] 6-point ternary schemes by following the 
procedure of [4]. 

Theorem 3.1.  Given initial real numbers  0
if , let  k

if  be the values defined by 6-point ternary 

interpolating scheme (2.1) corresponding to  0,,
3

 kZkik
i  and 2Cf   be the corresponding limit 

function with 1215
11
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7  w , then for arbitrary fixed 0,0  mZm, n , the derivatives of the limit function 

f are 
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Since scheme under consideration is interpolating, so we have m
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 . During each subdivision 

level control points can be evaluated by using following rule 
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is the vertex subdivision matrix. The configuration around the vertex is shown in Figure 1. For 

1215
11

972
7  w , matrix A has seven different eigenvalues as ,,,,,1 81

1
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1
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1
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1
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6 9,21  ww   and has seven orthogonal eigenvectors. Let ii lr ˆ,ˆ  be the right and left 

eigenvectors of matrix A corresponding to the eigenvalues ,i  i = 1 , . . . , 7, then direct computations leads 

to 
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Similarly, the left eigenvectors are 
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Fig. 1: Configuration around vertex J. Here  , K, L, MG, H, I, J  and  , k, l, mg, h, i, j  are old and new vertices 

respectively. 
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Again we have  
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Using above result in (3.9), we have 
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  .                                                      (3.11) 

So by using (3.1) and 2̂l , we have 
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Similarly by multiplying (3.6) with left eigenvector 3̂l  corresponding to
9

1
3  , we get 

k
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This implies that  
kkkk FlFl 3
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ˆ3ˆ9  . 

Using above equation in (3.10), we have 
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                                                 (3.12) 

So by using (3.1) and value of 3̂l , we have 
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This completes the proof.           

Theorem 3.2. Given initial real numbers  0
if , let  k

if  be the values defined by DD 6-point ternary 

interpolating scheme [1] corresponding to k
i

3
 0,,  kZki  and 2Cf   be the corresponding limit 

function, then for arbitrary fixed m , 0,0  mZn , the derivatives of the limit function f are 
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Theorem 3.3. Given initial real numbers  0
if , let  k

if  be the values defined by Khan and Mustafa scheme 

[6] be the values corresponding to k
i

3
 0,,  kZki  and 2Cf   be the corresponding limit function with 

01183.001152.0  w , then for arbitrary fixed m , 0,0  mZn , the derivatives of the limit function 

f are 
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4. Application of proposed scheme  
Here we demonstrate the proposed scheme by applying it to the different polygons in Figure 2. Doted 

lines show initial polygon, whereas continuous curve are generated at parametric value 008.0w . 

    
Fig. 2: Doted lines indicate initial polygon, whereas continuous curve are generated by proposed scheme. 
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