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Abstract. An iterative projection algorithm by adopting Armijo-like line search to solve the convex 
feasibility problem (CFP) is presented and the convergence is shown under some conditions. Moreover, as a 
by-product, the unfixed stepsize factor is not confined to the interval (0, 2). A numerical test is listed and the 
results generated are really impressive, which indicate the line search method is promising. 
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1. Introduction 
A very common problem in diverse areas of mathematics and physical sciences consists of trying to find 

a point in the intersection of convex sets which is referred to as the convex feasibility problem (CFP); There 
are many applications, especially in the field of image restoration (see, for instance, [9,14-15]). The convex 
inequality problem, is to find solution of the set: 

{ : ( ) 0, 1, ,n
iX x R g x i m= ∈ ≤ = … , 

where  are convex functions and ig X  is nonempty. It is a certain instance of CFP. It is well known that 
some convex programming problems can be transformed into an equivalent system of convex inequalities 
and linear equations through the use of the Karush Kuhn Tucker conditions. Iterative projection algorithms 
have been highly recommended for solving this problem, and many well-known iterative algorithms for 
solving it were established; see [1-3, 6, 8,10, 12-13]. 

Denoted by , the orthogonal projection onto C, that is, minimizesCP ( )CP x c x−  over all c C∈ . 

Typically one iteration for solving the CFP of finding ,x X∈ where X  is a nonempty closed convex set, is 
given by 

1 ( ( ) )
k

k k k k
k Sx x P x xω+ = + − ,                                                                (1) 

where 0＜ kη ω≤ 2 η≤ − ,with 0＜ 1η ≤  and  is the projection of ( )
k

k
SP x kx  on the closed set kS X⊇ . At 

each iteration we define a working set of inequalities  and perform a projection on  {1, , }kQ ⊆ … m

∈

                                                          

kS ={ }. : ( ) , 0,n k k k
i ky R g x y x i Qξ∈ + 〈 − 〉 ≤

The projection  is a quadratic programming problem that can be solved efficiently. (.)
kSP

We notice some other previous algorithms use a fixed stepsize, which sometimes affects convergence of 
the algorithms. In this paper, we modify the projection algorithm by adopting Armijo-like line search, which 
is popular in iterative algorithms for solving nonlinear programming problems, variational inequality 
problems and so on [5,11,16]. The proposed algorithm makes an accelerated convergence to the solution of 
CFP. Moreover, the unfixed stepsize factor is not confined to the interval (0, 2). We also show convergence 
of the proposed algorithm under reasonable assumptions. 

The rest of this paper is organized as follows. Section 2 reviews some concepts and exiting results. 
Section 3 gives a modification on the iterative projection algorithm and shows its convergence. Section 4 
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gives numerical test. Section 5 gives some concluding remarks. 

2. Preliminaries 
In this section, we review some definitions and basic results which will be used later on. 

Definition 2.1.  Let F be a mapping from set nX R⊂ into nR . Then 
(a) F is said to be Lipschitz continuous on X  with constant 0,λ > if 

( ) ( ) ,F x F y x yλ− ≤ −    ,x y X∀ ∈ ; 

(b) F is said to be uniformly monotone on X  with modulus 0,δ > if 
2( ) ( ), ( ) ( ) ,F x F y x y F x F yδ〈 − − 〉 ≥ −     ,x y X∀ ∈ . 

Definition 2.2.  For any nx R∈ , subdifferential of g  at  is defined as follows: x

( )g x∂ ={ : ( ) ( ) ,nR g z g x z xξ ξ∈ ≥ + 〈 − 〉 , nz R∀ ∈ }. 

It is true that subdifferential is (uniformly) bounded on nR . 

For the given nonempty closed convex subset in nR , the orthogonal projection from nR  onto X  is 
defined by  

( ) arg min{ },XP y x y x X= − ∈     ny R∈ . 

It has the following well-known properties. 

Lemma 2.1 (see [17]).  Let X be a nonempty closed convex subset in nR , then for any , ny z R∈  and 
, x X∈

(1)   ( ), ( ) 0;X Xy P y P y x〈 − − 〉 ≥

(2) 2( ) ( ) ( ) ( ), ;X X X XP y P z P y P z y z− ≤ 〈 − − 〉  

(3) 2 2( ) ( ) .X XP z x z x P z z− ≤ − − − 2  

Lemma 2.2 (see [1]).  Let X  be a nonempty closed convex subset in nR , for some certain x X∈  and 
 define  ,nd R∈

( ) : ( ),XH a P x ad= −   a 0, ≥
we have  

(1)    ( ) , ( ) 0,H a x ad y H a〈 − + − 〉 ≥ , 0y X a ;∀ ∈ ≥  

(2) 
2( )

, ( )
x H a

d x H a
a

−
〈 − 〉 ≥ .   

