
 ISSN 1746-7659, England, UK
Journal of Information and Computing Science

Vol.3, No. 1, 2008, pp. 69-72

Permanent: Evaluation by Parallel Algorithm

 K. Somasundaram 1+, S. Maria Arulraj 2
1 Department of Mathematics, Amrita Vishwa Vidyapeetham, Coimbatore-641 105, India.

2 Principal, Selvamm Arts and Science College, Namakkal-637 003, India.

(Received April 13 2007, accepted December 20, 2007)

Abstract. Permanent of a matrix is # p-hard problem shown by many authors. In this paper we present a
parallel algorithm for evaluation of permanent of an n×n matrix with multi-processors.

Keywords: Permanent of matrix, Parallel Algorithm.

1. Introduction

Let A = (aij) be an m × n matrix, m ≤ n. The permanent of A is defined by Per(A) = , where

the summation extends over all one-to-one functions σ from (1,2,...,m) to (1,2,...,n). The sequence (a

∑ σΠ
=σ

(i) ia
m

1i
1σ

(1), ..., anσ (n)) is called a diagonal of A and the product is a diagonal product of A. Thus per(A) is

the sum of all n! diagonal products of A. The adjacency and incidence matrices of a graph G are denoted by
A(G) and X(G) respectively. If A(G) is an adjacency matrix of a bipartite graph G, then the permanent of A(G)
is number of perfect matching in G.

(i) ia
m

1i
σΠ

=

The evolution of permanent has attracted the attention of researchers for more than two centuries
beginning with Binet and Cauchy in 1812. Despite many attempts, an efficient algorithm for general matrix
remains elusive. Ryser’s algorithm [11] remains the most efficient for computing the permanent exactly,
even through it uses as many as O(n2n) arithmetic operations. The evaluation of permanent of any matrix of
order n using the laplace theorem requires O((n+1)!) multiplications. Many authors [4,5,6,8,12] has
developed various methodologies to evaluate the permanent of a matrix with less number of steps using
approximate schemes. Valiant [12] has shown that permanent of a non-negative matrix is # p-hard, and so it
is unlikely to be efficiently computable exactly for all matrices in polynomial time. Planar graphs provides
the interesting class of matrices for which a polynomial algorithm of O(n3) is known [7]. Linial,
Samoroditsky and Wigderson [8] have shown a deterministic strongly polynomial algorithm that computes
the permanent of a nonnegative matrix of order n within a multiplicative factor of en. They developed the
first strongly polynomial-time algorithm for matrix scaling - an important nonlinear optimization problem
with many applications. Jerrum, Sinclair and Vigoda [5, 6] have given a fully polynomials randomized
approximation scheme for computing the permanent of an arbitrary with nonnegative entries using random
sampling and Markov chains. Chien, Rasmussen and Sinclair [2] have shown an approximating algorithm for
permanent of (0, 1) matrix using Clibord algebra. The basic idea of the paper [2] was to obtain a random
matrix B by replacing each 1-entry of A independently by ±e, where e is a random basis element of a suitable
algebra; then the output is |det(B)|. Raz [10] has proved that multi-linear formulas for permanent and
determinant are of supper-polynomials size.

This paper is organized as follows: Section 2 describes relevant definitions and notations for a
tournament graph. Section 3 describes details of the algorithm. In Section 4, the excremental analysis,
discussions and conclusions are given.

+ Corresponding author. E-mail address: s_sundaram@ettimadai.amrita.edu

Published by World Academic Press, World Academic Union

OPEN ACCESS

DOI https://doi.org/2024-JICS-22786 | Generated on 2025-04-15 10:20:29

K. Somasundaram, et al: Permanent: Evaluation by Parallel Algorithm

2. Path Diagonal Products

JIC email for contribution: editor@jic.org.uk

70

Consider a weighted tournament graph D. Let si be a directed spanning subgraph of D. The weight w(si)
of the spanning subgraph si is defined to be the product of the weights of the spanning subgraph si. The total
weight W(S) = W(S(D)) = , where S is the set of all spanning subgraphs s∑

∈
ω
S

is
is

)(i of D. Any weighted

tournament D with n vertices can be represented as n × n matrix A. The rows and columns of A represent the
vertices of D, and if the weight of an arc (ij) is aij in D then the i, j th entry of the matrix A is aij. In other way,
every square matrix A can be represented as a weighted tournament DA. Each diagonal product in the matrix
A gives a spanning subgraph in DA and similarly each spanning a subgraph in DA corresponds to a diagonal
product in A. The value of diagonal product in A is equal to the product of weights of the corresponding
spanning subgraph in DA, that is w(si). Hence sum of all weights of spanning subgraphs in DA is equal to sum
of all diagonal products of the matrix A. Hence per(A) = W(S(DA)).

