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Abstract. In this paper, we consider the approximate stabilization of a class of switched nonlinear system 
composed of a finite family of subsystems. We show that there exists a piecewise constant feedback 
controller such that the system can achieve the approximate stabilization property under arbitrary switching 
signal. We also discuss the numerical computation problem in determining the control input value at the 
sampling instant or switching instant and present a method to solve the problem. 
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1. Introduction 
Recently, switched control systems has received a great deal of attention in the control community. 

Informally, a switched system is a family of continuous-time dynamical subsystems and a rule that 
determines the switching between them. Many engineering systems, such as robot manipulators[1], traffic 
management[2],power systems[3,4],etc. are essentially switched systems. The reader can refer to [5,6]for a 
detailed study for this system. 

One important problem in the theory of switched system may be stabilization. The interest in the 
problem is reflected by numerous works, mainly for linear systems[7,8,9,10].However, characterizing the 
stability and stabilization of switching among families of nonlinear systems presents a much more 
challenging task. Recently, the stabilization of switched nonlinear systems has also been 
investigated[11,12].The switched technique is implemented for the stabilization of some typical kinds of 
nonlinear systems[13,14]. Most existing studying results on the switched system mainly focus on seeking for 
conditions under which the switched system is stable for any switching signal. In this paper, however, our 
problem does not lie in seeking these conditions but in the construction of the feedback controller that 
guarantees the system is approximate stable for any switching signal. 

The rest paper is organized as follows: Section 2 provides the class of switched nonlinear system we 
consider and presents some assumption and definition used throughout this paper. Section 3 is our main 
result, in this section we develop the approximate stabilization conditions and prove that there exists a 
piecewise constant feedback controller such that the system can be stabilized. In section 4 we discuss the 
numerical computation of the control input value. Concluding remarks are then followed in section 5. 

2. Problem statement and preliminaries 
Given the family of locally Lipschitz vector fields { }: :n n

iD f U i= × → ∈∧R R  parameterized by the 

index set { }1,2,..., N∧ = , we consider the switched nonlinear control system 

( ) ( ),tx f x uσ=                                                                (1) 

Where  is the state,  is the control input,nx∈R mu U∈ ⊆ R ( ) 0:[ , )t tσ +∞ →∧ is the switching signal, 
which is a piecewise constant function of time, taking value from the finite index set 

{ }1,2,..., N∧ = ,and , means that the i-th subsystem ( ) ( 1,2, )t i i Nσ = = ( ,i )x f x u= works. For an 
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arbitrary switching path ( ) mt iσ = ∈∧ ( )1[ , ,m mt t t +∈ 0,1, 2..., 1)m s= − ,{ } 0

s
m m

t
=

 is called the switching 
time sequence, which is assumed to satisfy  

0 1 2 m st t t t t< < < < < <  
If , then possibly . To facilitate the analysis, we let  s < ∞ st = ∞

{ } 1
0 1 2 10

: , , , , , ,s
m mm sx x x x x x−

−=
. 

denote the switching state sequence corresponding to the switching time sequence{ } ,i.e { }0

s
m m

t
=

1

0

s
m m

x −

=
 is the 

solution ( )x ⋅ of system(1) .We assume here the state of system (1) does not jump at the switching instants, i.e. 

the solution ( )x ⋅ is everywhere continuous. The switching state sequence, along with system (1), completely 

describes the trajectory of the system according to the following rule: mx means that the system evolves 

according to ( )( ),
mi

x f x t u= for 1mt t tm+< < . Throughout, we assume that 1m mi i +≠ . 

From now on we assume that  satisfies the following hypotheses. D
Assumption: is continuous and has linear growth with respect to : n

if U× →R nR x .i.e. there exist 

0iλ ≥ such that ( ) (, 1i i )f x u xλ≤ + for all ( ), nx u U∈ ×R . ( ),if x u is Lipschitz with the constant .i.e. 

there exists a constant  such that for all ,

ik

ik , nx y∈R ( ) ( ), ,i i if x u f y u k x y− ≤ − . And for all u U∈ , the 

set valued map ( ){ },ix f x u→ is Marchaud .The set U is compact. 

