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Abstract. One of the newest analytical methods to solve nonlinear dispersive wave equations is using both 
homotopy and perturbation methods which is called (HPM). Other the reliable methods are variational 
iteration method (VIM) by He and Adomian's decomposition method (ADM). Here, we compare the exact 
solution of HPM which are applied to solve a various fifth-order Korteweg-de Vries problems with initial 
condition with obtained results of (VIM) and (ADM).Comparison of the results with those obtained by 
(ADM )and (VIM) reveals that (HPM) is very effective, convenient and quite accurate to both linear and 
nonlinear problems. It is predicted that (HPM) can be widely applied in engineering. 

Keywords: Variational iteration method (VIM), Adomian decomposition method (ADM), Homotopy-   
Perturbation method (HPM), Fifth-order Korteweg-de Vries problems (FKdV), 2dimentional (2D). 

AMS subject classification: 35B30, 35B40 

1. Introduction 
There are few phenomena in different fields of science which occure linearly. Most problems and 

scientific phenomena such as FKdV equations behave nonlinearly. 
There are many standard methods in literature to solve fifth-order Korteweg-de Vries (FKdV) equations. 

Explicit solutions to the nonlinear equations are of fundamental importance. Various methods for obtaining 
explicit solutions have been proposed to nonlinear evolution equations. Among them are Hirota's dependent 
variable transformation, the inverse scattering transform, and the Backlund transformation.  

All these methods are described in [1,2] and the references there in. 
A common feature of all these methods is that they use different transformation to reduce the equation 

into a more simple one and then solve it. 
The numerical calculation methods have been improving, so as semi-exact analytical methods. Most 

scientists believe that the combination of the numerical and semi-exact analytical methods can also lead to 
useful results. One of the most well-known semi-exact methods is the homotopy-perturbation method [2,3-8]. 

He's variational iteration method (VIM) [9-17] is used to conduct an analytic study on FKdv equation, 
too. The method gives rapidly convergent successive approximations of the exact solution if such a solution 
exists, otherwise approximations can be used for numerical purposes. The method is used more effectively in 
[9-15,18-21] among many others. Another important advantage is that VIM is capable of greatly reducing 
the size of calculations while still maintaining high accuracy of the numerical solution. In the following part, 
we will briefly highlight the main points of each  method, whose details can be found in [9-17].  

Considering Adomian's decomposition method, explicit and numerical solutions are calculated for 
various Fifth-order Korteweg-de Vries equations with specified initial conditions. The explicit solution of the 
equation using decomposition series is quickly obtained by existence of the self-canceling "noise" terms 
where the sum of the components is vanished at infinity.  
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We now infer that HPM, VIM and ADM can be used to construct the solution to the initial-value 
problems for FKdV equation [22,23 ], 

),,,,,,( 2
xxxxxxxxxxxt uuuuutxFuu =−                                                   (1)  

which occurs, for example, in the theory of magneto-acoustic waves in plasmas [24] and in the theory of 
shallow water waves with surface tension [25] the FKdV equation has been extensively investigated over the 
last decade. It has been shown that the traveling-wave solutions of the equation do not vanish at infinity 
[1,26]. Then the results of these methods have been compared with those of the  exact solution. 

2. Summery of the methods 

2.1. Homotopy-perturbation method 
To explain this method, let us consider the following function: 

0)()( =− rfuA ,                                                                    (2) 
with the boundary condition of: 

0),( =
∂
∂

n
uuB ,                                                                    (3) 

where   is defined as follows: )( uA

)()()( uNuLuA += .                                                            (4)  
Homotopy-perturbation structure is shown as: 

  
,0])()([
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,                                                 (5) 

or 

,0])()([

)()]()()[1(),( 00
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rfvAp

uLpuLvLppvH
                                   (6) 

where,  
Rprv →×Ω ]1,0[:),( .                                                          (7)  

Obviously, considering Eqs. (5) and (6) we have:  

,0)()()1,(

,0)()()0,( 0

=−=

=−=

rfvAvH

uLvLvH
                                                   (8) 

where  is an embedding parameter and  is the first approximation that satisfies the boundary 
condition.  

]1,0[∈p 0u

The process of the changes in p  from zero to unity is that of changing from to . We 
consider 

),( prv 0u ru
v as: 

2
2

10 vpvpvv ++= ,                                                           (9)  
and the best approximation is: 

K+++== → 2101lim vvvvu p                                             (10)  
The above convergence is discussed in [27, 28]. 

