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Abstract. Phase unwrapping arises as a key step in several imaging technologies, from which we 
emphasize remote sensing applications like terrain analysis and generation, topographic mapping, 
interferometric synthetic aperture radar (ISAR). Due to various decorrelation factors, there is much noise in 
phase images. Phase noise degrades the visual quality of images and interferograms, increases the errors of 
results derived from the ISAR interferogram, and obstruct phase unwrapping. Hilbert transform (HT) as a 
phase unwrapping techniques was recently proposed, and its behavior in presence of noise is unknown. In 
this paper, one-dimensional (1-D) HT phase unwrapping algorithm is proposed to detect and eliminate phase 
discontinuities in N-dimensional (N-D) noisy phase arrays. The behavior of this method in presence of 
different noise levels is studied and compared with the other approach of phase jump detection. The phase 
noise filtration problem and its effect on proposed algorithm behavior are considered. Tests of method 
presented illustrate the validity and effectiveness of proposed algorithm for difficult problems with noisy and 
discontinuous original phases. 

Keywords: Satellite image processing; phase unwrapping; N-dimensional processing; Hilbert transform; 
modulo π2 operation; phase noise filtration. 

1. Introduction 
Remote sensing derives immense applications from this field like terrain analysis and generation, 

topographic mapping. It is an ever expanding and dynamic area with applications impacting our everyday 
life. Remotely sensed imagery includes satellite images, images collected through radar systems and other 
remote sensing techniques that require coherent processing. Satellite image processing is one of the key 
research areas in the area of remote sensing which requires coherent processing. 

Coherent processing requires an accurate estimate of the phase [1-2]. Unfortunately, one is only able to 
measure a wrapped version of the phase called measured phase not the true phase. The measured phases 
generated by use of an arctan2-function, are all mapped into the same interval, while any absolute phase 
offset (an integer multiple of 2π ) is lost. The calculation of the unambiguous phase from the measured 
phase is called phase unwrapping.  

Many measurement techniques across a variety of engineering, scientific and medical disciplines deliver 
quantitative information in the form of true phase or phase images. For example, synthetic aperture radar 
(SAR) maps terrain and deformation of the Earth’s surface through phase images. This means that measured 
nonlinear phase does not provide useful information. It must be unwrapped before further use through some 
method to estimate true phase, which is the quantity related to the physical property of interest.  

There are many sources would introduce noise to phase images. For example in SAR interferogram the 
sources are SAR hardware system,  SAR image processing, and SAR decorrelating factors, such as spatial 
baseline, temporal baseline, Doppler-centroid shift and so on. Phase noise is mainly caused by radar thermal 
noise, speckle noise due to coherent SAR processing, decorrelation, sampling, processing artifacts, 
interpolation noise, defocusing, registration noise, etc. [3-5]. The measured phases generated from the 
complex interferogram will be affected by noise in interferogram and this phase noise is characterized by an 
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additive noise model rather than the multiplicative one found in SAR amplitude and intensity images [6-7].  

Several algorithms for phase unwrapping in the presence of noise have been proposed [8–18]. However, 
none of the existing phase unwrapping algorithms give satisfactory results when noisy and/or dense fringes 
occur, with exception a few of them having limitations such as user input, median filtering, computing time, 
image size, and absence of phase vortices [18]. 

The filtering of interferogram has great influence on phase. Several common filtering methods are 
usually used such as non-adaptive filtering methods [19-21] (including mean filtering, median filtering 
widely used as LPF, two-dimensional Gaussian filter so on), adaptive filtering method [16], multi-looking 
filtering method [22], and vector filtering method. Linear filtering provides an optimal solution when the 
input image is corrupted by a Gaussian noise and the mean-square criterion is used to improve the image 
[23]. 

