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Abstract. Statistical Learning Theory is commonly regarded as a sound framework within which we 
handle a variety of learning problems in presence of small size data samples. It has become a rapidly 
progressing research area in machine learning. The theory is based on real random samples and as such is not 
ready to deal with the statistical learning problems involving complex fuzzy random samples, which we may 
encounter in real world scenarios. This paper explores statistical learning theory based on complex fuzzy 
random samples. Firstly, the definition of complex fuzzy random variable is introduced. Next the concepts 
and some properties of the mathematical expectation and independence of complex fuzzy random variables 
are provided. Secondly, the concepts of annealed entropy, growth function and VC dimension of measurable 
complex fuzzy set valued functions are proposed, and the bounds on the rate of uniform convergence of 
learning process based on complex fuzzy random samples are constructed. Thirdly, on the basis of these 
bounds, the idea of the complex fuzzy structural risk minimization principle is presented. Finally, the 
consistency of this principle is proven and the bound on the asymptotic rate of convergence is derived. 

Keywords: complex fuzzy random variable, annealed entropy, growth function, VC dimension, complex 

fuzzy structural risk minimization principle, bound on the asymptotic rate of convergence 

1. Introduction 
Statistical Learning Theory (SLT, for short), proposed in 1960s and fully established in 1990s by Vapnik 

et al. [27-29], has emerged as an interesting and sound theory that supports the development of laws of 
statistical learning for small data samples. It has provided effective solutions obtained in presence of small 
samples where such samples are inherently associated with crucial issues such as overfitting and underfitting, 
high-dimensionality of classification problems, existence of multiplicity of local minima and other important 
problems encountered in practice of machine learning methods and their architectures such as e.g., neural 
networks. In the late 1990s SLT had become one of the fastest-growing disciplines in machine learning. Its 
essence was to make the learning machines work effectively with the limited samples and then improve the 
generalization abilities of the learning machines. By doing this, we establish a meaningful theoretical 
framework for statistical learning for small data samples. Meanwhile, SLT gave rise to a new category of 
general learning algorithms, namely Support Vector Machine (SVM, for short). At present, the SLT and 
SVM constitute interesting research avenues in machine learning [1,5-7,12,13,15,24,26,30,32,34]. 

Despite the fact that SLT has reached a substantial level of maturity, there are still a number of open 
issue as e.g., the development of the SLT and SVM realized on a basis of probability measure space and the 
real-valued random samples (real numbers-valued random variables). In real world scenarios, there often are 
many non-probability spaces (such as fuzzy measure spaces [33], credibility measure space [19], etc.) and 
non-real valued random samples (such as fuzzy random samples [16], complex random samples [36], etc.). 
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To alleviate these problems, it becomes imperative to move forward with extensions and generalizations 
along the line of dealing with the statistical learning theories established on non-probability space and based 
on non-real valued random samples. Some research [8-11,14,18,20,25] has been already realized along this 
line. For example, Ha et al. [8-10] generalized the key theorem of learning theory and constructed the bounds 
on the rate of convergence of learning process of statistical learning theory form probability space to Sugeno 
measure space, credibility space and quasi-probability spaces where these three are typical non-probability 
spaces; Lin and Wang [18] constructed support vector machine based on fuzzy random samples; Liu and Chen 
[20] discussed face recognition using total margin-based adaptive fuzzy support vector machines; Jin, Tang 
and Zhang [14] constructed support vector machines with genetic fuzzy feature transformation for 
biomedical data classification. 

However, there has been rather little work completed for statistical learning theory based on complex 
fuzzy random samples. It is well known that complex numbers constitute a substantial and practically 
relevant generalization of real numbers. By the same token, samples formed by complex fuzzy random 
variables constitute the important generalization of real random variables. The work on fuzzy complex 
analysis was started by the concept of fuzzy complex numbers which introduced at first by Buckley [2]. In 
the sequel, there have been further researches on fuzzy complex analysis [3,4,21-23,31,35,37,38]. For 
example, Buckley [3,4] discussed the differentiability and integrability of fuzzy complex valued functions; 
Zhang [37] presented the limit theory of the sequence of fuzzy complex numbers, and given a series of 
results about limit theory; Qiu, Wu and Li [22,23] revisited the idea of fuzzy complex analysis in several 
different ways. They looked at different concepts of convergence and relationships between them and 
discussed the continuity and differentiation of fuzzy complex functions. Zhang [38] proposed the concepts of 
measurable complex fuzzy set valued function and complex random variable, and discussed some properties 
in detail. All these observations lead to the conclusion of relevance and applicability of the generalization of 
the SLT to complex fuzzy random samples (we note that the fuzzy random samples and the complex random 
samples are two special cases). In the SLT, one of the kernels content is a new induction principle, the so-
called “structural risk minimization” principle, which is a better induction principle of the learning machine 
than the empirical risk minimization principle. This principle minimizes bounds with respect to two factors, 
the value of empirical risk and the capacity. Moreover this principle allows us to find the function that 
achieves the guaranteed minimum of the expected risk using a finite number of observations. However, in 
the classical statistical learning theory, the conclusions about the structural risk minimization principle were 
based on real random samples, which are not ready to deal with the statistical learning problems involving 
complex fuzzy random samples which we may encounter in real world scenarios. This study first proposes 
the concept of structural risk minimization principle of complex fuzzy random samples by combining fuzzy 
complex analysis and SLT, then the consistency of the structural risk minimization principle of complex 
fuzzy random samples and asymptotic bounds on the rate of convergence are presented and proven. The 
study will help lay essential theoretical foundations for support vector machine based on complex fuzzy 
random samples. 

