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Abstract. In this paper, we study the initial value problem of the Generalized KdV equation, define a 
nonlinear map  RK ( ) ( )( ): ,s s \H C H→\ \ ( )3s ≥ , and prove  is Turing computable for . 

Therefore, the solution of the Generalized KdV equation with arbitrary precision on Turing machines can be 
satisfied. 

RK 3s ≥
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1. Introduction 
Regardless of in daily life, or in project and scientific research, people continuously carry on 

computation. However, we carry out an in-depth study on the computability in recently several decades. At 
present, the computability of solutions of the nonlinear developed equation has become an important topic to 
mathematics and theory computer workers. The Generalized KdV equation  is an 
important equation, frequently appears in physics, hydrodynamics, biological and chemical fields. When 

, the equation is the KdV equation which describes small amplitude wave in shallow water equation, 
the magnetic fluid in cold plasma, and the wave process in biological and physical systems. Klaus 
Weihrauch and Ning Zhong have studied the solution operator of the KdV equation, and provided effective 
method for other equations in [1]. When 

0m
t x xxxu u u u+ + =

1m =

2m = , the equation is the mKdV equation which describes the 
acoustic spread of non-harmonic Lattice and the Alfen wave sport of non-collision plasma in plasma physics, 
solid physics, atomic physics, hydrodynamics and the theory of quantum, Dianchen Lu and Qingyan Wang 
have proved that the solution operator of the equation is computable in [9]. The KdV equation and the mKdV 
equation are the general form of the Generalized KdV equation. Therefore,  studing the computability of the 
solutions of the Generalized KdV equation is very important. 

2. Preliminaries 
The computability of subsets and functions on the discrete (countable) sets is usually defined by means 

of Turing machines. Both inputs and outputs of a Turing machine are finite words. In order to investigate the 
computability on uncountable sets, the Turing machines have been extended by Klaus Weihrauch so that 
their inputs and outputs can be infinite sequences as well. These machines are usually called Type 2 Turing 
machines and they can be used to define the computability on the set ωΣ  of infinite sequences in an 
analogous way while the (classic) Turing machines introduce the computability to the set . If we want to 
introduce the computability to other set D of a cardinality up to continuum, we can choose a representation 

which is simply a surjective function. That is, the representation 

*∑

: Dωδ Σ → δ assigns  (possibly infinite) 
names 

(δ -names) to each element x D∈  and transfers the computability on ωΣ straightforwardly to the set D. 
For example, an element x D∈ is called δ -computable if it has a computable δ -name. 

 In order to investigate the computability of the solution operation of various differential equations, we 
have to introduce the corresponding computability notion to the function spaces at first. In this section, we 
recall the definitions of computability on several function spaces which are necessary for our discussions. 
They essentially belong to Klaus Weihrauch and Ning Zhong. 
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Usually, we are interested in the computability on some metric spaces.  

2.1.  
If a metric space ( , )M d has a countable dense subset, we can define its effectivization as a computable 

quadruple metric space ( , , , )M d A ν in which (1) A  is a dense subset of M ； (2) *: Aν ∑⊆ →  is a 
surjective function ( so-called notation of A ); and (3) the set 
{ , , ,u v w x *: ( ) ( ( ), ( )) ( )}Q w d u v xQν ν ν ν∑∈ < < is a recursively enumerable set, where   : *Qν ∑ →_  is 
the notation of the rational numbers. In a computable metric space  ( , , , )M d A ν we can introduce the 
computability to the following Cauchy representation :C Mωδ Σ →  which is a surjective function such that 

( )C p xδ = if and only if with0 1 2# # #p w w w= " ( )iw dom ν∈  and the sequence { ( )}iwν converges 

effectively to x  in the sense that ( , ( )) 2 i
id x wν −≤ for all i∈` . 

2.2.  
The Cauchy representation 2L

δ of the computable metric space 2
2( ( ), , , )

L L
L d 2σ ν\ for any 

p ω∈Σ , is a 2 ( )g L∈ \ 2L
δ -name of g iff 0 1 2# # #p w w w= " with 2(i )

L
w dom ν∈  and 

for all ,where 2 ( ) 2 i
iL

w gν −− ≤& & i∈` ( )2L \ = ，

，

( ) ( )
1/ 2

2
{ |f x f x dx

⎛ ⎞
< ∞⎜ ⎟

⎝ ⎠
∫
\

}

2L
&( )2 ,

L
d f g f g= −& σ is the set of all rational finite step functions and 2L

v is a notation of σ . 