In all methods, the unwrapping of measured phase starts from finding phase jump or phase discontinuity 
between phase values of two adjacent entries that exceeds some constant. The most natural way of detecting 
phase discontinuity is to take the first or second order derivatives and look for maxima or zero crossings in 
the output [24]. Then unwrapping is achieved by adding an integer k multiple of π2  to each successive 
element after zero crossing, and updating k at each phase jump. Finding zero crossing problems is similar to 
edge detection problem. Traditional edge detection operators like Robert, Sobel and Laplacian [25] detect 
edges by taking first or second order derivatives and look for maxima. Piggio et al [26] reported that 
numerical differentiation is an ill-posed problem because its solution depends continuously on the data. 
Hilbert transform [27-29], provides a means of separating signals based on phase selectivity and uses phase 
shifts between the pertinent signals to achieve the desired separation. In addition, HT in edge detection has 
significant advantage in the case of noisy images [30]. The main reason for this advantage is that noise 
smoothing is performed on the same pixels using only 1-D filtering, thus preserving the edge information in 
the orthogonal direction. The noise suppression and continuity of the edges obtained by the HT are better 
than that obtained by the 2-D Canny's method and gives also significant computational advantage compared 
to the 2-D Canny's method, it takes only about 1=10th the time required 2-D by Canny's method [31]. 

In this paper, we extend the same logic of edge detection to propose an algorithm for detecting and 
correcting a noisy phase discontinuity by using 1-D discrete HT as a phase-jump detection filter. Orthogonal 
noise filtering and smoothing steps are performed before and/or after phase reconstruction. Examples of 
algorithm applications in 1-D and 2-D cases are provided. The performance of algorithm for different 
additive Gaussian noise levels was inspected and found the dependence of reconstruction error power on 
input signal to noise power ratio (SNR). A comparison of method performance in presence of noise with the 
main approach of phase jump detection is studied and provided. 

2. Problem formulation  
In most practical cases, the measured signals or satellite images including SAR interferograms are given 

experimentally as a sequence of discrete values affected by noise. It cannot be sure that phase jumps in the 
phase images calculated are natural or inserted due to tangent inverse function and noise. Phase noise forms 
an obstacle to interpret interferogram and satellite images. If the phase noise is too strong, some fringes will 
be completely lost which will result in errors in interferogram interpretation. The noise in ISAR 
interferogram will make the visual effect worse, the fringes would be ambiguity, disconnected, and even 
disappear in speckles. The noise not only worsen the visual appearance, but also hinder phase unwrapping 
which is absolute necessary to convert the phase to height or deformation, and introduce error in quantitative 
analysis. 

Fig. 1a shows an example of an unambiguous or true phase ( )T nφ , the corresponding measured noisy 
phase ( )nφ  calculated by arctan2– function is shown in Fig. 1b. Jumps of 2π  in the measured phase are 
clearly visible. 
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Fig 1: Example of true and measured noisy phase, (a) true phase, (b) measured phase. 

3. The Hilbert transform N-D algorithm  
In order to obtain more accurate results, a noise filtering steps must be performed before and/or after 

phase unwrapping. High additive noise levels makes phase unwrapping nearly impossible without filtering, 
because filtering decreases problems in phase unwrapping by minimizing the residue number. Before true 
phase calculation, the measured phase )(nφ  filtering step is performed with one or more of the commonly 
used filtering methods such as mean filtering, median filtering, adaptive filtering, multi-look filtering, two-
dimensional (2-D) Gaussian filter or vector filtering. 

Calculating true phase starts from finding Hilbert transform of filtered measured phase  which is 
used as a phase jump detector. The discrete Fourier transform of 1-D Hilbert signal of function 

)(ˆ nφ

)(nZ )(nφ  is 
given by:  

)()()( rrHrZ φ=                                                                      (1) 

Where - the Fourier transform of )(rφ )(nφ  
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M - number of points in the 1-D array  )(rH
By taking inverse Fourier transform of  we find the needed Hilbert signal in the form: )(rZ

 )(ˆ)()( njnnZ φφ +=                                                             (3) 