This paper is organized as follows. Section 2 introduces some basic definitions and properties which will 
be used in the study. In Section 3, the concepts of capacity for the set of measurable complex fuzzy set 
valued functions are proposed. In the sequel, in Section 4, we give the bounds on the rate of uniform 
convergence of learning process based on complex fuzzy random samples. In Section 5, we propose the 
concepts of complex fuzzy structural risk minimization principle. In Section 6, we prove the consistency of 
the complex fuzzy structural risk minimization principle and construct asymptotic bound on the rate of 
convergence. The final section offers the conclusions and brings prospects of potential future developments. 

2. Preliminaries 

Throughout this paper, we assume that  , , P   is a probability measure space,  is the real numbers 

field, and  is a family of nonempty compact convex subsets of . Let c     denote the family of all 

functions  :X   0�,1 , and Let denote the family of all functions which satisfies the 

following conditions: 

 c   X  

(1) X is normal, i.e., there exists such thatx   1X x  ; 

(2) X is upper semi-continuous; 
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(3)   supp : 0X cl x X x    is compact; 

(4) X is a convex fuzzy set, i.e.,        1 min ,X x y X x X     y ,x y, for    and  0,1  . 

 For a fuzzy set , if we define  X  

    : ,0

supp , 0
rr

1x X x r r
X X

X r

     






, 

then it follows that  cX    if and only if 1X   and rX is a closed bounded interval for each  0,1r . 

Therefore, X is completely determined by the interval ,r r rX X X     . 

If , then the Hausdorff metric is defined by  , cA B 

( , ) max supinf ,sup infH y B x Ax A y B
d A B x y x y

  

    
 

. 

Let , and set  , cX Y   

   
0 1

, sup ,H r r
r

d X Y d X Y
 

  , 

where   , max ,H r r r r r rd X Y X Y X Y       . Also, the norm X  of fuzzy number X will be defined as 

   0 0,0 max ,X d X X X    . 

Definition 2.1 [38]. Let  be a complex numbers field. The mapping  :  0,1Z    is called a fuzzy 

complex set. The r cut of  Z is 

      , 0,1rr
Z Z z Z z r r     . 

We separately define 0Z , the cut of0  Z , as the closure of the union of the rZ for . 0 1r 

Definition 2.2 [38]. If with membership functions  ,X Y     x X  and  y Y   , respectively, then 

Z X iY    is called a complex fuzzy set with membership function       min ,z Z x X y Y     , 

where . We denote the class of all the complex fuzzy sets byz x  iy  � . Especially, if  , cX Y    , then 

we call Z X i   Y a bounded closed complex fuzzy number. Because  
r r r r rZ X Y X iY    0 1r for   and 

the -cuts of r Z  are rectangles, a bounded closed complex fuzzy number is also called a rectangular fuzzy 
complex number (see Ref. [2]). And we denote by  c   the class of all the bounded closed complex fuzzy 

numbers, i.e.,     ,c cZ X iY X Y          . 

Let  be a family of nonempty compact convex subsets of . If , then the Hausdorff 

metric is defined by 

 c    , cA B 

   ( , ) max supinf , ,sup inf ,H y B x Ax A y B
d A B d x y d x y

  

   
 

, 

where denotes the distance between two complex numbers ,d x y x and . y

Let us define a consistent Hausdorff metric in  c   to be in the following form 

   
 

 
0,1

, , sup ,H r r r r
r

d Z W d X iY U iV d X iY U iV


           , 

where .  , cZ X iY W U iV          

Theorem 2.1. If  , cZ X iY W U iV           , then we have 

          max , , , , , ,d X U d Y V d Z W d X U d Y V            . 
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Proof: We have 

                                       
 

 
0,1

, , sup ,H r r r r
r

d Z W d X iY U iV d X iY U iV


            

                 
 

   
2 11 2

1 2 1 2
0,1

sup max sup inf , , sup inf ,
r r r rr r r r

z U iV z X iYr z X iY z U iV
d z z d z z

       

   
 

 
     

0,1
sup max , , , , , ,r r r r r r r r r r r r
r

d X iY U iV d X iY U iV d X iY U iV
          


     

 

           

, , , , ,r r r r r r r r r r r rd X iY U iV X U X U Y V Y V                 . 

Because 

 
 

 
   

0,1 0,1
max sup max , , sup max , ,r r r r r r r r

r r
X U X U Y V Y V d Z W       

 

 
     

 
  , 

we have 

      max , , , ,d X U d Y V d Z W      . 

Because 

 
 

    
0,1

, sup max , max ,r r r r r r r r
r

d Z W X U X U Y V Y V       


        

                
 

 
 

 
0,1 0,1

sup max , sup max ,r r r r r r r r
r r

X U X U Y V Y V       

 
       

                                                 , ,H Hd X U d Y V  , 

we have 

     , ,d Z W d X U d Y V      ,



. 

The theorem is proven. 

Definition 2.3 [38]. Let  be a measurable space, be a universe of discourse, and be a 

fuzzy measurable space. 

,  U   ,U 

F is a fuzzy set valued mapping from  to  U . If andD    0,1r  , the 

following relation 

    1
r r r rF D F D         

is valid, where  is a fuzzy  algebra of some fuzzy subsets ofU ,  is refereed as the empty set and 

     rF u U u r   F , then we say F is a measurable fuzzy set valued mapping from 

to .  ,   U , 

Let be the real line. is composed of all the Borel sets of . B  0,1I  . I I B B consists of all the 

Borel sets of I . We denotes 

    1, ,r IB B B r I     B = B B . 

Let be the complex plane.  zB consists of all the complex Borel sets of . We denotes 

      1 1, , , ,z r I r IC A iB A B A B r I          B = B B B .  

