
 

Published by World Academic Press, World Academic Union 

ISSN 1746-7659, England, UK
Journal of Information and Computing Science

Vol. 5, No. 3, 2010, pp. 224-232

 

 

An Improvement on Disc Separation of the Schur 
Complement and Bounds for Determinants of Diagonally 

Dominant Matrices 

Zhuohong Huang, Tingzhu Huang  

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 
Sichuan, 610054, P. R. China  

(Received February 12, 2009, accepted October 22, 2009) 

Abstract. In this paper, we improve the disc separation of the Schur complement of strictly diagonally 
dominant matrices presented in Liu [SIAM. J. Matrix Anal. Appl., 27 (2005): 665-674]. As applications, we 
present some new bounds for determinants of original matrices and estimations for eigenvalues of Schur 
complement. By theoretical analysis, we improve the bounds of determinants established in Huang [Comput. 
Math. Appl., 50 (2005): 1677-1684]. 
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1. Introduction 
For localization of eigenvalues and estimations of determinants, many researches have been proposed, 

e.g., [1-5]. Recently Liu [6] discussed the diagonally dominant degree of the Schur complement of strictly 
diagonally dominant matrices and presented the localization for eigenvalues of the Schur complement and 
some bounds for determinants of the strictly diagonally dominant matrices. Huang [7] estimated the bounds 
for determinants of diagonally dominant matrices, general H -matrices and certain not diagonally dominant 
matrices. In this paper, we improve the diagonally dominant degree of the Schur complement of diagonally 
dominant matrices in [6]. Further, we obtain new bounds for determinants of diagonally dominant matrices 
and the estimations of eigenvalues of the Schur complement, these results  improve the estimations of [6,7].  

Let n nA C   be a strictly diagonally (row) dominant matrix (SDn ), if and only if  

                   
1

( ) ( ) (abbreviated ) 1 2
n

ii i i ij i
j j i

a P A P A a P i n
  

                                             (1) 

Let n nA C   be a strictly doubly diagonally (row) dominant matrix (SDDn ), if and only if  

                               ( ) ( ) 1 2ii jj i ja a P A P A i j n                                                                (2) 

If SDDnA , but SDnA , then, by (2), there exists a unique 0i  such that  

                                                                 
0 0 0

( )i i ia P A                                                                            (3) 

For ( )ijA a  and ( ) m n
ijB b C   , we write A B , if ij ija b  for all i j . A real n n  matrix A  is 

called an M -matrix ( nM ) if nA sI B  , where 0 0s B    and ( )s B , ( )B  is the spectral radius 

of B .  

Suppose n nA C  , A  be called an H -matrix ( nH ) if ( ) nA M    where, the comparison matrix 

( ) ( )ijA   be defined by  
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Let Tx  denote the transpose of the vector x , and nI  denote the n n  identity matrix. Let n nA C  , 

and {1 2 }N n   . If N  ,    equals the cardinality of  . For nonempty index sets N   , we 

denote by ( )A    the submatrix of A  lying in the rows indicated by   and the columns indicated by  . 

The submatrix ( )A    be abbreviated to ( )A  . Let N   and c N   , both arranged in increasing 
order. Then  

1( ) ( ) ( )[ ( )] ( )c c cA A A A A A A               

be called the Schur complement with respect to ( )A  .  

Lemma 1.1 (See [8]). Let nA M . Then there exists a positive diagonal matrix D  such that SDnAD .  

Lemma 1.2. (See [12]). Let SD SDDn nA    Then ( ) nA M  , nA H    

Lemma 1.3 (See [9]). Let n nA C  , nB M . If ( )A B  , then nA H  and 1 1 0B A      

Remark 1.1. From Lemma 1.3, we obtain immediately that  
1 1[ ( )]nA H A A        

Lemma 1.4 (See [10]). Let nA SD  and m  be a proper subset of n . Then  

SDn mA m      

Lemma 1.5 (See [11]). Let n nA C  . A  is an H  matrix if the following inequality be hold  

                               
1 2

1
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where  
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2. Disc separation of the Schur complements of SDn  and SDDn  

In this section, by discussing the criteria of nH , we improve the diagonally dominant degree of the 

Schur complement of SDn  and SDDn  in [6].  