The Hilbert transform is found as: )(ˆ nφ

 )](Im[)(ˆ nZn =φ                                                                   (4) 

Now the true phase in any row or column can be represented through measured phase and some variable 
k(n): 

 )(2)()( nknnT ×+= πφφ                                                          (5) 

where k(n) is a variable with values depending on sequence number and direction of phase jumps.  
Calculating  is achieved by finding maxima and minima of  and applying the following recurrent 

equation. 
)(nk )(ˆ nφ
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After calculation, the reconstructed unwrapped phase may be smoothed with a smoothing median or low 
pass filter. Caution must be taken when filtering measured phase )(kφ  before reconstruction, because 
filtration may smoothes phase jumps which may appose phase jumps detection. 

The flow chart of proposed algorithm is shown in Fig. 2. This algorithm can work for 1-D, 2-D,…, N-D 
phase unwrapping. For 1-D array the algorithm is used one time for the array to determine and correct jumps, 
for 2-D arrays case the algorithm is used for each row or each column, to unwrap a plane. For 3-D arrays 
case the algorithm is used to determine and correct jumps in each row or each column in all plane. 
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Fig. 2: Block diagram of proposed algorithm 

4. Examples  
We shall consider a few examples for 1-D and 2-D cases. As a first example we implement proposed 

algorithm for 1-D phase provided in Fig. 1. The results of running algorithm for this example at 20dB input 
SNR phase are shown in Fig 3. Fig. 3a depicts the true phase while Fig. 3b depicts the measured noisy phase 
calculated as arctangent of tangent function of true phase. Fig. 3c shows the reconstructed phase without 
filtration and finally Fig. 3d plots the reconstructed phase with median filtration and smoothing after 
reconstruction.  

An example of implementation HT algorithm for 2-D case is a complicated mountainous shape phase 
characteristic of complex function given by: 
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where:  yx jsjs ωω == 21   ,
 

The deterministic actual phase of function (7) is shown in Fig. 4. Fig. 5 shows the results of 
implementing 1-D algorithm to correct measured phase of function (7) for different levels of input additive 
noise. Fig. 5a shows measured noisy phase and Fig. 5b shows reconstructed phase with no filtration. Fig. 5c 
shows reconstructed phase with filtration before reconstruction. 
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Fig. 3: Implementation of algorithm to 1-D phase unwrapping. (a) Actual true phase. (b) Measured noisy phase. (c) 

Reconstructed phase (d) Filtered after reconstruction phase. 

5. Discussion  
In deterministic case, HT algorithm reconstructs phase without any disturbance. Actual and 

reconstructed phase characteristics are identical and there are no restrictions in its implementation [32-33]. In 
practice it is very important to study behavior of proposed algorithm in presence of adaptive noise since 
phase noise is characterized by an additive noise model [6] and this is the case in most practical problems. 
For this reason we generated random sequences with different power using MATLAB function RAND and 
added them to known deterministic functions like upper examples. Then we applied proposed algorithm to 
reconstruct true phase from measured phase corrupted by noise. We calculated standard deviation of 
reconstruction error and output signal to reconstruction error power ratio as a function of input SNR. Plots 
for standard deviation are shown in Fig. 6 and plots for output signal to reconstruction error power ratios are 
shown in Fig. 7. From these plots it can be seen that reconstruction error is very high at low input SNR 
(below 15dB) and this error decreases with increasing input SNR. 