Definition 2.4 [38]. If F is a measurable fuzzy set valued mapping from ( , )A to
  ,  B

, then we 

say F is a measurable real fuzzy set valued function; If F is a measurable fuzzy set valued mapping from 

to ,   , z
 B

, then we say F  is a measurable complex fuzzy set valued function. 

Definition 2.5 [38]. Let be a probability measure space. A fuzzy set valued mapping 

 is called real fuzzy random variable if 

 , , P  
 : c    is a measurable real fuzzy set valued function, i.e., 

for  0,1 ,r B   B , 
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  r B     



. 

Definition 2.6 [38]. Let   is a probability measure space. A complex fuzzy set valued mapping , , P 

    : ,c cC A iB A B            , 

                                                                   i           

is called complex fuzzy random variable if  is a measurable complex fuzzy set valued function defined on 

.  , , P    is a real part of  ,  Re    and   is an imaginary part of  , that is  Im   . 

Theorem 2.2 [38]. i      is a complex fuzzy random variable defined on if and only if  , , P 

 and


are the real fuzzy random variables defined on  , , P  . 

Definition 2.7 [16]. A real fuzzy random variable       += , 0r r r       1  
  is called integrable if 

for each , [0,1]r  r   and  r   are integrable. In this case, the mathematical expectation of is defined 

in the following manner 

   , 0r rE dP dP dP r             1 . 

Definition 2.8 [38]. Let   be a complex fuzzy random variable on  , , P  . We call 

     Re Im Re ImE dP dP i dP E iE                  

the expectation of   if ReE   and ImE   both exist. 

Theorem 2.3 [38]. If  is a real (or complex) fuzzy random variable, then the following equalities 

1.         ,r r r
r

E E E E        
 for 0 1r  ; 

                                                  2.  E c cE   , whenever c�; 

                                                  3.  1 2 1 2E E E          

hold true. 

Definition 2.9. Suppose that  is a family of real fuzzy random variables andT is any set of 

indexes. 

  ,t t T  

1) If for any positive integer , the  1 2, , , , nn t t t T   algebra family    , 1,2, ,st s n    is mutual 

independent, then we say that  is a family of mutual independent real fuzzy random variables. If 

is a countable set, that is, , then we say 

  ,t t T

 1, 2,



T T   T,k k  is a sequence of independent real fuzzy 

random variables. 

2) If for any positive integer  1 2, , , , nn t t t T and  0,1r  , the   algebra family 

     , , 1, 2,s st t

r r
,s n  

          
   




is mutual independent, then we say that   T

1, 2,

,t t 



 is a family of level-

wise independent real fuzzy random variables. If T is a countable set, that is, T , then we say 

 is a sequence of level-wise independent real fuzzy random variables. 


  ,k k T 

3) If  0,1r 

  ,t t T 

,  is a family of identically distributed real random vectors, then we 

say that  is a family of level-wise identically distributed real fuzzy random variables. 

       , ,t t

r r
t T 

 
 




Definition 2.10. Suppose that  is a family of complex fuzzy random variables, T  is any set of   ,t t T 
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indexes, and .       ,t t ti t T     

1) If        , ,t t t t T   

  ,t t 

  ,t t T




G




is a family of independent (or level-wise independent) real fuzzy random 

vectors, then we say that is a family of independent (or level-wise independent) complex fuzzy 

random variables. 

T

2) If is a family of level-wise identically distributed real fuzzy random variables, and 

is also a family of level-wise identically distributed real fuzzy random variables, then we say that 

is a family of level-wise identically distributed complex fuzzy random variables. 



T

T

  ,t t 

  ,t t 

Theorem 2.4 [38]. Let be a measurable complex fuzzy set valued function defined on  , zB , 

and be a complex fuzzy random variable defined on  , , P  . If   0P A  , where 

     0,1 , r rA r G       , 

then  G   is also a complex fuzzy random variable on  , , P  . 

Theorem 2.5. Suppose that  is a sequence of level-wise independent and level-

wise identically distributed complex fuzzy random variables. Let be totally bounded, that is, 

there exist such that 

, 1,2, ,j j ji j       l

l, 1, 2, ,j j  

1 1 2 2, , ,A B A B 

 1 1j r
A B  and    2 2 , 0,1 , 1, 2,j r

,A B r j l      . 

We also use the notation  1 2min ,   and  1 2max ,B B B . The following inequality A A A

 

2

2
1 1

1 1
, 4exp

2

l l

j j
j j

l
E

l l B A

  
 


P d

                        
    

holds true. 

Proof: 

1 1

1 1
,

l l

j j
j jl l

P d E   
 

           
     

1 1 1 1

1 1 1 1
,

l l l l

j j j j
j j j j

P d E iE i
l l l l

    
   

                    
        

1 1 1 1

1 1 1 1
, ,

l l l l

j j j j
j j j j

P d E d E
l l l l

    
   

                            
     





 

1 1 1 1

1 1 1 1
, ,

2 2

l l l l

j j j j
j j j j

P d E P d E
l l l l

    
   

                             
     

    
 

                     
0 1 1 1

1 1
sup ,

2

l l

H j j
r j j rr

P d E
l l

 
   

         
               

   
0 1 1 1

1 1
sup ,

2

l l

H j j
r j j rr

P d E
l l

 
   

           
          


    

    

0 1 1 1 1 1

1 1 1 1
sup max ,

2

l l l l

j j j j
r j j j jr rr r

P E E
l l l l

   
  

     

                                               
          

0 1 1 1 1 1

1 1 1 1
sup max ,

2

l l l l

j j j j
r j j j jr rr r

P E E
l l l l
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0 1 1 1 1 1

1 1 1 1
sup max ,

2

l l l l

j j j jr r r rr j j j j

P E E
l l l l

   
   

     

                    
          

       
0 1 1 1 1 1

1 1 1 1
sup max ,

2

l l l l

j j j jr r r rr j j j j

P E E
l l l l

   
   

     

                    
          

                             
     

2 2

2 2

1 1 2 2

2exp 2exp 4exp
2 2 2

l l

B A B A B A

                  
         

2

2

l 


 
. 