Let us recall that the set valued map is called Marchaud if and only if it has convex and compact values 
and is upper-semicontinous. A set valued map is called upper-semicontinuous if for all 

and all 

( ) 2:
nnF ⋅ →R R

nx∈R 0ε > there exists 0δ > such that for all x′ with x x δ′− < , ( ) ( )F x F x Bε′ ⊆ + .Where 

B denote the closed unit ball in centered at the origin. nR
Throughout this paper, we shall use the following definition of approximate exponential stability for the 

switched nonlinear systems. 
Definition Given a Lyapunov function V , a time instant  , an arbitrary accuracy parameter0st t> 0ε > , 

a switching signal ( ) [ ]0: , st t tσ →∧ and input [ ]0: , m
su t t →R ,if all finite runs 

of the system(1)starting at some initial state ( ) ( 0,1, , 1mx t m s= )− ( )0 0x t  satisfy  

( )( ) ( ) ( )( )0
0 0

c t t
mV x t e V x t ε− −≤ +  

for all [ )1,m mt t t +∈ , . Then the switched nonlinear system(1) is approximate exponentially 
stable. 

0,1, 1m s= −

3.    Main Result  
In this section we derive a piecewise constant feedback controller that ensure the system (1) achieves the 

approximate stability property. In order to prove the subsequent main result, we first present the following 
proposition whose proof is postponed to the Appendix: 

Proposition: Consider the switched nonlinear system of the form (1) with the switching time 
sequence{ }  ( ), a nonempty closed set  and an accuracy parameter

0

s
m m

t
= st < ∞ nK ⊆ R 0ε > . Assume that, 

in addition to Assumption 1, we have  ( ) ( )( )T
inf , 0u U tf x u pσ∈ ≤ ,  for all x K∈ and all ( )Kp NP x∈ . 

Then there exists a sampling time over each time horizonmh [ )1,m mt t + ( 0,1 , 1m s )= − and a piecewise 

constant controller such that all finite runs( ) : ng ⋅ →R U { } 1

0

s
m m

x −

=
 of system (1) starting at some initial 
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state ( )0 0x t ∈K satisfy  

       ( )mx t K Bε∈ +  ( 0,1, 1m s )= − , for all [ )1,m mt t t +∈ .                         (2) 
where denotes the set of proximal normals to the set ( )KNP x K  at x : 

{ }( ) | ( ) | |n
K KNP x y d y x y= ∈ + =R , recall that ( )Kd x denotes the distance of the point x to the set K  

defined by ( ) infK y K
d x x y

∈
= − . 

Remark. Proposition  shows that there exists a piecewise constant controller such that the set K  is 
viable on the system (1). The reader can refer to [15] for a detailed study of the viability property. 

The following theorem is the main result of this paper. 

Theorem. Consider a system of the form(1) with the switching time sequence  ({ } 0

s
m m

t
= st < ∞ ), a 

Lyapunov function and an accuracy parameter( ) :V ⋅ n →R R 0η > . Assume that in addition to 
Assumption the following hold: 

1. ( )V ⋅ is continuous.  Lipschitzl −

2. There exists [ )0,c∈ ∞ such that ( ) ( )( )T
inf , ( ) 0u U tf x u p cqV xσ∈ − ≤ for all and 

all

nx∈R

( ) ( )( ), ,
VEpip q NP x V x∈ . 

Then there exists a piecewise constant controller such that all runs of the system (1) satisfy  

( ) 0( )
0 0( ) ( ( ))c t t

mV x t e V x t η− −≤ +  

for all  and all . 0,1, 1m s= − [ )1,m mt t t +∈

Proof : we introduce an auxiliary state variable y∈R  into the system(1) and define the following 
extended system 

( ) ( ) ( ) ( ),ˆˆ ˆ, t
t

f x u
x f x u

cy
σ

σ

⎡ ⎤
= = ⎢ ⎥

−⎢ ⎥⎣ ⎦
                                                   (3) 

where  is the state, the control u1ˆ ( , ) nx x y += ∈R U∈ , for a run starting at ( )0 0x t we initialize the auxiliary 

variable to ( ) ( )( )0 0 0 0y t V x t= .Then by construction ( ) ( )( )0 0 0 0,x t y t EpiV∈ .Where 

( ) ( ){ }1Epi , |n
V x y V x+= ∈ ≤

��
R y is the epigraph of V . 

Since the original system(1) satisfies the Assumption ,so it is not hard to know that the extended 
system(3) also satisfies the assumption. 