Toint in [7], Gafni and Bertsekas in [4] give the following projection properties, respectively: 

Lemma 2.3.  Let X  be a nonempty closed convex  subset in nR , for any x X∈  and  ,nd R∈

(1) ( )x H a−  on  is nondecreasing; 0a ≥

(2) 
( )x H a

a
−

 on  is nonincreasing. 0a >

From Lemma 2.1, we know that  is Lipschitz continuous ( with constant 1 ) 
(i.e.,

XP
( ) ( )X XP y P z y z− ≤ − ) (see [17]) and uniformly monotone ( with modulus 1). 

Let F be a mapping from nR  into nR . For any nx R∈  and , define 0a >
( ) ( ( ))Xx a P x aF x= − ,  ( , ) ( )e x a x x a= − ,  ( , ) ( , )r x a e x a= . 
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Remark 2.1.  ( , )e x a  on  is nondecreasing and 0a >
( , )e x a

a
 on  is nonincreasing.  0a >

Lemma 2.4.  Let F be a mapping from nR  into nR . For any nx R∈  and , we have 0a >
min{1, } ( ,1) ( , ) max{1, } ( ,1)a e x e x a a e x≤ ≤ . 

3. A Modified Iterative Projection Algorithm and its Convergence 
In this section, we establish a projection algorithm. First, we assume the following conditions are 

satisfied: 
(1) The set X  is given by: 

X ={ : ( )nx R g x 0}∈ ≤ , 

where 1( ) max { ( )}ii mg x g≤ ≤= x  and g: nR R→  is convex and X  is nonempty. Obviously, where  

are convex and {1 is an index set, may be regarded as equivalent to the single inequality 

( )ig x
, , }m… ( ) 0g x ≤  

with 1( ) max { ( )}ii mg x g≤ ≤= x .  

(2) For any nx R∈ , at least one subgradient ( )g xξ ∈∂  can be calculated.  

Now we give the algorithm. 

Let 0x  be arbitrary. For  calculate (1), 0,1, ,k = …

{ : ( ) ,n k k k
kS x R g x x xξ= ∈ + 〈 − 〉 ≤ 0} , 

where 
kξ  is an element in ( )kg x∂ . 

By the definition of subdifferential, it is clear that half space  contains kS X . From the expression of , 
the orthogonal projection onto  can be calculated efficiently. 

kS

kS

For every , using  we define the function : k kS kF n nR R→  by 

( ) ( ) ( )k k ks sF x x P x I P x= − = − . 

Remark 3.1.   is Lipschitz continuous on kF nR  with constant 1 and uniformly monotone on nR  with 
modulus 1, where I denotes the identity operator. 

Algorithm 3.1.  Let 0x  be arbitrary. For 0,1,k = … , if kx  is not in the solution of CFP, let 
1 ( )k k k

k kx x a F x+ = − ,                                                                      (2) 

where km
ka lγ=  with 0,γ >   and  is the smallest noninteger such that  (0,1)l∈ km

1( ) ( )k k
k kF x F x+ − ≤

1k k

k

x x
a

µ
+ −

,  (0,1)µ ∈ .                                            (3) 

By Algorithm 4.1,  depend on , and from Remark 4.1, Armijo-like line search rule (3) is well 
defined. 

kS k

Lemma 3.1.  let kx  is given by Algorithm 4.1. For any *x X∈ , we have 

     1 *( ),k k
kF x x x+〈 − 〉 ≥ 1( ),k k k

kF x x x+〈 − 〉 ≥
21(1 ) k k

k

x x
a
µ +−

−  .                          (4) 

Proof.  Obviously that *
kx S∈  and *( )kF x =0 for all 0,1, .k = …  

By the monotonicity of  (Remark 4.1), we have for all kF 0,1,k = … , 
* *( ) ( ),k k

k kF x F x x x〈 − − 〉 0≥ , 
this implies 
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                    *( ), 0k k
kF x x x〈 − 〉 ≥ .                                                                        (5) 

Also, 
*( ),k k

kF x x x〈 − 〉 = 1 * 1( ),k k k k
kF x x x x x+ +〈 − + − 〉  

                                            = 1 *( ),k k
kF x x x+〈 − 〉 − 1( ),k k k

kF x x x+〈 − 〉 0≥ , 
Therefore, we have 

1 *( ),k k
kF x x x+〈 − 〉 ≥ 1( ),k k k

kF x x x+〈 − 〉 . 