3. Learning capability for the set of measurable complex fuzzy set valued 
functions 
In this section, we will introduce concepts of capacity of the set of measurable complex fuzzy set valued 

functions. In these concepts, annealed entropy and growth function are non constructive, and VC dimension 
is constructive. Given these concepts, we will obtain expressions for the bounds of the rate of uniform 
convergence of learning process. 

Definition 3.1. Let , 1,2, ,j j jZ X iY j l      be a sequence of level-wise independent and level-wise 

identically distributed complex fuzzy random variables, and let  , ,Q Z    
 be a set of measurable 

complex fuzzy set valued functions. We call 
     , ,Q Z dP   

cfR

 

E Q Z    
 

 the expected risk functional 
based on complex fuzzy random samples. It could be referred to as the complex fuzzy expected risk 

functional. We call the expression
 

1

1
, ,

l

j
j

R Q Z
l

  


cfemp    
 the complex fuzzy empirical risk functional. 

Definition 3.2. Let , 1,2, ,j j jZ X iY j l      be a sequence of level-wise independent and level-wise 

identically distributed complex fuzzy random variables, and let  , ,Q Z   

0

 be a set of measurable 

complex fuzzy set valued functions,   be any set of index. If there exists   such that the relation 

   0 infcf cfR R


 


   

is valid, then we say that  0cfR  is the greatest lower bound of  cfR  , denoted by 

   0 infcf cfR R


 


  . 

Similarly, if there exists l  such that the relation 

   infcfemp l cfempR R


 


   

is valid, then we say that  cfemp lR  is the greatest lower bound of  cfempR  , denoted by  

   infcfemp l cfempR R


 


  . 

The principle of empirical risk minimization can be described in the following manner. Let us, instead of 
minimizing the complex fuzzy expected risk functional  cfR  , minimize the complex fuzzy empirical risk 

functional  cfempR 


. Consider that the minimum of the complex fuzzy expected risk functional is attained at 

 0,Q Z   and suppose that the minimum of the complex fuzzy empirical risk functional is attained at  , lQ Z   . 

We view the function  , lQ Z   as an approximation of the original function  0,Q Z   . The principle of 

solving the risk minimization problem is called the complex fuzzy empirical risk minimization principle, the 
CFERM principle, to be brief. 

Definition 3.3. Let be a set of measurable real fuzzy set valued functions, and  , ,Q X     X be a real 

fuzzy random variable. We call the set of indicator functions   ,
r

Q X  


   
  ,  , 
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, ,

inf , , sup ,
c c

X X r rX

Q X Q X
 

  
 



   

         
  

  
  

  ,  0,1r  

where 

 
1, 0

0, 0

u
u

u



  

, 

the left complete set of indicators for a set of measurable real fuzzy set valued functions  , ,Q X    . 

Definition 3.4. Let be a set of measurable real fuzzy set valued functions. 

Let be the number of different separations of l  vectors 

   , , ,cQ X X    

,

1 2, , , lN X X X



   1 2, , ,X X   lX by a left complete set 

of indicators:  

  ,
r

Q X  


   
  , 

 
 

 
 


, ,

inf , , sup ,
c c

X X r rX

Q X Q X
 

  , 
  

   

         
  

  

  
 , 0,r 1 . 

Let the function 

   , ,
1 2 1 2, , , ln , , ,l lH X X X N X X X 

 
       

P 1 2, , , l

 

be measurable with respect to probability on X X X  

  

. 

We call the quantity 

 , ,
1 2ln , , ,X

ann lH l EN X X X



    

   
1 2

, ,
1 2

, , ,
ln max , , ,X

l
l

X X X
G l N X X X



 

 

the left annealed entropy of the set indicators of measurable real fuzzy set valued functions. 

Definition 3.5. We call the quantity 

    


  
    

 , ,Q X   ,cX      . the left growth function of a set of measurable real fuzzy set valued functions 

Definition 3.6. We call the maximal number h of vector 1 2, , , lX X X  

 

that can be shattered by the left 
complete set of indicators 

 ,
r

Q X  


   
 

, 

   
 

 
 

, ,

inf , , sup ,
c c

X X X

Q X Q X
 

 
r r


  

   

         
  

  

   , 0,r 1 , , 

 , ,Q X    
. the left VC dimension of the set of measurable real fuzzy set valued functions

Similarly, we have the following definitions: 

Definition 3.7. Let be a set of measurable real fuzzy set valued functions, and  , ,Q X     X be a real 

fuzzy random variable. We call the set of indicator functions  

  ,
r

Q X  


   
  , 

 
 

 
 


, ,

inf , , sup ,
c c

X X X

Q X Q X
 

  
r r

, 
  

   

         
  

  

  
 , 1 , 0,r

the right complete set of indicators for a set of measurable real fuzzy set valued functions  , ,Q X     . 

Definition 3.8. Let  , , ,Q X X    


be a set of measurable real fuzzy set valued functions. 

Let be the number of different separations of l  vectors ,

1 2, , , lN X X X



   1 2, , , lX X   X by a right complete 
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set of indicators: 

  ,
r

Q X  


   
  , 

, 
 

 
 

 
, ,

inf , , sup ,
c c

X X r rX

Q X Q X
 

  
 



   

         
  

  
  

  ,  0,1r  . 

Let the function 

   , ,
1 2, ln , , ,l l1 2, ,H X X 


   X N X X X

 
     

be measurable with respect to probability on P 1 2, , , lX X X   . 