Example 1: Consider the weight tournament D with 3 vertices, the corresponding matrix isA

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

304
311
202

A

per(A) = W(S(DA)) = ∑
∈
ω
S

is
is

)(= 6 + 0 + 0 + 0 + 8 + 0 = 14.

Definition 1: Let A be an n × n matrix. A non vanishing diagonal product in a matrix A is said to be a
path diagonal product (pdp), if it gives a cycle of length n in the corresponding DA. Otherwise, the non
vanishing diagonal product is called a non path diagonal product (npdp).

For a matrix A, the permanent of A is the sum of number of pdp’s and number of npdp’s of A. In
particular for any adjacency or incidence matrix of a graph G, the permanent of A is the sum of number of
pdp’s and number of npdp’s of A. In A(G) each npdp is the disconnected spanning subgraphs of G, this is
either 2-regular sub graphs or 2- regular sub graphs with at least one single edge or 1- factor directed
subgraphs. Consider the graph G with a edge set E={(v1, v2), (v1, v4), (v1, v5), (v2, v3), (v3, v4), (v3, v5), (v4, v5)}.
In A(G), the diagonal product a12a23a35a41a54 is a pdp where as the diagonal product a12a21a34a45a53 is a npdp,
number of pdp’s is 4 and number of npdp’s is 4. Hence perA(G) = 4 + 4 = 8.

The number of Hamiltonian cycles in a connected graph G is k if and only if number of pdp’s in A(G) is
2k, since the k Hamiltonian cycles corresponds to 2k diagonal products in A(G), which are pdp’s in A(G).
Also number of Hamiltonian cycles in a connected graph is less than or equal to perA(G).

Lemma 1: If p and p be the number of npdp’s in A(G) and X(G) respectively, p ≠ p , then the number

of Hamiltonian cycles in G is

1 2 1 2

 ⎥
⎦

⎤
⎢
⎣

⎡

−

−
=

G)PerXGperA

G perApG PerXp
 k

()(

)(2)(1
2

1
.

Proof: There are 2k pdp’s in each of A(G) and X(G), therefore perA(G) = 2k + p and PerX(G) = 2k +

p . As p ≠ p , perA(G) ≠ PerX(G),

1

2 1 2
22
12

)(Per

)(per

pk

pk

GX

GA

+

+
= gives the value of k.

Theorem 1: The exact computation of the permanent of an n × n matrix is # p- complete.
Proof: From the definition, permanent of an n × n matrix A is sum of pdp’s and npdp’s. Lemma 1 shows

that the number of pdp’s is half of number of Hamiltonian cycles in the Tournament DA, and the computation
of k is # p-complete problem. Hence the exact computation of the permanent of an n × n matrix is # p-
complete.

3. Algorithm
In this section, we have shown a parallel algorithm to compute permanent of a matrix of order n. Our

algorithm is based on recursive function. Let A = (aij) be a matrix of order n. Let r be the number of
processors, then the kth processor, 1 ≤ k ≤ r, will find the permanent for the submatrix corresponding to the
non-vanishing diagonal products consisting of a1k, and does the same for the non-vanishing diagonal

OPEN ACCESS

DOI https://doi.org/2024-JICS-22786 | Generated on 2025-04-15 10:20:29

Journal of Information and Computing Science, 3 (2008) 1, pp 69-72

71

products consisting of a1(k+ir), 0 ≤ i ≤ ⎥⎦
⎥

⎢⎣
⎢ −

r
kn

, where ⎣ ⎦x denotes the greatest integer which is less than or

equal to x. That is, the kth processor finds the values of w(sk+ir), 0 ≤ i ≤ ⎥⎦
⎥

⎢⎣
⎢ −

r
kn

. Hence every time, each

processor finds the spanning subgraphs, which are all either pdp’s or npdp’s in DA. The rth processor finds
the total weight W(S) = ∑

∈
ω
S

is
is

)(, where S is the set of all spanning subgraphs si in DA.