2.3.  
The Sobolev space is the set of all functions ( )sH \ ( )2f L∈ \  such that ( )sT f 2 ( )L∈ \ ,where       

( )( ) ( ) ( )( ) ( )/ 22 2: 1 | |
s

sT f F f Lξ ξ ξ= + ∈ \  

is a weighted Fourier transform of f with weight ( ) / 221 | |
s

ξ+ , ( )( )F f ξ denotes the Fourier transform 

of f . A infinite word  p ω∈Σ is a sH
δ -name of f ( )sH∈ \ , iff is a p 2L

δ -name of the weighted Fourier 

transform . ( )sT f 2 ( )L∈ \

2.4.  
Let be the Schwartz space defined by  ( )S \

( ) ( ) ( ) ( ){ : , ,sup | |
x

S C x xβαφ α β φ∞

∈
= ∈ ∀ ∈ < ∞

\
\ \ ` }  

(1) The representation of the Schwartz space( ):s Sωδ ⊆ Σ → \ ( )S \ : for any ( )Sφ ∈ \ and ,p q ω∈Σ ， 

( ) ( ), p
s q p pδ φ δ∞= ⇔ = φ for 0 1 2# #q u u u= " , where  and ( )ku dom v∈ `

( )

( ) ( )
| | , ,

sup | | 2ji n

x v u i j n
x xφ −

≥ < >
≤

`

. 

(2) is the Cauchy representation of the computable metric space 

,where 

( ):sc Sωδ ⊆ Σ → \

( )( )*, , , p
sS d v∞Ρ\ *Ρ is the set of the truncated polynomials with rational coefficients and pv∞ is the 

notation of . *Ρ

(3) A infinite word p ω∈Σ is SH
δ� -name of f , iff 0 1, ,p p p= " with ( )i sp dom cδ∈ and 

. ( ) 2 i
sc i sp fδ −− ≤& &

2.5.  
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)( )( : sC H\ \ is the set of all continuous functions from \ to ( )sH \ , and [ ]sH
ρ δ→  is a 

representation of ( )( ): sC H\ \ . 

3. Main Result 
For rigorous notation we occasionally write ( , ) : ( )( )u x t u t x= , the functions 

. ( )( )( ) : : su t C H→\ \ \

The initial value problem (IVP for short) of the Generalized KdV equation on the real line , \
0m

t x xxxu u u u+ + =      ( , )t x∈\  

( ) ( ),0u x xϕ=                                                                      (1) 

we establishes a nonlinear map from the initial dataRK ( )sHϕ∈ \ for to the solution 

, defined by . In this section, we shall prove our main result: 

3s ≥

( )( : su C H∈ \ \ ) u( )RK ϕ =

Theorem3.1 The solution operator RK ( ) ( )( ): :sH C H→\ \ \s

)H s ⎤⎦

of the initial value problem (1) is 

-computable for any integer . ( ,
H sδ ρ δ⎡ →⎣ 3s ≥

  The following equivalent integral equation of the initial value problem (1) 

 ( ) ( ) ( )( ) ( ) ( )( )( )( )11 1

0
1

1
t md

dxu t F E t F F E t F u dmϕ τ τ
+− −= ⋅ − − ⋅+ ∫ τ                        (2) 

where ，( )( ) ( ) ( )( ) 3
u t : , , : ix tx u x t E t x e= = ( )( ) ( )1

2
ixF x e ξ dϕ ϕ ξ ξ

π
−= ∫

\

. 

In the iterative, we show that the following iterative sequence with the initial dataϕ  : 

( ) ( ) ( )( )1
0V t F E t F t−= ⋅  

( ) ( ) ( ) ( )( )( )( )11
1 0 0

1
1

t m

j j
d
dxV t V t F E t F V dm τ τ

+−
+ = − − ⋅+ ∫ τ                                (3) 

The iterative sequence (3) is contracting near 0t = , thus the sequence converges to a unique limit. 
Since the limit satisfies the integral equation (2), it is the solution of the initial value problem (1) near 0t = . 
To prove that the solution operator is computable, we need to construct a type-2 Turing machine whose 
structure sees [1]. 

Firstly, we define the operator 

( ), ,S u tϕ = ( ) ( )( ) ( ) ( )( )( )( )11 1

0
1

1
t md

dxF E t F F E t F u dmϕ τ τ
+− −⋅ − − ⋅+ ∫ τ  

which is [ ]( , , , )s s sρ δ δ ρ δ→ -computable. This follows Lemma 3.2 in [8] straightforwardly. 