Consider arbitrary and1ˆ ( , ) nx x y += ∈R ( ) ( )ˆ,
VEpip q NP x∈ . If x̂ is on the boundary of Epi , then 

. If on the other hand, 

V

( ) ( )( ) ( ) ( )( )T Tˆ ˆinf , ( , ) inf , ( ) 0t tu U u U
f x u p q f x u p cqV xσ σ∈ ∈

= − ≤ x̂  is in the interior of 

 then (EpiV ),p q = 0 and the equation holds trivially. Therefore, the extended system satisfies condition of 

Proposition  ( playing the role ofEpiV K ). Thanks to Proposition, we infer that there exists a piecewise 

constant feedback controller such that all runs of the extended system starting from ( ) ( )( )0 0 0 0,x t y t  satisfy 

( )ˆ Epim Vx t Bε∈ + , or, equivalently ( ) ( )( )
VEpi ,m md x t y t ε≤  for all 0,1, 1m s= − and all [ )1,m mt t t +∈ . 

Therefore, there exists mx′ with ( )mx t x ε′− ≤ such that ( ) ( )( ) ( ) 22 2
m m m mV x y t x t x ε′ ′− + − ≤ . In 

particular, ( ) ( ) ( )( )0( )
0 0

c t t
m mV x y t e V x tε ε− −′ ≤ + = + . Since V is , Lipschitzl −

( ) ( )( )m mV x V x t lε′ ≥ − . Hence, we have ( ) 0( )
0 0( ) ( ( )) (1 )c t t

m t e V x t lε− −V x ≤ + + .Taking (1/(1 ))lε η< + , 
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iVx x y=

completes the proof.  

4. Numerical computation problem in determining the control input 
In the previous section, we have proved the existence of a piecewise constant feedback controller in 

stabilization of the system(1), but how to determine the control input value at the sampling instant or 
switching instant? In the following, we will solve numerically the problem. 

From the proof of the Theorem, we know that the stability of the system(1) is equivalent to the viability 
of the extended system (3) on , so in order to stabilize the system(1),we only need to design a feedback 
controller such that Epi is viable on the extended system . Based on the proof of Proposition and the 
viability theory, we derive an approach to compute the control input value: 

EpiV

V

 If , then we pick an arbitrary element ˆ ( , ) Ep∈ mju U∈ and define  

1[ , ],mj mjt t t +∀ ∈  mju u=  
 If , let us consider its unique projection onto ,then there exists ˆ ( , ) EpiVx x y= ∉ z EpiV mju U∈  

such that  

( )( ) ( )
Tˆ ˆ, 0im mjf z u x z− ≤  

then we define  

1[ , ],mj mjt t t +∀ ∈  mju u=  
the first case is obvious, but the second one is more complex because we need to find the projection 
of x̂ onto . In the following ,by the optimization theory, we can establish an optimization model to find 
the projection of 

EpiV

x̂ . 

Suppose is the state of system (3) at a certain sampling instant or the switching instant, and ( ), EpiVa b ∉

( )* *, ( )x V x is its projection onto Epi . Then it is not hard to see that V ( )* *, ( )x V x is the solution to the 

following optimization problem: 

(P) ( )2 2min ( ) ( )G x x a V x b= − + −  

most optimization algorithms can be applied directly to solve the problem (P). 

5.  Concluding remark 
The paper has investigated the approximate stabilization of switched nonlinear systems under arbitrary 

switching time sequence. Under a realistic assumption, it has been shown that there exists a piecewise 
constant feedback controller such that the switched nonlinear system is approximate stable. Finally we have 
presented an approach to determining the control input value at the sampling instant or the switching instant 
and an optimization model has also been established to find the projection of the state onto Epi .  V

6. Appendix: proof of proposition 
The following lemmas will be used in the proof of the proposition. 

 Lemma 1 consider the time sequence { } 0

s
m m

t
=

 and the state sequence { }  in system (1), 

where  denote the solution of 

1

0

s
m m

x −

=

[ )1( ) : , n
m m mx t t +⋅ →R ( ),

mi
x f x u=  starting at ( )m mx t .Then for all 

  [ )1,m ms t t +∈

( ) ( )( ) ( ) 1( ), 1 ( ) i m mm

m m

t t
i m i m mf x s u s x t eλλ + −≤ +   0,1, , 1m s= − . 

Proof : Note that for ( ) 0mx s ≠  
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( ) ( )( ) ( ) ( ) ( )( ), 1
m mi m m m i m

d df x s u s x s x s x s
ds ds

λ= ≤ ≤ +  

Then by the Gronwall Lemma[16] 

( )( ) ( ) 1 1im s
m m mx s x t eλ≤ + −  

We have  ( ) ( )( ) ( )( ) ( )( ) 1( ), 1 1i im m

m m m

m ms t t
i m i m m i m mf x s u s x t e x t eλ λλ λ + −≤ + ≤ + .  