2.2. He's variational iteration method  
To clarify the basic ideas of VIM, we consider the following differential equation:  

,)(tguFuL =+                                                                        (11)  
where  is a linear operator, L F  a nonlinear operator and  a heterogeneous term. )( tg

According to VIM, we can write down a correction functional as follows: 
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where λ  is a general Lagrangian multiplier [16,17,29] which can be identified optimally via the variational 
theory. By this method, it is necessary to determine the Lagrangian multiplier λ  that will be identified 
optimally. The successive approximations , of the solution u  will be easily obtained using the 
determined Lagrangian multiplier and any selective function of . Consequently, the solution is given by 

. 
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nn
uu
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= lim

Let us consider the standard form of an FKdV equation, (1),  in an operator form  
=− )()( uLuL xt ),,,,,,( 2

xxxxxx uuuuutxF ,                                    (13)  
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x
 symbolize the linear differential operators.  

According to VIM, we can write down Eq. (13) in the form of: 
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The Lagrangian multipliers are therefore identified as 1−=λ .  

2.3. Adomian's decomposition method 
Considering relation (13), assuming the inverse of the operator  is exists and it can conveniently be 

taken as define integral with respect to t  from 0 to t . If we operate the two sides of (13) with the inverse 
operator of , we have: 

tL

tL

)()),,,,,,(()( 1211 uLLuuuuutxFLuLL xtxxxxxxttt
−−− +=                                   (15) 

Substituting the initial condition of (13) in the last formula we have: 

).()),,,,,,(()0,(),( 121 uLLuuuuutxFLxutxu xtxxxxxxt
−− +=−                          (16) 

We decompose the unknown function  by a series of components defined by: ),( txu

.),(),(
0
∑
∞

=

=
n

n txutxu                                                                  (17) 

Substituting the initial condition into (16) and identifying the zeroth component by terms which arise 
from the initial condition, we have: 
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and if , we obtain the subsequent components as the following recursive 
relationship: 

),,,,,,( 2
xxxxxx uuuuutxF φ=
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1 nxtntn uLLALu −−
+ += 0≥n                                             (19) 

and for . See the details of this method in [30].  ∑
∞

=
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3. Applications 
 Example 3.1. We consider an equation with the initial condition  given by: 

0=−−+ xxxxxxxxxt uuuuuu , 

xexu =)0,( .                                                                     (20) 

A variational iteration can be constructed as follows: 
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The Lagrangian multipliers are therefore identified as 1−=λ , so we have: 
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xxx etetetxu ,                                     (22) 2
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and so on. The solution   is given as : ),( txu
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),( txu  in a closed form is found to be: 
txtx eeetxu +==),( .                                                                  (24) 

Now we solve Eq. (20) with ADM. 
Following the outlined scheme, Eq. (20) is rewritten in an operator form of: 

uLuuuuuL xxxxxt ++−= .                                                    (25)  

thus, 
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and so on. The solution  in the series form is given as: ),( txu
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The solution  in a closed form is: ),( txu
txtx eeetxu +==),( .                                                                       (29) 

A homotopy-perturbation method can be constructed as follows: 
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One can now try to obtain a solution of Eq. (30) in the form of: 
K++= ),(),(),( 10 txvptxvtxv ,                                              (31) 

where  are functions yet to be determined. According to Eq. (30) the initial 
approximation is: 

K,2,1,0),,( =iyxv i

xetxutxv == ),(),( 00 .                                                       (32)  

Substituting Eqs. (31) and (32) into Eq. (30) yields: 
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with the following conditions: 
.3,2,1,0,0)0,( == ixv i                                                       (36)  

The solutions of Eqs. (33)-(35) may be written as follows: 

tetxv x=),(1 ,                                                                    (37) 
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xettxv 2
2 !2

1),( = ,                                                                   (38) 

   xettxv 3
3 !3

1),( = ,                                                                           (39) 

In the same manner, the rest of components were obtained by using the Maple Package. 
According to the HPM, we can conclude: 
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),(),(),(lim),( 101
txvtxvtxvtxu

p
                                       (40)  

therefore, 
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11),( tttetxu x .                                                (41) 

The solution  in a closed form is found to be: ),( txu
txtx eeetxu +==),( .                                                             (42) 

The exact solution of Eq. (20) with HPM is , that is equal with the obtained results of ADM, 
VIM. 
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x = 0.5

           
(a)                                                                              (b) 

Fig1. The numerical result of the exact solution u(x,t) of Eq. (20) with HPM when 718281828.2=e ,  which is 
equal to the obtained results of  the VIM and ADM. (a) is the figure of 2D for exact solution and (b) is the figure of 3D 

for exact solution. 