Therefore, the function  ( )( ) ( ), : , ,S u t S u tϕ ϕ= is [ ] [ ]( ), ,s s sρ δ δ ρ δ→ → -computable. Then we define 

the function ( ) ( )( ):: C Sv S × →\ ` \ \ by 

( ) ( )
( ) ( )( )

,0 0,

, 1 , ,

v S

v j S v j

ϕ ϕ

ϕ ϕ ϕ

=

+ =
 

it is easy to verify that is v [ ]( ),,s sδ γ ρ δ→` -computable. 

Proposition 3.2 If is the solution of the IVP (1), then there is a computable function 
such that  

( , )u x t
:e × × →` \ \ \
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( ) ( )
0
sup , s

s T s
t T

u x t e ϕ
≤ ≤

≤& & & &  

where , is an integer and . ( ) ( ): , ,s
Te r e s T r= s 3s ≥

Proof. see [3]. 

Proposition3.3 0 0v S ϕ=： （ ， ），and ( )1 : ,j jv S v ϕ+ = . If  

( )
1 ( 1) / 21 22 3 mm s m

T sa T T ϕ++ + & & ( )
1

28 3 1s
T sT d T ϕ+ + ≤& & ,  

then we have 

( ) ( ) ( )1/ 21 12 3j j j
s sv t v t T ϕ+ − −− ≤ +& & & &  

where 

( )( ) ( )( )21 11 21 2 1 1+
m ss s

T T s
d s e Tϕ

− +⎡ ⎤= + ⋅ + ⋅⎢ ⎥⎣ ⎦
,

1
22 1s s

Ta s T= ⋅ ⋅ + , 0 t T≤ ≤ , ( )sHϕ∈ \ . 

Firstly, we need to construct the space. Let T>0, the continuous function ( ): su Y H→ \  with  

[ ]0,T Y⊆ , define 

( ) ( )1,
0
sup ,s

T st T
u u t

≤ ≤
Λ = i  

( ) ( )( )
1

2 21

02,
sup ,

Ts s
xT x

u D u x t+

∈
Λ = ∫

\
dt  

( ) ( )( )
1

2 2

3, 0
sup ,s

T t T
dxu u x t

≤ ≤
Λ = ∫\  

( ) ( )( ) ( )( ) ( )( )
1

2 2 22

1, 2, 3,
: :s

T

s s s s
T TX T T

uu u u u⎛ ⎞= Λ = Λ + Λ + Λ⎜ ⎟
⎝ ⎠

 

Then [ ] ( ) ( )({ )}0, ; ;s s s
TX u C T H u= ∈ Λ < ∞\ T is a Banach space with the norm s

TX
u . 

Lemma 3.4 If ，0T > s
Tu X∈ , ( ) ( )

0
sup , s

s T
t T

u x t e ϕ
≤ ≤

≤& & & s& , then we have 

1
2

0
s s
T T

T m s
x T X Xs

u u dt a T u u≤∫  

where ( )( ) ( )( )21 11 21 2 1
m ss s

T T s
d s e Tϕ

− +⎡ 1= + ⋅ + ⋅ +⎢⎣
⎤
⎥⎦

,and ( )s
T se ϕ& & is the same form as Proposition 

3.2. 
Proof. For  3s ≥

( ) ( )( ) ( )( ) ( ) ( 1)

1

s i s is m s m m s
x x i x

i

D u u u u u u− +

=

= +∑  

( ) ( ) ( )( ) ( ) ( )1 1

1

, ,
s

i s i ss m s m
x x i x

i

D u u Q u u u u u u− + +

=

≤ +∑ & & & & "& & & & & && &  

where Q  is the polynomials about  (see [3]). ( ), , i
xu u u"

Since ( ) ( ) kk kf Ff Ffξ= = ,  ( )22 21 1s ssξ ξ ξ+ + + ≤ +…    

( )( )m m s m
x x xs

u u s u u D u u≤ + x    
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       ( ) ( )( ) ( )1 1

1

, ,
s

i s is m
i x x

i

s Q u u u u s u u s u u− + +

=

≤ +∑ & & & & "& & & & & && &s m+  

       ( )
( ) ( )

1
112

1

2 1
s i i

ss m m
i s s

i

s u s u
+

++

=

⎛ ⎞≤ + +⎜ ⎟
⎝ ⎠
∑ & & & & & &u  

       ( )( ) ( )
( ) ( )

11 12

1
1 2 1

s i im ss s
T i s s ss

i

s e u u u uϕ
+− +

=

⎡ ⎤⎛ ⎞≤ + ⋅ + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑ & & i& & & & i& &  

We know ( ) (
0
sup , s )s T

t T
u x t e ϕ

≤ ≤
≤& & & s& ，by proposition 3.2, the lemmma follows straightforwardly. 