Lemma 2.1. Let SD (or SDD )n nA , 1 2{ }ki i i      be a proper subset of N  and c N    

1 2{ }lj j j      k l n  . For any c
tj  , denote  
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(i) For SDnA , then c
tj

B H
 

  if  
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where 
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(ii) For SDDnA , and 0i   be such as in (3), then c
tj

B H
 

  if  

                                
0

0
0
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j i j i
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                                                          (6) 

where 

0
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0 0

1max 1 if 0
max0

ˆ1 else if 0
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Proof. Consider the following two cases: 

(i): 1 2{ }tN j N    ;  

(ii): 1 0 2 0{ } { }tN j i N i        

According to Lemma 1.5, we obtain inequalities (5) and (6). Further, by Lemma 1.2,  

( ) c
t tj jB B M




 
    

then det 0
tj

B  . The equality case follows from a continuity argument (with x   in 
tj

B  and letting 

0  ).   

Liu [6] defined the following 
tj

 :  

 
1

1

( )
min v v v

t t u

v v

k
i i i

j j i
v k

ui i

a P A
a

a


 


  
   

  
                                                      (7) 

In this paper, for the simplicity, we let  

(a)  If SDnA , then  
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                                                      (8) 

(b)  If SDDnA , but SDnA , then  

 
0

0

1 max v

t t u
v

uv v
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j j i

i {i }
i {i }i i

P
a
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                                             (9) 

For the convenience of comparison, we give some results of [6]:  

Theorem 2.1 [6, Theorem 1]. Let SDnA , 1 2{ }ki i i N        1 2{ }c
lN j j j         

k l s    ( )trA a    
tj

  be defined as in (7). Then  

( ) ( ) ( ) 0
t t t t t t ttt t j j j j j j jP A a P A a P Aa               

and  

( ) ( ) ( )
t t t t t t ttt t j j j j j j jP A a P A a P Aa               

Corollary 2.1 [6, Corollary 1]. Let SDnA  and take {1 2 1}n      . Then  

1 1 1 1

( ) ( )
max ( ) max ( )i i

nn n nn n
i n i n

ii ii

P A P A
a P A A a P A

a a


     
        

   
 

Theorem 2.2 [6, Theorem 2]. Let SDDnA , and 0 01i i n     be such as in (3). Then for any index set   

containing 0i , writing 1 2 1 2{ } { }c
k li i i N j j j k l n               , and ( )trA a   . Then  

0

0 0

0
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and  

0

0 0

0

0 0
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t t t
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tt t j j j j i
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In this paper, we replace 
tj

  in [6] by ˆ
tj  and 

tj   by the similar way to the proof of Theorem 1 and 2 

in [6], then we can obtain the similar results as Theorem 2.1, 2.2 and Corollary 2.1.  

Theorem 2.3. Let SDnA , 1 2{ }ki i i N       1 2{ }c
lN j j j k l s            ˆ

tj  be defined 

as in (8), ( )trA a   . Then  

( ) ( ) ( ) 0ˆ
tt t t t t ttt jt j j j j j jP A a P A a P Aa               

and  

( ) ( ) ( )ˆ
tt t t t t ttt jt j j j j j jP A a P A a P Aa               

Corollary 2.2. Let SDnA  and take {1 2 1}n     . Then  

1 1 1 1

( ) ( )
max ( ) max ( )i i

nn n nn n
i n i n

ii ii

P A P A
a P A A a P A

a a
  

     
        

   
 

Theorem 2.4. Let SDDnA , and 0 01i i n     be such as in (3). Then for any index set   containing 0i , 
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writing 1 2 1 2… …c
k l{i i i } N {j j j } k l n                , 

tj  is defined as in (9) and ( )tsA a   . 