We call the quantity  

    , ,
1 2ln , , ,X

ann lH l EN X X X
     

 

the ators of measurable real fuzzy set valued functions.  

Definition 3.9. We call the quantity 

right annealed entropy of the set indic

   , ,X  

1 2
1 2

, , ,
ln max , , ,

l
l

X X X
G l N X X X

      

     

the  right growth function of a set of measurable real fuzzy set valued functions    , , ,cQ X X      . 

Definition 3.10. We of vector 1 2, , , lX X X  call the maximal number h that can be shattered by the 
complete set of indicators 

  ,
r

Q X  


   
  , 

,    inf , , sup ,Q X Q X  
   , ,c c

X X r rX 


 
  

   

         
    

   ,  0,1r , 

the rable real fuzzy set valued functions  , ,Q X     . right VC dimension of the set of measu

Definition 3.11. We call respectively 

         , ,max ,X X
ann ann ann

, XH l H l H
      , l

      , ,max ,XG l G l
      , , XXG l

                                                                       max ,
X

h h h   

the anneal e gred entropy, th owth function and the VC dimension of a set of measurable real fuzzy set valued 
fun  

Definition 3.12. Let 

ctions  , ,Q X     .

Z X iY    be a complex fuzzy random sample, and let 

     , Re , Im , ,Q Z Q Z i Q Z           
      

be a set of measurable complex fuzzy set valued functions. Suppose that the annealed ent wth 

function and nsi e se of measurable complex fuzzy set valued functions  , ,Q Z  
ropy, the gro

 VC dime on of th t  are 

respectively   , Z
annH l  、   and, ZG l 

Z
h  , the annealed entropy, the growth function and VC dimension of the 

real parts  Re , ,Q Z     
  of  , ,Q Z     are respectively   , X

annH l  、 XG   , l and 
X

h  , and t

 , ,Q Z   

he 

py, the growth and VC dimension of the imaginannealed y entro function ar parts Im  
  of 

 , ,Q Z    are respectively ann   , YH l  、  G l, Y   and 
Y

h  . We define that 

         , ,max ,Z X
ann ann ann

, YH l H l H     , l
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     ,max XG l l   , , ,ZG l G  , Y

       max ,
Z X Y

h  .                                                                  h h 

Theorem 3.1. The following inequalities 

    , ,

ln 2       if ,

1 ln if   ,
X X

X

ann

X X
X

l l

H l G l l
h l

h

 

 


  
     

 

 



 


 

  

 

h

h
, 

    , ,

ln 2      if ,

1 ln if   ,
Y Y

Y

ann

Y Y
Y

l l

H l G l l
h l
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h

h
, 

     , ,

ln 2      if ,

1 ln if   ,
Z Z

Z

ann

Z Z
Z  

hold true. 

l l h

H l G l l
h l h

h

 

 


  
     

 



 

 

  

  , 

s 

 In classic e important properties (see Ref. 
VC dimension of real measurable risk 

4. 

ples. To 
achieve this goal, we need employ the concepts proposed in Section 3. We will obtain expressions for the 
bounds of the rate of uniform convergence of learning process through the following two cases.  

 this sect

  The proof goes the same way as in the proof of Theorem 4.3 of Ref. [28] with the aid of the Definition
3.3-3.12, and will be omitted. 

Remark 3.1. al statistical learning theory, the concepts and som
[27, 28]) of the annealed entropy, the growth function and 

functions  , ,Q z    are the special cases of this study. 

Determination of bounds on the rate of uniform convergence of learning 
process 
In the SLT, the important conclusions about the relation between the empirical risk and practical risk are 

expressed in the form of the bounds of generalization. They become essential when analyzing the capacity of 
learning machines and developing new learning algorithms. The bounds on the rates of uniform convergence 
of learning process are important components of the bounds of generalization. In this section, we discuss the 
bounds on the rate of uniform convergence of learning process based on complex fuzzy random sam

  , 2 ln
8In ion, we use the notation   4l

l

Z
annH l



  . 

 

    
 



4.1. , ,Q Z    
 is a set of totally bounded measurable complex fuzzy set valued 

functions. 
Theorem 4.1. Suppose that Q  , ,Z     

1 1, ,A B A

 is a set of totally bounded measurable complex fuzzy set 

valued functions, that is, there exist such that 2 2, B 

  1 Re 1,
r

A Q 
 dZ B 
 a n   Im ,

r
2 2A  0,1 ,r     . Q Z   B ,  

 

We also use the notation  1 2min ,A A A  and  1 2max ,B B B . The following inequality 

        
 

,
2

2

2
sup , 8exp

4

Z
ann

cf cfemp

H l
P d R R l

l B A

  




           



 


             (4.1) 

 

Proof: 

holds true.
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1

1
sup , sup , , ,

l

cf cfemp j
j

P d R R P d E Q Z Q Z
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1

1
sup Re , , Re ,

2

l

j
j

P d E Q Z Q Z
l

 
 

                    
    

1

1
sup Im , , Im ,

2
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j
j

P d E Q Z Q Z
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0 1 1

1
sup sup Re , , Re ,

2
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H j
rr j r

P d E Q Z Q Z
l

 
   

                    
      

    
0 1 1

1
sup sup Im , , Im ,

2

l

H j
rr j r

P d E Q Z Q Z
l

 
   

                    
     

             
0 1 0 11 1

1 1
max sup sup Re , Re , ,sup sup Re , Re ,

2

l l

j j
r r rr rj j

P E Q Z Q Z E Q Z Q Z
l l  r

   
  

      

                         
        

  

             
0 1 0 11 1

1 1
max sup sup Im , Im , ,sup sup Im , Im ,

2

l l

j j
r r rr rj j

P E Q Z Q Z E Q Z Q


rl l 
Z   

   

      

                          
        

   
 

  
 

, ,
2 2

2 2

1 1 2 2

2 2
4exp 4exp

4 4

X Y
ann annH l H l

l l
l lB A B A

 
                       

  

 
    

  
 

,
2

2

2
8exp

4

Z
annH l

l
l B A


        

 functions in a set of measurable complex fuzzy set valued functions 
which satisfy the conditions for theorem 4.1, we have 



  



. 