Proof.(of Proposition 3.3) Let 
31 ˆ( ) ( )

2
ix i tW t e e dξ ξϕ ϕ ξ ξ

π
= ∫\  

Since (0 10 :j jv S S v ),ϕ ϕ+= =： （ ， ），v , by Lemma 3.4 and Lemma 4.9,4.10 in [1], for , 1j ≥

 ( ) ( ) ( ) 11

0

1
1S s

T T

t mj j
X X

x
v W t W t v d

m
ϕ τ

+−⎛ ⎞⎡ ⎤= − − ⎜ ⎟⎢ ⎥⎣ ⎦+ ⎝ ⎠∫& & & &τ

s d

 

            ( ) ( ) ( )1/ 2 1/ 2 1 1

0
3 3

mT j j
s xT T v vϕ τ− −≤ + + + ∫& & & &  

    ( ) ( )1/ 2 1/ 2 1/ 2 1 23 3 s
T

s j
s T X

T T d Tϕ −≤ + + +& & & &v  

Let  such that 0T ≥ ( ) ( )
1 1( 1) / 21 2 22 3 8 3mm s m s

T s Ta T T T d Tϕ ϕ++ + + +& & & & 1s≤ , 

from ( ) ( )1/ 20 3s s
T T

sX X
v W t Tϕ ϕ= ≤ +& & & & & & , we obtain by induction 

( )1/ 22 3s
T

j
sX

v T ϕ≤ +& & & & ( )j∀ ∈`    

Then by Lemma 4.8 in [1] 

( ) ( ) ( )1 11 1 2

0

1
1s s

T T

t m mj j j j
X X

x x
v v W t v v d

m
τ τ

+ +− − −⎛ ⎞⎡ ⎤ ⎡ ⎤− = − −⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦+ ⎝ ⎠∫& & & &  

      
( ) ( ) ( ) ( )1/ 2 1/ 2 1 2 1 2

1

1 3
1 s s

T T

im m is j j j j
T X Xx

i
T a T v v v v

m
−− − − −

=

≤ + −
+ ∑& & & &

 

   ( )
1 ( 1) / 2 1 222 3 s

T

mm s m j j
T s X

a T T v vϕ+ − −≤ + −& & & &  

          1 21
2 s

T

j j
X

v v− −⎡ ⎤≤ −⎣ ⎦& &   

If ( ) ( )
1 1( 1) / 21 2 2 1sϕ ≤2 3 8 3mm s m s

T s Ta T T T Tϕ α++ + + +& & & & 0 t T, ≤ ≤ , we obtain the result that  

( ) ( ) ( ) ( ) ( )1/ 21 1 12 3s
T

j j j j j
s sX

y t y t y t y t T ϕ+ + − −− ≤ − ≤ +& & & & & &  

Proposition 3.5 If ( ) ( )( )
1 1( 1) / 21 2 22 3 ( 1) 8 3 1mm s m s

T s Ta T T T Tϕ α ϕ++ + + + +& & & & 1s + ≤ , we have 

( ) ( ) ( )
1

22 3n n ss
v t v t T ϕ ϕ− ≤ + −  

where ( )( ) ( ) 1
21 2 2 1s s s s

T T s
d e s Tϕ= + ⋅ ⋅ ⋅ + ⋅ 1+  ，

1
22 1s s

T Ta s ⋅ ⋅ + , . 0 t T≤ ≤=

Proof. Since  
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( ) ( )( ),v t S v tϕ= ，  