Lemma 2 Let us suppose that  is a nonempty closed set and consider a point nK ⊆ R x K∉ and 
fix ( )

K
y x∈∏ . If there exists a control u U∈ such that  

( )( ) ( )T
, 0f y u x y− ≤ , 

and that for all 
10,

2
mi

t
k

⎡ ⎤
∈ ⎢ ⎥
⎢ ⎥⎣ ⎦

 , ( , )
m mi if x u M≤ ,then 

10,
2

mi

t
k

⎡ ⎤
∀ ∈⎢ ⎥

⎢ ⎥⎣ ⎦
,    ( )( ) ( )22 2 2 im

m

k t
K m i Kd x t eM t e d x≤ + 2 . 

Recall that is the Lipschitz constant of the subsystem 
mi

k ( ),
mi

x f x u= . The proof is a straight forward 
modification of Lemma 5.1 of [17]. 

Lemma 3  Suppose that for all and [18] 0,1, , , , , 0i i ii N a b r= ≥ 1i i i ir a r b+ ≤ + . Then  

{ }1 00 0
max , 1

NN

N i ji N i j i

r r b a+ ≤ ≤
= =

⎧ ⎫⎛ ⎞⎪ ⎪≤ +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
∑ ∏   and { }1 0 0 10

max 1
N NN

N i i ji N ii j

r r a b a+ ≤ ≤
== =i

⎧ ⎫⎛ ⎞⎪ ⎪≤ + +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭
∑∏ ∏ . 

Proof of Proposition. The proof consists in building a feedback controller which satisfies (2).For this 
purpose, We defined the piecewise constant controller by a feedback map ( ) : ng ⋅ →R U , used to set 

either after a switching, or whenever a sampling time elapses from the last time  was set.  u u
For , we distinguish two cases. If ( )g x x K∈ , choose an arbitrary u and setU∈ ( )g x u= . 

If \nx K∈R , choose its projection y onto K  , by definition, ( )Kx y NP y− ∈ , then by condition of the 

proposition and the compactness of U such that ( ) ( )( ) ( )
T

, 0tf y u x yσ − ≤ .We define ( )g x u= . 

Let { } be an arbitrary finite run of the system(1) with its corresponding switching time sequence 

 : ,starting at some initial state

1

0

s
m m

x −

=

{ } 0

s
m m

t
= 0 1 2 mt t t t t< < < < < < s ( )0 0x t K∈ . For  let denote 

the sampling time used over time interval 

1[ , ]m mt t + mh

1[ , ]m mt t +  and assume that 
10

2
m

m
i

h
k

< < .Let { }
0

mN

mj j
t

=
denote the 

set of times in  at which is set by the controller. Clearly, 0 （ recall that 
, ， and for all 0

1[ , ]m mt t + u mN≤ < ∞

mst < ∞ 0)mh > 0mt t= mj N≤ < , ( 1)m j mj mt t+ h− ≤ （refer to figure ）.  

0 00t t= 01t 02t
1 10t t=

11t 12t 13t 14 2t t=03 1t t=

0h0h 1h 1h 1h

0 t
⋅

 

Figure Illustration of sampling times. In this case 0 12, 3, 4s N N= = =  
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h 1In particular,  for all( 1)m j mj mt t+ − = 0 mj N≤ < − .Moreover, if 11,
mmN mm s t t +< − = . 

Finally, let ( )( ) ( )11 im m mt t
im im m mM x t eλλ + −= +  

By Lemma 1 and Lemma 2 

( )( ) ( )( )2 ( )2 2 2 2( ) i mjm

m

k t t
K m i mj K m mjd x t eM t t e d x t−≤ − +  

for all . Therefore  ( 1),mj m jt t t +⎡∈ ⎣ ⎤⎦

( )( ) ( )( 1)2 ( )2 2 2 2
( 1) ( )i m j mjm

m

k t t
K m m j i m K m mjd x t eM h e d x t+ −

+ ≤ +  

By Lemma 3, for all  ( 1),mj m jt t t +⎡ ⎤∈ ⎣ ⎦

( )( ) ( )( ) ( 1)
1

2 ( ) 2 ( )2 2
0

0

i mj i m mm m

m

j
k t t k t t 2 2

K m K m m id x t d x t e e eM hα α

α

+

−
− −

=

≤ +∏ m

)+

)m +

)m +

 