Theorem 4.2. For all

 , ,Q Z    

(1) the following inequality 

       ,cf cfempd R R B A l                                                         (4.2) 

holds true with probability1  . 

(2) the inequality 

           0

4
l cf l cfR R B A l B A

l

2ln


                                            (4.3) 

holds with pr y at least1 2

 
 

obabilit  . 

Proof. Let us rewrite the inequality (4.1) in a certain equivalent form To do this we introduce a positive 
value 

. 
0 1   and the equality 

  
 

,
2

2

2
8exp

annH

4

Z l
l

l B A

 


  
    



, 

whi

 

ch we solve with respect to  . We obtain 

   B A l   . 

Now the assertion comes in the following equivalent form: 

bability With pro 1   simultaneously for all functions in the set  , ,Q Z     , the inequality 

        ,cf cfempd R R B A l      

is valid. 
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Let  0,Q Z  


be a function from the set of functions that minimizes the complex fuzzy expected risk 

functional cfR  and let  , lQ Z   be a function from this set that minimizes the complex fuzzy empirical risk 

functional cfempR   . Since the inequality is true for all functions in the set, it is true as well for the 

function  , lQ Z   . Thus with probability at least 1   the following inequalities 

       cf l cfemp lR R B A     l                                                     (4.4) 

is valid. 

For the function  ,Q Z 0  which minimizes  cfR  , according to Theorem 2.5, the following relationship 

     0 0

2 ln
4

cfemp cfR R B A
l



                                                     (4.5) 

holds true with probability at least 

 
 
 

1  . 

According to (4.4) and (4.5), we conclude that with probability at least 1 2  the inequalities 

     0l cf l cfR R      

           0 0cf l cfemp l cfemp l cfemp cfemp cfR R R R R R                0

     
2ln

4
B A l B A

l




 
       

 

are assatisfied with probability at le t1 2 . 

  , ,Q Z    
valued functions. 

4.2.  is a set of totally bounded nonnegative measurable complex fuzzy set 

hat  , ,Q Z   Theorem 4.3. Suppose t   is a set of totally bounded n

 set valued functions, that is, there exist

 

,B B

onnegative measurable complex 

fuzzy 1 2 such that 

   10 Re ,
r

Q Z B   
  and    20 Im ,

r
Q Z B   
  ,  0,1 ,r     . 

We also use the notation B  The following inequality  1 2max ,B B .
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22,
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16

Z
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holds true. 

Proof: 
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max sup sup ,sup sup
2

Re , Re ,
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2
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    B
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16

Z
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l
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. 

Theorem 4.4. For all functions in a set of measurable complex
which satisfy the conditions for theorem 4.3, we have 

 fuzzy set valued functions 
 , ,Q Z    

(1) the following inequality 

     
 
 

2 1 1
cfemp

cf cfemp

R
R R B l

B l


  



 
    
 
 


                                            (4.7) 

holds true with probability1  . 

(2) the inequality 

 
         0

4
2 1 1

cfemp

l cf l cfR R B l B
B l l

2lnR



 

   
   


         

 
 

                        (4.8) 

holds with probability at least1 2 . 

Proof: We can prove this theorem in the same way as done in Theorem 4.2, and will be omitted. 

Remark 4.1. The bounds described by the inequalities (4.2) and (4.7) depend on the probability 
distribution . One can derive both distribution-free non constructive bounds and distribution-free 

4.7) to use the 
P

constructive bounds. To obtain these bounds, it is sufficient in the inequalities (4.2) and (
expression 

 
  , 2 ln

8
4

ZG l l
l

l





    
 



 

(this expression provides distribution-free non constructive bounds), or to use the expression 

 

2
ln 1 ln

8Z

l
h

h
4 Zl

l





 
     


 
 

 


 

al risk minimization principle based on complex fuzzy random 
samples 

According to Theorem 4.2 (1), we obtained that with probability at least

(this expression provides distribution-free constructive bounds). 

5. Structur

1  simultaneously for all 

 , ,Q Z    functions in a set of measurable complex fuzzy set valued functions , with finite VC dimension 

the inequality 

     

2
ln 1 ln

4
Z

l
h

h
R R B A

8
Z

cf cfemp l



 

   

  



                        

     
              (5.1) 

holds true. 

According to Theorem 4.4 (1), We obtained also that with probability at least1  simultaneously for all 

functions in a set of measurable complex fuzzy set valued functions  , ,Q Z     , the inequality 
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2 1 1
2

ln 1 ln
8

4

cfemp

cf cfemp

Z
Z

R
R R B l

l
h

h
B

l


  



 
 
 
 

    
              

  





                                (5.2) 

holds true. 

According to inequalities (5.1) and (5.2) the upper bound on the risk decreases with decreasing the value 
of empirical risk. This is the reason why the principle of complex fuzzy empirical risk minimization often 
gives good results for large sample size. However, if ratio of the number of the training patterns to the VC 
dimension of the set of functions of the learning machines is small, a small value of the complex fuzzy 
empirical risk  cfempR  does not guarantee a small value of the complex fuzzy actual risk. In this case, to 

minimize the complex fuzzy actual risk  cfR   one has to minimize the right-hand side of inequality (5.1) (or 

(5.2)) simultaneously over both terms. Note that the first term in inequality (5.1) depends on a specific 
function of the set of functions, while for a fixed number of observations the second term depends mainly on 
the VC dimension of the whole set of measurable complex fuzzy set valued functions. Therefore to minimize 
the right-hand side of the bound of risk, (5.1) (or (5.2)), simultaneously over both terms, one has to make the 
VC dimension a controlling variable. 