Then  

( ) ( ) ( ) 0
tt t t t t ttt jt j j j j j jP A a P A a P Aa               

and  

( ) ( ) ( )
tt t t t t ttt jt j j j j j jP A a P A a P Aa               

Proof. Since SDDnA , by (9), we have  

0 0
0

0 0

0
0

0

max

max

v

t t u t t t u
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u uv v

v

t u t t u
v

u uv v
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i {i } i {i }i i

i
j i j i j i

i {i }
i i {i }i i
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a a a a

a

P
a a a

a

 

 





    

 
  

           
 

        
 

 

 


 

Further, according to Lemma 2.1, by the similar way to the proof of Theorem 2 in [6], we can complete the 
proof of Theorem 2.4.   

Remark 2.1. By comparison, we obtain that ˆ
t tj j    and 

t tj j    Thus, we improve Theorem 1, 2 and 

Corollary 2 in [6].  

3. Bounds for determinants of SDn  and SDDn  
For the convenience of comparison, we use the same denotes as in [6]. Let {J1,J2, … ,Jn}be a 

rearrangement of the elements in {1 2 }N n      We  Denote 1 { }nj   2 1{ }n nj j     

1 1{ }s n nj j j N       . Then  with 1 { },n k n k kj     1,2, ,k n  , 0   and  

1[ ( )]
k k

n k

j n k j u
u

P A a





 


     

Let   represent any rearrangement 1 2{ }nj j j      of the elements in N  with 1 2 … n     .  

In this section, we use 
1[ ( )]max u n k

uu
n k

P A
au




  


   and 0

max iu

i iu uu

P

ai {i }


  


 to replace 
1[ ( )]max u n k

uu
n k

P A
au





 


   and 

10

0 0

[ ( )]i n k

i i

P A

a

  

   in 
[6, Theorem 3 and Theorem 4], respectively. Then we can obtain the following results.  

Theorem 3.1. Let SDnA . Then  

1
1

1

1
1

1

[ ( )]
max max [ ( )] det

[ ( )]
min max [ ( )]

k k k
n k

k k k
n k

n
u n k

j j j n k
u

k uu

n
u n k

j j j n k
u

k uu

P A
a P A A

a

P A
a P A

a

 

 

 

 





 
 



 
 



 
       

 
       




 

Remark 3.1. Since 1  , then  

1 1[ ( )] [ ( )]
max max

n k n k

u n k u n k

u u
uu uu

P A P A

a a 

 
 

   

 
 

   
 

Thus, bounds for determinants in Theorem 3.1 are better than that of  [6, Theorem 3].  

Especially, we can assume  

1 2 2{ } { 1 } { 2 1 }, {1 2 }sn n n n n n n N                      

Then 1 { } 1 2n k n k k k n            with 0   and  

OPEN ACCESS

DOI https://doi.org/2024-JICS-22713 | Generated on 2025-04-12 04:20:54



Journal of Information and Computing Science, Vol. 5 (2010) No. 3, pp 224-232 
 
 

JIC email for subscription: publishing@WAU.org.uk 

229

                                          

1
1

1

1
1

[ ( )]

max
max

n u

n

u n u uv uv
v v u

ui
ni u n P

uu u va
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                                        (10) 

Then, we obtain the following Theorem.  

Theorem 3.2. Let SDnA  and uP   is defined in (10). Then  

 
1 1

1 11 1

max det max
n k n k

n n

uv uvn nn n
v u v u

kk kv kk kv
u u

v k v kk kuu uu

a a
a a A a a

a a 
 

 

   

 
    

                                
      

 
  

 

Obviously, we improve the following Theorem 3.3 [7, Theorem 1].  

Theorem 3.3 [7, Theorem 1]. Let SDnA . Then  

1 11 1

det
n nn n

kk k kv kk k kv
v k v kk k

a m a A a m a
    

                  
   

    

where  

1

1

max ki
k ni k n

kk k v
v k

a
m

a a
  


 

 
 

    
 

For an analogous result of SDDn , let   denote all rearrangements of the elements in N  with 

1 0{ }ni j   , withe 0i  be such as in (3).  