( ) ( )( ),n n nv t S v tϕ= ( )( ) ( ) 1 1

0

1
1s s

T T

t m m
n n nX Xx

v v W t W t v v d
m

ϕ ϕ τ τ+ +⎡ ⎤− = − − − −⎣ ⎦+ ∫& & & &  

         ( ) ( ) ( )
1 11/ 2 1/ 2 1 2

0

1 3
1 s s

T T

im m is j j
T n nX X

i
T a T v v v v

m

− − −− −

=

−
+ ∑& & & & ( )1/ 23 n sT≤ + ϕ ϕ+ + −& &  

By proposition3.3, if ( ) ( ) ( )( )
1 1( 1) / 21 2 22 3 1 8 3 1m mm s s

T s Ta T T T Tϕ α ϕ++ + + + +& & & & 1s + ≤ （ notice 

that 1n s sϕ ϕ≤& & & & +

X
v v T

）, then 

( )1/ 23s
T

n n sϕ ϕ− ≤ + −& & & &   ( ) ( ) ( )1/ 2 1/ 2 1 2

0

1 3
1 s s

T T

im m is j j
T n nX X

i
T T v v v v

m
α

−− −

=

+ + −
+ ∑& & & &  

( ) ( ) ( )
11/ 2 ( 1) / 223 2 3 1 s

T

m mm s
n s T s n X

T a T T vϕ ϕ ϕ+≤ + − + + + −& & & & & v &  

( )1/ 2 13
2 s

T
n s n X

T vϕ ϕ≤ + − + −& & & v &

n s

 

Therefore ( )1/ 22 3s
T

n X
v v T ϕ ϕ− ≤ + −& & & & , the sequence {  is uniform convergence. }nv

Proof. (of Theorem 3.1) For a given initial value ( )sHϕ ∈ \ and a rational number 0T > we will show 

how to compute the solution of the initial value problem (1) at the time( )u t 0 t T≤ ≤ . For this purpose, we 
first find some appropriate rational number T such that 0 T T< < and show how to compute from 

and
( )u t

t′ : (u t )ψ ′=  at the time interval[ , ，]t t T′ ′ + 0 t T′≤ ≤ by a fixed point iteration. Using this method, we 
can compute the values successively for  ( / 2 )u T m 1, 2,m = " and finally for any ( )u t 0 t T≤ ≤ . 

If , ,and define0m
t x xxxu u u u+ + = ( ) (,u x t xψ′ = ) ( ) ( ), : ,v x t u x t t ′= + , then  

0m
t x xxxv v v v+ + =    , 0x t∈ ≥\  

( ) ( ),0v x xψ=                                                                      (4) 

We assume that the initial value ( )sHψ ∈ \ is given by a
H sδ� -name, i.e., by a sequence 0 1,ψ ψ " of 

Schwartz functions such that 2 n
nψ ψ −− ≤& & .For any n∈` , we define 

function 0 1, ,n nv v " ( )( ):C S∈ \ \ by 

( )0 : 0,n nv S ψ=    ( )1 : ,j j
n nv S v nψ+ =  

We note that the sequence { }j
nv can be computed from nψ . By Proposition 3.3, the iterative sequence 

converges to some , then is the fixed point of the iteration0 1, ,n nv v " nv nv S and satisfies the following 
internal equation: 

( ) ( ),n nv t S v nψ=
  

( ) ( )( ) ( ) ( )( )( )( )11 1

0
1

1
t m

n n
d
dxF E t F F E t F v dmψ τ τ

+− −= ⋅ − − ⋅+ ∫ τ  

hence solves the initial value problem: nv

3 0mn n n
n

v v vv
t x x

∂ ∂ ∂
+ +

∂ ∂ ∂
=     ( ) ( ),0n nv x xψ=  

By Proposition 3.5, we show that, by a contraction argument, for some sufficiently small computable real 
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number  (depending only on 0T > T and ϕ ), ( ) ( )j

n nv t v t→  as j →∞  for all , and n ( ) ( )nv t v t→  as 
, sufficiently fast and uniformly inn →∞ [0, ]t T∈ . We recall that v is the solution of the initial value 

problem (4). Then we can effectively determine a computable subsequence of the double 
sequence{ }j

nv which converge fast to uniformly in v [0, ]t T∈ . 

Since is the limit of a fast convergent computable sequence, v itself is computable. So 
is 

v
( ) (: ,RK t uϕ → )t )( , ,

H Hs sδ ρ δ  - computable for , define the reflection 0t ≥ ( ) ( ):R S S→\ \ , 

is( )( ) ( ):R xψ ψ= −x )( ,
H Hs sδ δ  - computable. Let ( )( ) ( )( ):x u t x′u t = − − , then  

and for , 

0m
t x xxxu u u u′ ′ ′ ′+ + =

0t ≥ ( ) ( ) ( )( ) ( )( )0 , ,R Ru t R u t R K u t R K R tϕ′ ′− = = =D D D , i.e, ( ) ( )( ),Ru t R K R tϕ= −D  

for . Therefore, as the join at 0 of two computable functions,  is computable for t . (see e.g. 
Lemma 4.35 in [1]). 

0t ≤ RK ∈\

Thus, we prove the main result, can see that the machine searches fast approximations to , and 
computes the solutions of the Generalized KdV equation with arbitrary precision. This approach can be 
extended to other nonlinear equations. 

( , )u x t
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