Moreover, by Lemma 2.2 and (3), we have 
1 *( ),k k

kF x x x+〈 − 〉 ≥ 1( ),k k k
kF x x x+〈 − 〉  

                                               = 1 1( ),k k k
kF x x x+ +〈 − 〉 − 1 1( ) ( ),k k k

k k
kF x F x x x+ +〈 − − 〉  

                                              

21 1
1 . .

k k k
k k

k k

kx x x
x x

a a
µ

+ +
+

− −
≥ − −

x
 

                                               =

21

(1 ).
k k

k

x x

a
µ

+ −
− .                         ,  

Lemma 3.2.  kl aµ γ≤ ≤ , for all . 0,1,k = …

Proof.  Obviously, km
ka lγ γ= ≤  for all 0,1,k = … . If ka γ= , the lemma is proved. If ka γ< , from 

the search rule (3), we know that ka
l

 must violate this inequality, i.e., 

( (
( ) ( ( ))

k k kk
k

k k kk
k k k

k

ax x F x
a lF x F x F x al

l

µ
− −

− − >
))

. 

By virtue of Remark 4.1, we have 
                                                                                                  kl aµ ≤ .                                    ,  

  Now, we establish global convergence of Algorithm 4.1. 

Theorem 3.1.  Let { }kx  be a sequence generated by Algorithm 4.1. If the solution set of the CFP is 
nonempty, then { }kx  converges to a solution of the CIP. 

Proof.  Let  be a solution of the CIP. By (2), (4) and (5), *x

                                  
21 *kx x+ − =

2*( )k k
k kx a F x x− −  

                                                       
2 2* 1( ) ( )k k k k

k k k kx a F x x x x a F x+= − − − − + k  

                                                        =
2*kx x− *2 ( ),k k

k ka F x x x− 〈 − 〉 12 ( ),k k k
k ka F x x x+− 〈 − 〉

21k kx x+− −  

                                                      ≤
2*kx x− 12 ( ),k k k

k ka F x x x+− 〈 − 〉
21k kx x+− −  

≤
2*kx x−

21(1 )2 . k k
k

k

a x x
a
µ +−

− −
21k kx x+− −  

                                                       =
2*kx x−

21(3 2 ) .k kx xµ +− − −  

Then, we have 

        
21 *kx x+ −

2 2* 1(3 2 )k k kx x x xµ +≤ − − − − 0,1, ,, for all k = …                             (6) 

which implies the sequence 
2*{ kx x− } is monotonically decreasing and hence { }kx is bounded. 
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Sometimes we conclude 
2 2 21 * 1 *

0 0

(3 2 ) { }k k k k

k k

x x x x x xµ
∞ ∞

+ +

= =

− − ≤ − − −∑ ∑ < +∞ . 

Consequently, we get 

                    1lim 0k k

k
x x+

→∞
− = .                                                           (7) 

Assume that �x  is an accumulation point of { }kx  and
 

�lim ,i

i

k

k
x x

→∞
=  where { }kx is a subsequence of 

{ }kx .The main purpose of the remaining part of the proof is to show that �x  is a solution of CFP. 

First we show that �x X∈ . If by Lemma 2.4 and (7), we have min 0,
ika a≥ >

�
{ }

1

min

( ,1) lim ( ,1) lim 0
min 1,

i i

i

i i

k k
k

k k

x x
e x e x

a

+

→∞ →∞

−
= ≤ = . 

On the other hand, if { }  by Lemma 2.3 and the monotonicity of  (Remark 4.1), according to 

Armijo-like line search, for sufficient large , 

0,
ika → kF

ik

1( , )
( ,1) 1

i

i

i

i

k
k

k

k

e x a
e x

a

γ

γ

≤ = *( ) ( ) ( )i i

i i i

k k
k k kF x F x F x= −  

                                                           *ikx x≤ − . 