To do this we consider the following scheme. 

Let us impose the structure   on the set S of measurable complex fuzzy set valued functions 
. Consider the set of nested subsets of functions  , ,Q Z    

                                                                                   (5.3) 1 2 , ,nS S S   

where , and . ( ){ }, ,k kS Q Z  a a= ÎL *
k

k

S S=

Consider admissible structures-the structures that satisfy the following properties: 

Any element  of structure  has a finite VC dimensionkS  k
Z

h  . 

Any element  of the structure (5.3) contains either kS

(i) a set of totally bounded measurable complex fuzzy set valued functions , satisfying the 

following: 

( ), , kQ Z  a a ÎL

  1 1Re ,k k
r

A Q Z B   
  and     2 2Im , , 0,1 ,k k

r
A Q Z B r       

 
k 1 2 1 2, , ,k k k kA A B B , where  . 

We also use the notation  1 2,k kminkA A A  and  1 2max ,k k kB B B . 

(ii) or a set of totally bounded nonnegative measurable complex fuzzy set valued functions 
, satisfying the following: ( ), , kQ Z  a a ÎL

   10 Re , k
r

Q Z B   
 

 1max ,k kB B

and , where . We also use 

the notation . 

    20 Im , , 0,1 ,k k
r

Q Z B r       
 

k

 1 2,k kB B 

2B

3.  The set is everywhere dense in the set S*S    , ,S Q Z    

S* *Î d Q

 in the Hausdorff metric , that is, 

, there exists a function such that 

d

e( ), ,Q Z S  a" Î 0>e" ( )a,Q Z  ( ) ( )( ), , ,Z Q Z dP  a a* <ò . 

Note that in view of the structure (5.3) the following assertions are true: 

l. The sequence of values of VC dimension k
Z

h   for the elements of the structure   is nondecreasing 

with increasing : 
kS

k
1 2 n
Z Z Z

h h h       . 

2. The sequence of values of the bounds  for the elements  of the structure  is nondecreasing with kB kS 
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increasing : k

1 2 nB B B     . 

Denote by  , k
lQ Z   the function that minimizes the complex fuzzy empirical risk in the set of 

functions . For a given set of observations 1, , lZ Z kS  the SRM method chooses the element of the structure 
for which the smallest bound on the risk (the smallest guaranteed risk) is achieved. 

kS

Therefore the idea of the structural risk minimization principle of complex fuzzy random samples is the 
following: 

To provide the given set of functions with an admissible structure and then to find the function that 
minimizes guaranteed risk over given elements of the structure. 

To stress the importance of choosing the element of the structure that possesses an appropriate capacity, 
we call this principle the complex fuzzy structural risk minimization principle of statistical learning theory, 
the CFSRM principle, to be brief. 

The CFSRM principle makes a compromise between the accuracy of approximation of the training data 
and the complexity on the set of approximated functions. The complex fuzzy empirical risk is decreased with 
the increased of the index of element of the structure, while the confidence interval is increased. The smallest 
bound of the risk is achieved on some appropriate element of the structure. 

6. Consistency of the complex fuzzy structural risk minimization principle and 
asymptotic bounds on the rate of convergence 
In this section we analyze asymptotic properties of the CFSRM principle. Here we answer two questions: 

Is the CFSRM principle consistent? Do the risks for the functions chosen according to this principle 
converge to the smallest possible risk for the set with increasing amount of observations?what is the bound 
on the (asymptotic) rate of convergence? 

S

Let be a set of measurable complex fuzzy set valued functions and let   be an admissible structure. 
Consider now the case where the structure contains an infinite number of elements. We denote 
by the measurable complex fuzzy set valued function which minimizes the complex fuzzy 

empirical risk over the functions in the set and denote by

S

 , ,k
l 1,Q Z k   

kS  0, kQ Z   the measurable complex fuzzy set 

valued function which minimizes the complex fuzzy expected risk over the functions in the set ; we 

denote also by
kS s

 ,Q Z 0   the measurable complex fuzzy set valued function which minimizes the complex 

fuzzy expected risk over the set of function . In the following text, we prove the consistency of the CFSRM 
principle. Consider the a priori rule n n for choosing the number of element of the structure depending on 

the number of given samples. 

S

l

Theorem 6.1. The rule  provides approximations  n n l   , n l
lQ Z    for which the sequence of risks 

converges, as l  tends to infinity, to the smallest risk:   n l
cf lR  

   0 infcf cfR R


 


   

with asymptotic rate of convergence 

   
 

 2 lnn l

n l Z

n l

B h l
V l r

l
 


,                                                           (6.1) 

where 

 
    0

n l
cf cfn lr R R 0    ,                                                        (6.2) 

(that is, the equality        1
0limsup 1n l

cf l cfl
P V l R R 


     holds true), if 

 
 

 
2 ln

0,

n l

n l Z

l l

B h l
n l

l   


.                                                 (6.3) 
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Proof: Consider a structure with elements  containing totally bounded functions with the finite VC 
dimension. We have that the following inequality 

kS

         0

2
ln 1 ln 2ln8 4

4
Z

Z
l cf l cf

l
h

h
R R B A B A

l l

 

  

                     


 

  

holds true with probability at least1 2 . Let
2

2
1 2 1

l
   , that is, 

2

1

l
  . Then with probability 

2

2
1

l
  the 

inequality 

       
 

   
2
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2
ln 1 ln 8

4ln 2
4

Z
Z

l cf l cf

l
h l

h l
R R B A B A

l l
  

 
   

       


   

is valid. 