Theorem 3.4. Let SDDnA , and SDnA  and with 0i  be such as in (3). Then  

0 0
0

0 0
0

1
1

1
1

1
1

1
1

[ ( )]
max max [ ( )] det

[ ( )]
min max [ ( )]

v

k k k
v

v v

v

k k k
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v v

n
i n k

i i j j j n k
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k i i

n
i n k

i i j j j n k
i {i }

k i i

P A
a a P A A

a

P A
a a P A
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Remark 3.2. Since 1  , then  

0

0
0 0

1[ ( )]
max v

v
v v

i n k i

i {i }
i i i i

P A P

a a


 

 


 
   

  

Thus, we can obtain the better bounds for determinants than the bounds in [6, Theorem 4].  

Theorem 3.5. Let nA H . Then  

1 1

min { } det max { }
k k k k k k

n n

j j j j j j
k k

a R A a R
 

 

           

where  

1
1

[( )( )]1
max [( )( )]

k k
n k

k

u n k
j j n k

u
j uu

P AX
R P AX

x a

 


 
 

       
 

and 1 2diag( )nX x x x    be a positive diagonal matrix and satisfies SDnAX  .  
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Proof. Since nA H , by Lemma 1.1, then, there exists an positive diagonal matrix X  satisfy SDnAX  . 

Further, according to Theorem 3.1, we obtain the results.   

Corollary 3.1. Let n nA C   and satisfies (4). Then  

1 11 1

1 1
det

n nn n

kk v kv kk v kv
v k v kk kk k

a x a A a x a
x x    

   
               
   

    

where  

2

1

( )t

ttt

P A
t N

ax

t N

      
   

 

 2 2

21

1
1

1 2max min ,

t t

tt tt

t N

P P
it j jta a

t N t N t j

j Ni N
ii it jt

t N

a P a

i N j N
a a a

t i




   
   





    
      

      



 
 

                           (11) 

Proof. According to Lemma 1.5, we select the positive diagonal matrix X  and its elements such as in (11), 
then SDnAX  . Further, by Theorem 3.5, we complete the proof of Corollary 3.1.   

4. Bounds for the Schur complement of SDn  and SDDn  
In this section, according to Geshgorin’s theorem, we give the localization for eigenvalues of the Schur 

complement of SDn  and SDDn . Further, we improve the lower bound for eigenvalues of Schur 

complement of SDn  in [6,Theorem 5].  

Theorem 4.1. Let SDnA , ˆ
tj  be defined as in (7) and  , c  be defined as in Lemma 2.1, ( )A   

denote the set of eigenvalues of A  , and ( )trA a   . Then, for any eigenvalue   of the Schur 

complement of SDn , we have.  

min[ ( ) ] max[ ( ) ]ˆ ˆ
t uc ct t t u u u

t u

j jj j j j j j
j j

a P A a P A
 

 
 

            

Proof. By Geshgorin’s theorem, we obtain that  

( )
ttt jP Aa       

Thus  

( ) ( )
t ttt ttj jP A P Aa a              

Further, according to Theorem 2.1, we have  

( ) ( )ˆ ˆ
t tt t t t t tj jj j j j j ja P A a P A            

Thus, we complete the proof of Theorem 4.1.  

Remark 4.1. By comparison, we know that the above bounds for eigenvalues are more accurate than the 
bounds in [6, Theorem 5].  

Theorem 4.2. Let SDDnA  and SDnA , with 0i  be such as in (3), 
tj  be defined as in (3),  , c  be 

defined as in Lemma 2.1, ( )A   denote the set of eigenvalues of A  , and denote ( )trA a   . Then, 

for any eigenvalue   of the Schur complement of SDn , we have.  

min ( ) max ( )
t uc ct t t u u u

t u

j jj j j j j j
j j

a P A a P A
 

 
 

                   

Proof. According to Theorem 3.2, by the similar way to the proof of Theorem 4.1, we obtain Theorem 4.2.  

5. Examples 
In this section, we present some examples to illustrate these bounds in this paper are more efficiency 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22713 | Generated on 2025-04-12 04:20:54



Journal of Information and Computing Science, Vol. 5 (2010) No. 3, pp 224-232 
 
 

JIC email for subscription: publishing@WAU.org.uk 

231

than bounds in [6,7].  