Then, it follows 
�( ,1)e x = lim ( ,1)i

i

k

k
e x

→∞
≤ *lim i

i

k

k
x x

→∞
− =0. 

Therefore, we conclude that �x X∈ .  

Thus, we may use �x  in place of  in (6), and obtain that *x
2

{ k }xx − � is convergent. Because there is a 

subsequence 
2

{ }ik xx − �  of 
2

{ k }xx − �  converging to 0, then  

                                                                                                  �lim k

k
x x

→∞
= .                                    ,  

4. Numerical Test. 
Example. Let: 

1 1 2 3 4( ) 2 4 5g x x x x x= − − − − 0,    ≤  

2 1 2 3 4( ) 3 7 2 1g x x x x x= − + − +   0,≤  

3 1 2 3 4( ) 5 2 6 15 0,g x x x x x= − − − − + ≤  
2

4 2 1( ) ( 2) ( 1)g x x x= − + −        0,≤  
4

5 1 2( ) ( 2) ( 2)g x x x= − − +       0.≤  

Initial point  0 (100, 100, 100, 100).x =
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Table 1 Iterative projection algorithm 
1( )
2

ω =  

Number of processors                 kx                                                   ( ){ }1, ,5max ii g x= …  

                               0               (                                         92236714.0000  100, 100, 100, 100)
                               1             (100.0000, 170.1000, 100.0000, 240.2000) 92236643.3000
                                     (           89047180.  2 99.1416, 169.2415, 99.1416, 239.3417) 7819
                               3       (           72901699.  94.4027, 164.5027, 94.4027, 234.6028) 6898
                                     (           52389380.  4 87.0768, 157.1768, 87.0768, 227.2769) 0000
                               5       (           33408054.  78.0262, 148.1262, 78.0262, 218.2263) 3533

     6                 14453886.  (63.6591, 133.7592, 63.6591, 203.8593) 7008
       7       (            3662747.  45.7477, 115.8478, 45.7477, 185.9479) 0567
       8                     (25.4735, 95.5736, 25.4735, 165.6737) 303509.1593

                               9                         75.  (3.6240, 73.7241, 3.6240, 143.8242) 9855
                              10       (                   1.3132, 71.4133, 1.3132, 141.5134) 69.1982

10 runs. 
 

Table 2 Iterative projection algorithm (Armijo-like line search) 

Number of processors              kx                                                      ( ){ }1, ,5max l
l g x= …  

                                                                                      92236714.0000  0 (100, 100, 100, 100 )
                                1              (100.0000, 107.0100, 100.0000, 114.0200) 92236706.9900
                                                     43025375.  2 (82.9900, 90.0000, 82.9900, 97.0100) 2963
                                                      16082097.  3 (65.3266, 72.3366, 65.3266, 79.3466) 0359
                                                     4431323.  4 (47.8812, 54.8912, 47.8812, 61.9012) 9175
                                                       5 (30.3630, 37.3730, 30.3630, 44.3830) 647116.1469
                                       (                    16.  6 4.3288, 11.3388, 4.3288, 18.3487) 0735
                                       (                       7 0.8515, 7.8618, 0.8585, 14.8717) 6.0324
                                8        (                       1.3773, 7.8618, 1.3773, 14.8717) 5.6269
                                       (                     1144.  9 7.8289, 7.8618, 7.8289, 14.8717) 5119
                                10       (                       0.7311, 0.7640, 0.7311, 7.7738) 0.1716−  
 

10 runs. 
Tables 1 and 2 show the  ( )ig x ( 1, ,5i )= …  can attain the maximal values when the number of 

processors increased. After 10 processors, Table 1 gives the results obtained still larger than zero, which 
indicate the iterative point is not in the solution of CIP; Table 2 shows after 10 processors the 

 is smaller than zero, which implies the iterative point has been in the solution of CIP. The 
results obtained in Table 2 with Armijo-like line search are really impressive. 

1, ,5max { ( )}i ig x= …

5. Concluding Remarks 
In this paper, a modified iterative projection algorithm with Armijo-like line search for solving the 

convex inequality problem has been presented. It uses an unfixed stepsize factor related to Armijo-like line 
search to force an accelerated convergence to the solution of CFP. The corresponding convergence properties 
have been established. Lemma 4.2 shows that the unfixed stepsize factor is not confined to interval (0, 2), 
which is rather a surprising property. Also in forthcoming papers there are better algorithms for solving the 
convex feasibility problem. 
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