
 ISSN 1746-7659, England, UK 
Journal of Information and Computing Science

Vol.3, No. 1, 2008, pp. 69-72 

                                                          

Permanent: Evaluation by Parallel Algorithm  

 K. Somasundaram 1+,  S. Maria Arulraj 2  
1 Department of Mathematics, Amrita Vishwa Vidyapeetham, Coimbatore-641 105, India. 

2 Principal, Selvamm Arts and Science College, Namakkal-637 003, India. 

(Received April 13 2007, accepted December 20, 2007) 

Abstract.  Permanent of a matrix is # p-hard problem shown by many authors. In this paper we present a 
parallel algorithm for evaluation of permanent of an  n×n  matrix with multi-processors.  
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1. Introduction  

Let A = (aij) be an m × n matrix, m ≤ n. The permanent of A is defined by Per(A) = , where 

the summation extends over all one-to-one functions σ from (1,2,...,m) to (1,2,...,n). The sequence        (a

∑ σΠ
=σ

(i) ia 
m   

1i   
1σ 

(1), ..., anσ (n)) is called a diagonal of A and the product  is a diagonal product of A. Thus per(A) is 

the sum of all n! diagonal products of A. The adjacency and incidence matrices of a graph G are denoted by 
A(G) and X(G) respectively. If A(G) is an adjacency matrix of a bipartite graph G, then the permanent of A(G) 
is number of perfect matching in G.  

(i) ia 
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1i   
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=

The evolution of permanent has attracted the attention of researchers for more than two centuries 
beginning with Binet and Cauchy in 1812. Despite many attempts, an efficient algorithm for general matrix 
remains elusive. Ryser’s algorithm [11] remains the most efficient for computing the permanent exactly, 
even through it uses as many as O(n2n) arithmetic operations. The evaluation of permanent of any matrix of 
order n using the laplace theorem requires O((n+1)!) multiplications. Many authors [4,5,6,8,12] has 
developed various methodologies to evaluate the permanent of a matrix with less number of steps using 
approximate schemes. Valiant [12] has shown that permanent of a non-negative matrix is # p-hard, and so it 
is unlikely to be efficiently computable exactly for all matrices in polynomial time. Planar graphs provides 
the interesting class of matrices for which a polynomial algorithm of O(n3) is known [7]. Linial, 
Samoroditsky and Wigderson [8] have shown a deterministic strongly polynomial algorithm that computes 
the permanent of a nonnegative matrix of order n within a multiplicative factor of en. They developed the 
first strongly polynomial-time algorithm for matrix scaling - an important nonlinear optimization problem 
with many applications. Jerrum, Sinclair and Vigoda [5, 6] have given a fully polynomials randomized 
approximation scheme for computing the permanent of an arbitrary with nonnegative entries using random 
sampling and Markov chains. Chien, Rasmussen and Sinclair [2] have shown an approximating algorithm for 
permanent of (0, 1) matrix using Clibord algebra. The basic idea of the paper [2] was to obtain a random 
matrix B by replacing each 1-entry of A independently by ±e, where e is a random basis element of a suitable 
algebra; then the output is |det(B)|. Raz [10] has proved that multi-linear formulas for permanent and 
determinant are of supper-polynomials size.  

This paper is organized as follows: Section 2 describes relevant definitions and notations for a 
tournament graph. Section 3 describes details of the algorithm. In Section 4, the excremental analysis, 
discussions and conclusions are given.  
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Consider a weighted tournament graph D. Let si be a directed spanning subgraph of D. The weight w(si) 
of the spanning subgraph si is defined to be the product of the weights of the spanning subgraph si. The total 
weight W(S) = W(S(D)) = , where S is the set of all spanning subgraphs s∑

∈
ω
S

is
is

)( i of D. Any weighted 

tournament D with n vertices can be represented as n × n matrix A. The rows and columns of A represent the 
vertices of D, and if the weight of an arc (ij) is aij in D then the i, j th entry of the matrix A is aij. In other way, 
every square matrix A can be represented as a weighted tournament DA. Each diagonal product in the matrix 
A gives a spanning subgraph in DA and similarly each spanning a subgraph in DA corresponds to a diagonal 
product in A. The value of diagonal product in A is equal to the product of weights of the corresponding 
spanning subgraph in DA, that is w(si). Hence sum of all weights of spanning subgraphs in DA is equal to sum 
of all diagonal products of the matrix A. Hence per(A) = W(S(DA)).  

Example 1: Consider the weight tournament D with 3 vertices, the corresponding matrix isA   
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per(A) = W(S(DA)) = ∑
∈
ω
S

is
is

)(  = 6 + 0 + 0 + 0 + 8 + 0 = 14. 

Definition 1:  Let A be an n × n matrix.  A non vanishing diagonal product in a matrix A is said to be a 
path diagonal product (pdp), if it gives a cycle of length n in the corresponding DA. Otherwise, the non 
vanishing diagonal product is called a non path diagonal product (npdp).  

For a matrix A, the permanent of A is the sum of number of pdp’s and number of npdp’s of A.        In 
particular for any adjacency or incidence matrix of a graph G, the permanent of A is the sum of number of 
pdp’s and number of npdp’s of A. In A(G) each npdp is the disconnected spanning subgraphs of G, this is 
either 2-regular sub graphs or 2- regular sub graphs with at least one single edge or 1- factor directed 
subgraphs. Consider the graph G with a edge set E={(v1, v2), (v1, v4), (v1, v5), (v2, v3), (v3, v4), (v3, v5), (v4, v5)}. 
In A(G), the diagonal product a12a23a35a41a54 is a pdp where as the diagonal product a12a21a34a45a53 is a npdp, 
number of pdp’s is 4 and number of npdp’s is 4. Hence perA(G) = 4 + 4 = 8. 