5.0=x

Example 3.2. Let's seek the explicit solution of the inhomogeneous FKdV equation, as follows: 

),2sin(
2
1)cos(2)sin( 2 xtxtxuuuuu xxxxxxxxxt ++=+−+  

0)0,( =xu .                                                                                                      (43) 

A variational iteration can be constructed as follows: 
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The Lagrangian multiplier is therefore identified as 1−=λ . So we have: 

)sin(),(0 xttxu = ,                                                                          (45) 

and ,  )sin(),( xttxu i = K,3,2,1,0=i

hence,  
)sin(),( xttxu = .                                                                           (46) 

Now we solve Eq. (43) with ADM. We first used (43) in an operator form in the same manner as in (16) 
and then we used (19) to determine the individual terms of the decomposition series, we have: 
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In case of right choice of these functions, the modified technique accelerates the convergence of the 
decomposition series solution by computing just and terms of the series. So, 0u 1u
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A homotopy-perturbation method can be constructed as follows:  
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One can now try to obtain a solution of Eq. (51), in the form of: 
K++= ),(),(),( 10 txvptxvtxv ,                                                        (52) 

where  are functions yet to be determined. According to Eq. (51) the initial 
approximation is: 

K,2,1,0),,( =iyxv i
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)(sin),(),( 00 xttxutxv == .                                                             (53)  

Substituting Eqs. (52) and (53) into Eq. (51) yields: 
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with the following conditions: 
.3,2,1,0,0)0,( == ixv i                                                           (57)  

The solutions of Eqs. (54)-(56) may be written as follows: 
.3,2,1,0)0,( == ixv i                                                                (58)  

In the same manner, the rest of components were obtained by using the Maple Package. 
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(c)                                                                             (d) 

Fig2. The numerical result of the exact solution u(x,t) of Eq. (43) with HPM when 718281828.2=e ,  which is 
equal to the obtained results of VIM and ADM. (c) is the figure of 2D for exact solution and (d) is the figure of 3D for 

exact solution. 

5.0=x

According to the HPM, we can conclude: 
K++==

→
),(),(),(lim),( 101

txvtxvtxvtxu
p

                                          (59)  

therefore, 
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)sin(),( xttxu = ,                                                                         (60) 

which is exactly the same as obtained by ADM and VIM.  
Example 3.3. We consider an equation with the initial condition given by: 

0=+−+ xxxxxxxxxt uuuuuu , 

xexu =)0,( .                                                                                    (61)  

A variational iteration can be constructed as follows: 

.]),(

)),((),()),((),(

),([),(),(

5

5

3

3

01

ττ

ττττ

τλ

dxu
x

xu
x

xuxu
x

xu

xu
t

txutxu

n

nnnn

t

nnn

∂
∂

+

∂
∂

−
∂
∂

+

∂
∂

+= ∫+

                               (62) 

t

u(
x,

t)

1.3 1.4 1.5 1.6

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6
ADM
HPM
VIM

e =2.718281828

x=0.5

 
 (e)                                                                            (f) 

Fig3. The numerical result of the exact solution u(x,t) of Eq. (61) with HPM when 718281828.2=e ,  which is 
equal to the obtained results of the VIM and ADM. (e) is the figure of 2D for exact solution and (f) is the figure of 3D 

for exact solution. 

5.0=x

The Lagrangian multiplier is therefore identified as 1−=λ . So we have: 
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and so on. The solution   is given as : ),( txu
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     The solution  in a closed form is: ),( txu

txtx eeetxu −− ==),( .                                                                    (65)  

which is exactly the same as obtained by ADM [30] and the exact solution with HPM [31].  

4. Conclusions 
In this paper, the exact solution with HPM is equal with the obtained results with ADM and VIM. HPM 

has been successfully applied to finding the exact solutions of some nonlinear fifth-order Korteweg-de Vries 
FKdV partial differential equations with specified initial conditions. The obtained solutions are compared 
with the ADM and VIM. All the examples show that the results of  HPM are in excellent agreement with 
those obtained by ADM and VIM. So that it can be introduced to overcome the difficulties arising in 
calculation of Adomian's polynomials. VIM is to construct correction functional using general Lagrange 
multipliers identified optimally via the variational theory. But HPM does not require small parameters in the 
equation. The results show that HPM is a powerful mathematical tool for solving linear and nonlinear partial 
differential equations, and therefore can be applied in engineering. 
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