
 ISSN 1746-7659, England, UK 
Journal of Information and Computing Science

Vol. 4, No. 2, 2009, pp. 153-160 

The Computation of State Variable Model in Software Test 
Process Using Alternating Group Explicit Iterative Algorithm 

 Praveen R Srivastava 1, +, Navnit Jha 2 and G Raghurama 3 

1 Computer science and Information Systems Group, Birla Institute of Technology & Science Pilani-333 031, 
India 

2 Mathematics Group, Birla Institute of Technology & Science Pilani-333 031, India 
3 Electrical and Electronics Group, Birla Institute of Technology & Science Pilani-333 031, India 

(Received November 23, 2008, accepted February 4, 2009) 

Abstract. The aim of this paper is to construct a parallel algorithm for the model developed in software 
testing process. The model treats software testing as a control problem. The software under test serves as a 
controlled object that is modeled as second order equation. The ordinary simulation to such type of model 
deteriorates in the vicinity of quality, efforts and complexity. The new approach based on parallel alternating 
group explicit algorithm shows superiority over corresponding sequential algorithm. Computational results 
are provided to illustrate the viability of the proposed technique. 
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1. Introduction 
In this piece of work, we consider the modeling and control of software testing process. Software testing 

is classified into different category such as structural, functional or random. The internal description of 
software to generate test cases categories as structural software testing. Many software testing methods are 
available including software reliability engineering testing, transaction flow testing, equivalence class 
partition based testing, control flow testing etc. A testing strategy determines what test case should be 
selected and when software testing should be stopped. The software testing process can be characterized as a 
feedback system through control theory in order to regulate the testing process. We present a test model 
based on error reduction as the time increases. Earlier Cangussu et. al. [1, 2] has discussed similar model. 
However, the model fails to explain the behavior of system when number of software defects are inversely 
related with time as is frequent case. The model numerically leads to a tridiagonal system. The problem of 
actually determining the solution of such  tridiagonal system may be time consuming, particularly when, as 
is frequently the case, the number of equations is large. Since we need to solve large system of equations, the 
iterative algorithms are frequently used. The proper choice of the iterative algorithm to be used has a great 
influence on the amount of computational effort required to solve a given problem. With slowly converging 
iterative algorithm, the amount of time required may be so large, even with a very fast computer, as to make 
the solution of problem impractical. Hence the resort to parallel algorithmic approach is imperative. 

2. Development of Test Process Model 
The software testing process involves development of second order model and is appropriate to capture 

the essential nature of testing phase. The model is used to estimate the fault in software.  During the testing 
process errors are found and removed.  Following parameters and variables are defined as 

( )tr  :  Number of software defect remains at time t 

cs  :  Software complexity 

fω  :  Work force 
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γ   :  Constant characterizing overall quality of testing methods 

ete :  Effective test effort 

re   :  Error reduction resistance  

ne   : The net effort applied 

Using these variables and parameters, we have certain assumptions: 
The magnitudes of the rate at which the remaining errors are decreasing is proportional to the net applied 

effort and are inversely proportional to the time.  

t
e

r n" =                                                                         (2.1)  

The magnitude of the rate at which the remaining errors are decreasing is inversely proportional software 
complexity (see Cangussu [4]). 

c

"
s

r 1
=                                                                         (2.2) 

The magnitude of the effective test effort is proportional to the product of applied work force and the 
number of remaining errors ζ .  

fet wre ζ=                                                                   (2.3)  

The error reduction resistance is proportional to the error reduction velocity and inversely proportional to 
the quality of software testing . ξ

'rer γ
ξ

=                                                                      (2.4) 

Using equations (2.1) - (2.4) and carrying necessary algebra leads to the following model 
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If  denotes the disturbance during software testing. Then dF
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The equation (2.6) is written as 

 ( ) ( ) ( ) ( )t,r,rtgrtertdr ''" ψ=++=                                        (2.7) 

where  ( ) ( ) ( )
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The solution to equation (2.7), usually deteriorates in case of low software quality ( 0→γ ) and/or 
software complexity ( ). Difficulties were experienced in the past for the solution of (2.7) in the vicinity of 
singularity. We overcome these situations by modifying our method based on Taylor’s expansion (see Ref. 
[6]).  

cs

Let us define  

  ( ) ( )h/rrr kk
'
k 211 −+ −= , ( ) ( )h/rrrr kkk

'
k 243 111 mm ±±= ±±    

⎟
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Then the fourth order finite difference replacement of (2.7) is  

[ ]kkkkkk GGGhrrr 10
12

2 11
2

11 ++=+− −++− , k = 1(1)N                        (2.8)  
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where  denote the function satisfying the difference equation at the grids kr ( ) 110 +== Nk,khtk . The 
difference scheme (2.8) is of fourth order accurate for the numerical treatment of (2.7). We need the 
following approximations in order to establish the singular free recurrence relation. 

( )3
2

1 2
hOdhdhdd "

k
'
kkk ±+±=±                                          (2.9a) 

( )3
2

1 2
hOehehee "

k
'
kkk ±+±=±                                             (2.9b) 

( )3
2

1 2
hOghghgg "

k
'
kkk ±+±=±                                          (2.9c) 

Substituting the approximations (2.9) into equation (2.8) and neglecting the higher order terms, we get a 
linear difference equation of the form  

kkkkkkk RHrcrbra =++ +− 11 2  ,  ( )Nk 11=                                    (2.10) 
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3. The Alternating Group Explicit Method 
The main concern to this section is to present an efficient algorithm based on parallel approach to 

compute the 3-term recurrence (2.10) developed for Test process model. The linear difference equations 
(2.10) can be in general expressed as  

kkkkkkk RHrcrbra =++ +− 11 2 , ( )Nk 11=                                     (3.1) 
The difference equation (3.1) in matrix notation is 