The number of Hamiltonian cycles in a connected graph G is k if and only if number of pdp’s in A(G) is 
2k, since the k Hamiltonian cycles corresponds to 2k diagonal products in A(G), which are pdp’s in A(G). 
Also number of Hamiltonian cycles in a connected graph is less than or equal to perA(G).  

Lemma 1: If p  and p  be the number of npdp’s in A(G) and X(G) respectively,  p ≠ p , then the number 

of Hamiltonian cycles in G is
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Proof:  There are 2k  pdp’s in each of A(G) and X(G), therefore perA(G) = 2k + p  and  PerX(G) = 2k + 

p . As p  ≠ p ,  perA(G) ≠ PerX(G),
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=  gives the value of  k.

Theorem 1: The exact computation of the permanent of an n × n matrix is # p- complete.  
Proof: From the definition, permanent of an n × n matrix A is sum of pdp’s and npdp’s. Lemma 1 shows 

that the number of pdp’s is half of number of Hamiltonian cycles in the Tournament DA, and the computation 
of k is # p-complete problem. Hence the exact computation of the permanent of an n × n matrix is  # p-
complete.  

3. Algorithm 
In this section, we have shown a parallel algorithm to compute permanent of a matrix of order n. Our 

algorithm is based on recursive function. Let A = (aij) be a matrix of order n. Let r be the number of 
processors, then the kth processor, 1 ≤ k ≤ r, will find the permanent for the submatrix corresponding to the 
non-vanishing diagonal products consisting of a1k, and does the same for the non-vanishing diagonal 
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products consisting of a1(k+ir), 0 ≤ i ≤ ⎥⎦
⎥

⎢⎣
⎢ −

r
kn

, where ⎣ ⎦x  denotes the greatest integer which is less than or 

equal to x. That is, the kth processor finds the values of w(sk+ir), 0 ≤ i ≤ ⎥⎦
⎥

⎢⎣
⎢ −

r
kn

. Hence every time, each 

processor finds the spanning subgraphs, which are all either pdp’s or npdp’s in DA. The rth processor finds 
the total weight W(S) = ∑

∈
ω
S

is
is

)( , where S is the set of all spanning subgraphs si in DA.  

Function main ( ) 
      rank = Processor Id 
      r = Number of processors 
     n = size of the matrix 
If  rank  is root 
      Get matrix from the user 
      Broadcast the matrix to other processors 
       Post receive messages to receive value from all other processors 
       For I = rank : n 
              Temp = submatrix for the element matrix (1)(I) 
               If matrix (1)(I) is not zero 
                Value = matrix (1)(I) * sub(temp, size - 1) 
                 I = I + r 
        If  rank  is not root 
                 Sent the value to root 
        If  rank  is root 
        Wait until value is received from all the processors 
         Add the value received from all the processors. 
End Function 
Function sub(matrix, size) 
        If size is n 
             value = permanent of 2 × 2 matrix 
        Else 
        For I =1 : size 
             If matrix (1)(I) is not zero 
             value = value + matrix (1)(I) *subfunction(temp, size-1) 
End 

If any one of the values in the diagonal product is zero, then we skip the corresponding diagonal products 
and find the other non-vanishing diagonal products (which are either pdp’s of npdp’s). Hence the elimination 
of zeros in the diagonal products reduces the complexity further. In particular, if the matrix A is a sparse 
matrix, then the number of computations is very high. The idle time of the rth processor is dependent on the 
processing times of the other processors, also it is proportional to number of zeros in the sub matrices, the 
sub matrices are obtained by deleting the first row and (k + ir) columns of the matrix     A = (aij ), where 0 ≤ i 

≤ ⎥⎦
⎥

⎢⎣
⎢ −

r
kn

. Since the permanent of the matrix  A is invariant with respect to the pre/post multiplications of 

any permutation matrices with  A, we can distribute the zeros in  A randomly such that the idle time of the rth 
processor will be negligible.  

 

JIC email for subscription: publishing@WAU.org.uk 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22786 | Generated on 2025-04-15 10:20:29



K. Somasundaram, et al: Permanent: Evaluation by Parallel Algorithm 
 
4. Experimental Results and Conclusion 

JIC email for contribution: editor@jic.org.uk 

72 

In a sequentional procedure, the general algorithm for finding the permanent of a matrix runs in a non-
polynomial time. In this paper, we use the parallel algorithm for finding permanent of a matrix. The 

complexity of our algorithm is ⎥⎥
⎤

⎢⎢
⎡
k
n

 times the complexity in each processor. We have implemented our 

algorithm in C on Intel Pentium IV 400 Mhz PCs with 1 GB memory. 
Experimental results show that our algorithm is good. We have described a new formulation for 

evaluating the permanent of a matrix. It is shown that this algorithm is able to minimize its computational 
complexities of the procedure in evaluating the permanent of a matrix, by implementing in different clusters. 
Experimental analysis shows that, our implementation is behaving well. Though the permanent has a lot of 
applications in combinatorial problems and enumeration problems, finding the efficient way to evaluate the 
permanent is remains elusive. Developing a good sequential procedure for computing the permanent with 
minimum complexity is still open. Also finding the efficient deterministic polynomial algorithm for 
approximating permanent is one of the challenging open problems. 
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