For any elements with probability at least kS
2

2
1

l
  the additive bound 

       
   

2

0

2
ln 1 ln 8

4ln 2
4

k
kZ
Zk k k

l cf l cf k k

l
h l

h l
R R B A

l l
  

              
 
 
 


 

 

is valid. Then with probability 
2

2
1

l
  the inequality 

           
 

   
 

2

0

2
ln 1 ln 8

4ln 2
4

n l

Z n l

n l Z
cf l cf n l n l n l

l
h l

h l
R R r B A

l l
 

             
 
 
 
 


             (6.4) 

holds, where 

 
    0 0

n l
cf cfn lr R R    . 

Since everywhere dense ink
k

S  S   , ,S Q Z     , for , for any , there exists a 

positive integer 

( )0,Q Z S  a Î 0e>

K such that ( ), KQ Z S  a* Î and ( )( 0, ,d Q Z Q  (Z a a )), dP e* <ò . We have 

                             0,cf cfd R R  

       0 0Re , Im , , Re , Im ,d Q Z dP i Q Z dP Q Z dP i Q Z dP                               

         0 0Re , , Re , Im , , Im ,d Q Z dP Q Z dP d Q Z dP Q Z dP                             . 

According to Theorem 3.3 of Ref. [17], we obtain 

         0 0Re , , Re , Im , , Im ,d Q Z dP Q Z dP d Q Z dP Q Z dP                             

         0 0Re , ,Re , Im , , Im ,d Q Z Q Z dP d Q Z Q Z dP                            

                                     0 0, , , , , , 2d Q Z Q Z dP d Q Z Q Z dP               . 

When , the following relationships ( )n l K³

JIC email for contribution: editor@jic.org.uk 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22726 | Generated on 2025-04-12 04:21:17



Journal of Information and Computing Science, Vol. 5 (2010) No. 1, pp 019-040 35
 
 

 
          0 0 0lim lim limn l K

cf cf cf cfn ll l l
r R R R R  

  
      

0 . 

         0 0lim lim , 0cf cf cf cfl l
R R d R R    

 
        

are satisfied. 

Therefore the condition 

 
 2 ln

0

n l

n l Z

l

B h l

l 


 

determines convergence to zero. Denote 

        
 

   
 

22
ln 1 ln 8

4ln 2
4

n l

Z n l

Z
n l n l n l

l
h l

h l
V l r B A

l l

            
 
 
 
 




. 

Let we rewrite the assertion (6.4) in the form 

        1
0 02

2
1 ,n l

cf l cfP V l R R l l
l

       . 

Since 

        
0

1
0 0 2

1 1

2
1n l

cf l cf
l l l

P V l R R l
l

 
 



  

         

according to the corollary from the Borel-Cantelli lemma (see Ref. [28]), one can assert that the inequality 

       1
0lim 1n l

cf l cf
l

V l R R 


    

is valid with probability one. 

The next theorem is devoted to asymptotic properties of the complex fuzzy structural risk minimization 
principle. 

Theorem 6.2. If the structure is such that 2 1
nB n  , then for any distribution function the CFSRM 

method provides convergence to the best possible solution with probability one (i.e., the CFSRM method is 
universally strongly consistent) . Moreover, if the optional solution  0,Q Z    belongs to some element , of 

the structure 

*S

    *
0, ,Q Z Q Z    and     1l l2

n lB  

 



 

, then using the CFSRM method one achieves the 

following asymptotic rate of convergence: 
lnl

O
l

 l 
 
 
 

V l . 

Proof. To avoid choosing the minimum of functional (5.1) over the infinite number of elements of the 
structure, we introduce one additional constraint on the CFSRM method: we will choose the minimum from 
the first l  elements of the structure where l  is equal to the number of observations. Therefore we 
approximate the solution by function  , lQ Z    , which among l  functions  , , 1, 2, ,k

lQ Z k l    , minimizing 

empirical risk on corresponding elements , 1,2, , lkS k   , of the structure provide the smallest guaranteed 

(with probability 
1

1
l

 ) risk: 
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the parameter that minimizes guaranteed risk  cfempR  l
 using observations. Consider the 

decomposition 
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For the first term of this decomposition we have 
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where we take into account that 2 1
lB l  . Using the Borel-Cantelli lemma we obtain that first summand of 

the 

the second term of the decomposition. Since everywhere dense 

in

decomposition converges almost surely to the non-positive value. 

Now consider k
k

S S 
  , ,S Q Z      , for every  there exists an elements of the structure such that tS

   0 0
tR Rcf cf     

Therefore we will prove that the second term in the decomposition does not exceed zero if we show that 
with probability one 
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.                                                      (6.5) 

For we have 0l l
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the decomposition 
converges almost surely to the nonpositive value. Since the sum of two terms is nonnegative, we obtain 

alm

Z Z         
  
  

 

Again applying the Borel-Cantelli lemma one concludes that second term of 

ost sure convergence  cf lR   to  0R  . This proves the first part of the theorem. 

o prove the second part, note that when the optim
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following inequalities are valid: 
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Form this inequality we obtain the rate of convergence: 
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dation for further research in statistical 
plex fuzzy random samples. Further investigations might focus on some 
plex fuzzy support vector machines. 
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7. Conclusions 
Considering the existence and the significance of complex fuzzy random variables in real world, this 

paper proposes the concepts of capacity of the set of measurable complex fuzzy set valued functions and the 
structural risk minimization principle based on complex fuzzy random samples. Furthermore, the consistency 
of the complex fuzzy structural risk minimization principle is proven, and bound on the asymptotic rate of 
convergence is presented. Altogether these findings have laid the foun
learning theory involving com
applied aspects such as e.g., com
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