In order to reduce reconstruction error and effects of noise on the algorithm performance, we applied 
median filtration before reconstruction, after reconstruction, and before-after reconstruction. We used 
median filtration with proposed algorithm because it is one of the most commonly used nonlinear filters in 
image processing which are commonly used for smoothing of images and the removal of the noise from a 
corrupted image. They sharp signal changes and are very effective in removing impulse noise [34]. Filtration 
is done by filtering each row when the algorithm uses columns for phase reconstruction and to each column 
when the algorithm uses rows for phase reconstruction. So filtration and phase reconstruction was orthogonal 
operations in this means. Plots for results with filtration are shown in the same Fig. 6 and Fig. 7. From plots 
with filtration it can be seen that filtration reduces reconstruction error levels in different manner. Filtration 
before reconstruction gives better results than filtration after reconstruction. The SNR improvement due to 
filtration ranges from 2dB when input SNR is about 13dB to 50 dB when input SNR is 45dB. SNR 
improvement due to pre-reconstruction filtration is plotted in Fig.8. 
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Fig 4: Deterministic phase of function (7). 
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Fig. 5: Phase characteristic of equation (7) with different levels of additive noise. (a) Measured noisy phase. (b) 
Reconstructed phase with no filtration. (c) Reconstructed phase with filtration before reconstruction. 

Filtration after reconstruction does not have any effect on reconstruction error and so it is not 
recommended. Also for low level noise signals (input SNR greater than 50dB) and high level noise signals 
(input SNR less than 10dB) filtration is not recommended. 

A comparison between Hilbert transform and differentiation approaches for detecting phase jumps in 
presence of additive Gaussian noise is made. In Fig. 9 and Fig.10 we provided the relations computed for 
signal to reconstruction-error power ratio in dB as a function of input SNR in dB for the cases of filtration 
before reconstruction and no filtration. From plots, we see that HT phase jump detector has much better 
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performance than differentiation phase jump detector for any input SNR with filtration or without. Filtration 
improves performance of differentiation however it never reaches that of HT. 
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Fig. 6: Reconstruction error standard deviation. 
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Fig. 7: Signal to reconstruction error power ratio 
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Fig. 8: Signal to reconstruction error power ratio improvement due to pre-reconstruction filtration 

In proposed procedure instead of 1-D HT one can propose using 2-D HT. The procedure and processing 
now becomes 2-D with all other steps of algorithm not changed. We applied such 2-D algorithm for the 
phase function of equations (7); the results of running this algorithm were not encouraging. The 
reconstructed phase was strongly damaged and no type of filtration could retrieve phase to an acceptable 
form. This is because 2-D HT does not have spikes as 1-D HT, the branch cut path is not similar to that of 1-
D and reconstructed phase is not the actual. Hence only 1-D HT can be used as a phase jump detector and 
not other dimensionalities. Also the computational time needed for 2-D is much more than that needed for 1-
D algorithm. For  2-D array: 2-D HT requires  calculations of 1-D FFT plus complex NN × N2 2N
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multiplications when multiplying the complex 2-D Hilbert array with the spectrum of the 2-D phase array 

 plus  calculations of 1-D IFFT. 1-D HT algorithm requires  calculations of 1-D FFT 
plus complex multiplications when multiplying  plus  calculations of 1-D IFFT 
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Fig. 9: Performance of the two phase jump detection approaches in presence of adaptive Gaussian white noise with 

filtration before reconstruction. 
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Fig. 10: Performance of the two phase jump detection approaches in presence of adaptive Gaussian white noise with no 

filtration. 

6. Conclusions  
In this paper, we extend the same logic of edge detection to propose an algorithm for N-D noisy phase 

unwrapping by using discrete 1-D HT as a phase jump detector, and studied the effect of different additive 
noise levels on the algorithm performance. We find that only 1-D HT can be used as a phase jump detector 
and not other dimensionalities. Orthogonal filtration before phase unwrapping is a very important step and it 
is recommended for input SNR ranging between (10dB-50dB) since it improves the output SNR of phase 
unwrapping results. A comparison between Hilbert transform and differentiation approach for detecting 
phase jumps in presence of noise is made and it was found that performance of HT is much better than 
differentiation with or without filtration for any level of noise. The algorithm works well and gives 
satisfactory results even for low signal to noise ratios. It is accurate, easy to implement, has no basic 
limitations and provides the significant computational advantage due to 1-D processing. Tests performed 
demonstrate the validity of this approach. 
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