Function main ()
 rank = Processor Id
 r = Number of processors
 n = size of the matrix
If rank is root
 Get matrix from the user
 Broadcast the matrix to other processors
 Post receive messages to receive value from all other processors
 For I = rank : n
 Temp = submatrix for the element matrix (1)(I)
 If matrix (1)(I) is not zero
 Value = matrix (1)(I) * sub(temp, size - 1)
 I = I + r
 If rank is not root
 Sent the value to root
 If rank is root
 Wait until value is received from all the processors
 Add the value received from all the processors.
End Function
Function sub(matrix, size)
 If size is n
 value = permanent of 2 × 2 matrix
 Else
 For I =1 : size
 If matrix (1)(I) is not zero
 value = value + matrix (1)(I) *subfunction(temp, size-1)
End

If any one of the values in the diagonal product is zero, then we skip the corresponding diagonal products
and find the other non-vanishing diagonal products (which are either pdp’s of npdp’s). Hence the elimination
of zeros in the diagonal products reduces the complexity further. In particular, if the matrix A is a sparse
matrix, then the number of computations is very high. The idle time of the rth processor is dependent on the
processing times of the other processors, also it is proportional to number of zeros in the sub matrices, the
sub matrices are obtained by deleting the first row and (k + ir) columns of the matrix A = (aij), where 0 ≤ i

≤ ⎥⎦
⎥

⎢⎣
⎢ −

r
kn

. Since the permanent of the matrix A is invariant with respect to the pre/post multiplications of

any permutation matrices with A, we can distribute the zeros in A randomly such that the idle time of the rth
processor will be negligible.

JIC email for subscription: publishing@WAU.org.uk

OPEN ACCESS

DOI https://doi.org/2024-JICS-22786 | Generated on 2025-04-15 10:20:29

K. Somasundaram, et al: Permanent: Evaluation by Parallel Algorithm

4. Experimental Results and Conclusion

JIC email for contribution: editor@jic.org.uk

72

In a sequentional procedure, the general algorithm for finding the permanent of a matrix runs in a non-
polynomial time. In this paper, we use the parallel algorithm for finding permanent of a matrix. The

complexity of our algorithm is ⎥⎥
⎤

⎢⎢
⎡
k
n

 times the complexity in each processor. We have implemented our

algorithm in C on Intel Pentium IV 400 Mhz PCs with 1 GB memory.
Experimental results show that our algorithm is good. We have described a new formulation for

evaluating the permanent of a matrix. It is shown that this algorithm is able to minimize its computational
complexities of the procedure in evaluating the permanent of a matrix, by implementing in different clusters.
Experimental analysis shows that, our implementation is behaving well. Though the permanent has a lot of
applications in combinatorial problems and enumeration problems, finding the efficient way to evaluate the
permanent is remains elusive. Developing a good sequential procedure for computing the permanent with
minimum complexity is still open. Also finding the efficient deterministic polynomial algorithm for
approximating permanent is one of the challenging open problems.

5. References
[1] R. A. Brualdi and H. Ryser, Combinatorial Matrix Theory,Cambridge University press, 1991.

[2] S.Chien, L Rasmussen and A.Sinclair, Cli_ord Algebras and Approximating the permanent, STOC,2002:222-231.

[3] I. T. Foster, Designing and Building Parallel Programs, Addison - Wesley Publishing, 1995.

[4] L. M. Goldschlager, An approximation algorithm for computing the permanent in combinatorial mathematics VII
Springer, Berlin, 1980.

[5] M. Jerum, A. Sinclair and Eric vigoda, A polynomial time approximation algorithm for the permanent of a matrix
with non negative entries, Electronic Colloquium on Computational Complexity, 2000, 79.

[6] M.Jerum, A.Sinclar and E. Vigoda, A polynomial-time approximation algorithm for the permanent of a matrix
with nonnegative entries, Journal of the ACM, 2004,51(4): 671-697.

[7] P. W. Kastelym, The statistics of dimmer as a lattice 1. The number of dimmer arrangement on a quadrant lattice,
Physica, 1961,27:1209–1225.

[8] N. Linial, A. Samoroditsky and A. Wigderson, A deterministic polynomial algorithm for matrix scalling and
approximate permanents, Proceeding of the 30th Annual ACM symposium on Theory of Computing (STOC)
ACM Press, 1998: 644-652.

[9] H. Minc, Permanents, Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, Mass, 1978,
6.

[10] R.Raz, Multi-Linear Formulas for Permanent and Determinent are of Supe-Polynomials Size, STOC,2004: 633-
641.

[11] H. J. Ryser, Combinatorial Mathematics, Math. Assoc. Amer. 1963.

[12] L. G. Valiant, The Complexity of Computing the Permanent, Theoretical Computer Science, 1979, 8(2): 189-201.

OPEN ACCESS

DOI https://doi.org/2024-JICS-22786 | Generated on 2025-04-15 10:20:29