         RAr =                                                                          (3.2) 

where , ,  
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We split the matrix A  as follows 

    21 GGA +=                                                                     (3.3) 
Where 
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Assuming   and   are non singular matrices, then parallel method based on alternating 
group explicit algorithm is given by 

IG ω+1 IG ω+2

 ( ) ( ) ( ) ( )k/k rr IGRIG ω−−=ω+ +
2

21
1                                       (3.4a) 

( ) ( ) ( ) ( )

.......,,,k
,rr /kk

210

21
1

1
2

=
ω−−=ω+ ++ IGRIG                                (3.4b) 

where  is an acceleration parameters and  0>ω ( )1/ 2kr +   is an intermediate vector(Evans [6])). Since 
 and   are non singular, the equations (3.4a) and (3.4b) in the explicit form  IG ω+1 IG ω+2

( ) ( ) ( ) ( )[ ]k/k rr IGRIG ω−−ω+= −+
2

1
1

21                                        (3.5a) 

( ) ( ) ( ) ( )[ ]21
1

1
2

1 /kk rr +−+ ω−−ω+= IGRIG                                     (3.5b) 
Simplifying equations (3.5a)  and  (3.5b), we obtain following algorithm 

First sweep:   For   ( ) 121 −= Nj
Let    
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Second sweep:  For                                         1=j
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4. Computational illustrations 
To prove the efficiency of the implementation of the parallel alternating group explicit algorithm, all 

parameters with different valid values are taken. All results of numerical experiments, which were gained 
from implementation of the  algorithms has been recorder in the tables. In all cases, initial guess is taken as 
zero vector and the iterations were stopped when difference of two consecutive iterative values is less than 

 was achieved. The acceleration parameter 1010− 90.=ω  is chosen for parallel AGE algorithm. The 
computational results shows superiority over corresponding sequential algorithm (Kai-Yuan Cai, et. al. [5]). 

The exact solution  is chosen. The right hand side function and boundary conditions may be 
obtained using the exact solution as a test procedure. The root mean square errors (RMSE), minimum 
number of time required to compute in terms of iterations 

( ) )exp( 4ttr =

PI  for parallel case and  for sequential case are 
presented in Table 1, 2 and 3.  

SI

5. Conclusion 
From Table 1, it is evident that as software quality increases the average number of iterations in parallel 

case PI   decreases more as compared to corresponding sequential iterations .  Table 2 shows that as work 
force increases the number of iterations in parallel and sequential case decreases and consequently execution 
time diminish with increase in work force. Table 3 confirms the superiority of parallel iterations on 
sequential one. Consequently high software complexity leads to very low execution time in parallel case as 
compared to its counterpart. 

SI
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Table 1                                                        Table 2                                                        Table 3 

N               SI PI          RMSE 

              50.=γ  

 20   49     210     3.722e-05 
 30 100     214     7.796e-06 
 40 171     221     2.586e-06 
 50 261     232     1.103e-06 
 60 369     248     5.508e-07 
              60.=γ  

 20   60     158     2.772e-05 
 30 125     163     5.891e-06 
 40 214     173     1.976e-06 
 50 326     192     8.502e-07 
 60 461     236     4.277e-07 
               70.=γ  

 20   72     125     2.156e-05 
 30 150     132     4.648e-06 
 40 256     148     1.576e-06 
 50 390     193     6.834e-07 
 60 551     246     3.454e-07 
               80.=γ  

 20   83     103     1.737e-05 
 30 174     113     3.796e-06 
 40 297     148     1.299e-06 
 50 452     205     5.667e-07 
 60 638     301     2.879e-07 

N       SI PI    RMSE 

               2=fw  

 20   62     158     2.475e-05 
 30 129     164     5.517e-06 
 40 220     174     1.915e-06 
 50 335     195     8.444e-07 
 60 474     242     4.325e-07 
                 3=fw  

 20   61     158     2.607e-05 
 30 127     164     5.656e-06 
 40 217     174     1.927e-06 
 50 331     193     8.391e-07 
 60 467     239     4.258e-07 
                4=fw  

 20   60     158     2.772e-05 
 30 125     163     5.891e-06 
 40 214     173     1.976e-06 
 50 326     192     8.502e-07 
 60 461     236     4.277e-07 
                5=fw  

 20   59     157     2.956e-05 
 30 123     163     6.193e-06 
 40 211     172     2.052e-06 
 50 321     191     8.742e-07 
 60 454     233     4.363e-07 

N        SI PI   RMSE 

                   2=cs
 20     60     158     2.772e-05
 30   125     163     5.891e-06
 40   214     173     1.976e-06
 50   326     192     8.502e-07
 60   461     236     4.277e-07
                  4=cs
 20   132      68     9.512e-06
 30   278     128     2.367e-06
 40   475     224     8.668e-07
 50   722     342     3.940e-07
 60 1018     482     2.057e-07
                8=cs
 20   252     115     6.117e-06
 30   529     247     1.477e-06
 40   902     423     5.306e-07
 50 1366     643     2.381e-07
 60 1921     904     1.234e-07
             16=cs
 20   405     186     9.621e-06
 30   850     396     2.023e-06
 40 1447     677     6.591e-07
50        2189    1026     2.739e-07
 60       3074    1443     1.322e-07

42042 =ζ=ξ== ,,w,s fc        420602 =ζ=ξ=γ= ,,.,sc         420604 =ζ=ξ=γ= ,,.,w f  
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Fig. 1  
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Fig. 2 

0

500

1000

1500

2000

2500

3000

3500

20 40 60

Sc=2, Is
Sc=2,Ip
Sc=16, Is
Sc=16, Ip

 

Fig. 3 
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