( 1)
1 1

2 ( ) 2 ( ) 2 ( )

1

( 1i mj i mj i m mm m m

j j
k t t k t t k t te e e β β

α β α

+
− −

− − −

= =

× + ∑∑  

( )( )
1 1

2 ( ) 2 ( ) 2 ( ) 22 2 2

1

( 1i m i mj i mj i mm m m

m

j j
k t t k t t k t t k h

K m m i md x t e eM h e e e
α β α

− −
− − −

= =

= + × + ∑∑  

( )( )
1

2 ( ) 2 22 2 2

0

( 1i m i m i mm m

m

j
k t t k h k h

K m m i md x t e eM h e e α

α

−
−

=

≤ + × ∑  

( )( )
2

2 ( ) 2 12 2 2
2

1 1
1

i mm
i m i mm m

m i mm

k h j
k t t k h

K m m i m k h
ed x t e M h e
e

− + ⎛ ⎞−
= + ⎜ ⎟⎜ ⎟−⎝ ⎠

+  

( )( )
2

2 ( ) 2 12 2
2

2 1
21

i mm
i m i m mm m

m i mm
m

k h j
k t t k h i m

K m m i m mk h
i

k h ed x t e M h e h
ke

− + ⎛ ⎞−
= + ⎜ ⎟⎜ ⎟−⎝ ⎠

+  

( )( )
2

2 ( ) 2 12 2 1
2

i mm
i m i mm m

m

m

k h j
k t t k h

K m m i m m
i

ed x t e M h e h
k

− + ⎛ ⎞−
≤ + ⎜ ⎟⎜ ⎟

⎝ ⎠
+  

( )( )
( 1)2 ( )

2 ( ) 2 12 2 1
2

i m mm
i m i mm m

m

m

k t t
k t t k h

K m m i m m
i

ed x t e M h e h
k

+ −
− + ⎛ ⎞−

≤ + ⎜ ⎟⎜ ⎟
⎝ ⎠

+  

The second term decreases to zero as decreases. Therefore, for any mh 0δ >  we can choose 

10,
2

m

m
i

h
k

⎛ ⎤
∈⎜ ⎥⎜ ⎥⎝ ⎦

small enough to ensure that for all [ )1,m mt t t +∈  

( )( ) ( )( )2 ( )2 2i mmk t t
K m K m md x t e d x tδ −≤ +                                 (4) 

Then due to ( ) ( )1m m m mx t x t−=  we have  

( )( ) ( )( ) ( )( )112 ( )2 2 2
1 1

i mmk t t
K m m K m m K m md x t d x t e d x tδ −−

−
− −= ≤ + 1−  

Recall that ( )0 0x t ∈K , therefore ( )( )0 0 0Kd x t = . By Lemma 3 

( )( ) ( )( ) 0
1 11

2 ( ) 2 ( )2 2
0 0

10

i i
m mm

k t t k t t
K m m Kd x t d x t e e β βα

αα β α

δ
− −−

− −

== =

⎛ ⎞
≤ + ⎜ ⎟

⎝ ⎠
∑∏ ∏  

11
2 ( )

1

i
mm

k t te β β

α β α

δ
−−

−

= =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑∏  
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Let { }1 1
max im

k
ββ

γ
≤ ≤ −

= , then 

( )( ) 0

11
2 ( )2

1

s

mm
t t

K m md x t e γ

α β α

δ
−−

−

= =

⎛ ⎞
≤ ⎜

⎝ ⎠
∑∏ ⎟

⎞
⎟
⎠

                                           (5) 

Hence, it follows from (4) and (5) that  

( )( ) 0 0

1 11 1
2 ( ) 2 ( )2

1 1
1s s

m mm m
t t t t

K md x t e eγ γ

α αβ α β α

δ δ δ
− −− −

− −

= == =

⎛ ⎞ ⎛
≤ + = +⎜ ⎟ ⎜

⎝ ⎠ ⎝
∑ ∑∏ ∏  

Let 
0

2

11
2 ( )

1
1 s

mm
t te γ

α β α

εδ −−
−

= =

=
+∑∏

, then we obtain ( )( )2 2
K md x t ε≤ , i.e. ( )mx t K Bε∈ + , , 

and the claim of the proposition follows.  

0,1, 1m s= −
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