 

Example 1. Let  

3 1 1

2 4 1 det 27

0 1 2

A A

 
     
 
 

 

By Theorem 3.1: 14 6968 det 35 0049A       By [6, Theorem 3]: 9 75 det 42 75A       

By Theorem 3.3 ([7, Theorem 1]): 11 1056 det 40 4536A       
Example 2. Let  

3 1 1

1 2 0 det 19

2 3 4

A A

 
     
 
 

 

By Theorem 3.2: 9 det 39A  .  By Theorem 3 of [7]: 6 det 53A     
Example 3. Let  

5 1 1 2

2 6 1 2

0 1 4 1

2 2 1 8

A

 
 
  
 
 

 

 

Obviously, A  be a strictly diagonally dominant matrix. Without loss of generality, we assume 

1 2 3 4c{ } { }      . Then  

3 9063 0 8125
( ) {3 7440 7 6622}

0 7500 7 5000
A A  

  
           

 

According to Theorem 4.1, we have  

 min[ ( ) ] 2 4 max[ ( ) ] 11 6ˆ ˆ
t uc ct t t u u u

t u

j jj j j j j j
j j

a P A a P A
 

 
 

                

According to Theorem 5 in [7], we have  

min[ ( ) ]( 2 17)
c t t t t

t
j j j j

j
a P A


 


          

By numerical comparison, we know that the lower bound for eigenvalues is more accurate than the lower 
bound in [7].  

Example 4. Let  

5 2 1 5 2

2 6 1 2

0 1 4 1

2 2 1 8

A

  
 
  
 
 

 

 

Obviously, SDDnA  but SDnA , and 0 1i   be such as in (3). Without loss of generality, we assume 

{1 2} {3 4}c      . Then  

3 9412 0 8235
( ) {3 8329 7 5201}

0 4706 7 4118
A A  

  
           

 

 min ( ) 3 22 max ( ) 12 7
t uc ct t t u u u

t u

j jj j j j j j
j j

a P A a P A
 

 
 

                       

OPEN ACCESS

DOI https://doi.org/2024-JICS-22713 | Generated on 2025-04-12 04:20:54



Zhuohong Huang, et al: An Improvement on Disc Separation of the Schur Complement and Bounds 
 

JIC email for contribution: editor@jic.org.uk 

232

6. Acknowledgements 
This research was supported by NSFC (60973015). 

7. References 

[1] B. Kalantari, T. H. Pate. A determinantal lower bound. Linear Algebra Appl. 2001, 326: 151-159.  

[2] S. Chen. A lower bound for the minimum eigenvalue of the Hadamard product of matrices. Linear Algebra Appl. 
2004, 378: 159-166.  

[3] S. M. Fallat, C. R. Johnson, R. L. Smith, V.D. Driessche. eigenvalue location for nonnegative and Z -matrices. 
Linear Algebra Appl. 1998, 277: 187-198. 

[4] C. K. Li, R. C. Li. A note on eigenvalues of perturbed Hermitian matrices. Linear Algebra Appl. 2005, 395: 183-
190.  

[5] H. Yanai, Y. Takane, H. Ishii. Nonnegative determinant of a rectangular matrix: Its definition and applications to 
multivariate analysis. Linear Algebra Appl. 2006, 417: 259-274.  

[6] J. Liu. Disc separation of the Schur complement of diagonally dominant datrices and determinantal bounds. SIAM. 
J. Matrix Anal. Appl. 2005, 27: 665-674.  

[7] T. Z. Huang. Estimates for certain determinants. Comput. Math. Appl. 2005, 50: 1677-1684.  

[8]  A. Berman, R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. New York: Academic Press, 
1979.  

[9] W. Li. On Nekrasov matrices. Linear Algebra Appl. 1998, 281: 87-96.  

[10] D. Calson, T. Markham. Schur complements on diagonally dominant matrices. Czech. Math. J. 1979, 29: 246-251.  

[11] G. X. Shen. Some new determinate conditions for nonsingular H -matrix. J. Eng. Math. 1998, 4: 21-27 (in 
Chinese).  

[12] B. Li, M. Tsatsomeros. Doubly diagonally dominant matrices. Linear Algebra Appl. 1997, 261: 221-235.  

OPEN ACCESS

DOI https://doi.org/2024-JICS-22713 | Generated on 2025-04-12 04:20:54


