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Abstract. This paper presents the unconventional boundary-value problems and it’s superposition solution  
for the physical geometric nonlinear plane beam system .firstly, this paper takes AK type microswitchs as 
example and builds  the model of the installment process and working process. Secondly, this paper builds a 
general mathematic model and points out the superposition solution for the unconventional boundary value 
problems. Lastly, it presents the computing example for the static process of the AK type microswitchs . 
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1. Introduction  
The conventional boundary-value problems are saluted displacement by known load. Based on low-

pressure electric switch, [1] firstly point out the concept “unconventional”; [2, 3] applied this concept into 
microswitch CAD and the analysis of dynamic-static switching process; [4, 5, 6] further applied it into the 
precise mechano-electronic components, electric-contact process analysis and built a dynamic model; [7] 
again use the three design thinking into the design of microswitch. Based on [1]-[7] studies, this paper take 
dispersed precise mechano-electronic components into geometry and physic nonlinear plane beam system.  

The remainder of the paper is organized as follows, section 2 contains the finite element model of the 
physical and geometric nonlinear plane beam system; section 3 constructs the unconventional finite element 
model as the AK type microswitch’s static process; section 4 presents the general unconventional model. 
Section 5 presents the superposition solution of unconventional problems; section 6 gives a typical example 
about AK type microswitch’s static process; section 7 present the conclusion.  

2. The conventional finite element model formulas of nonlinear plane beam 
system 
In order to save space, we have left out the detailed derivation process and given only the finite element 

formulas of the element increment load of the physical and geometric collinear plane beam: 
                                                          (1) ( ) ( ) ( )1t t
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h, b1, b2 and L are the thickness, left-hand width, right-hand width and length of element pole respectively. 
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TU u u )ω θ ω θ=  Element node displacement increment                         (4) 
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increment load step at t+ t moment.⊿   denoting the nominal elastic bending moment at 
the element pole-end in the i-time equilibrium iteration at t+ t moment. ⊿                                                    (10) 
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  denoting the pole-end internal bending moment at the element in the i-time 
equilibrium iteration at t+ t moment. ⊿                                                                                                           (11) 
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σ  denoting the element nominal stress in the i-time equilibrium 

iteration at t+ t moment.⊿                                                                                                                               (12) 
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3. Example: Building the ‘unconventional’ finite element model of AK type 
microswitch’s static process 

3.1 Computing chart  
The switch, in reference to its structure and its increment load feature, can be reduced to a place beam 

system, of which node 15 is permitted limited horizontal and vertical displacements X and Y. Touch point 11 
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permitted a limited bouncing amplitude 21 hh − . Because Switch is made of different compositions of the 
variables X, Y, h1, h2, b (the ratio between the side-stripe and the mid-stripe in the leaf spring with to the 
width) and t (the thickness of the leaf spring), it will be unavoidable plastic yielding in some of them. To 
secure the elastic element feature of the leaf spring, we must not allow serious yielding to take place. 
Therefore the leaf spring is supposed to be made of linear hardened material of which the axial force is about 
3% of Pe .The yielding is mainly due to the bending moment. The aforesaid finite element formulas can 
directly be applied to it. The simple diagram of computation is shown in fig.1. 

                                  
Fig1 Simple diagram of computation 

3.2 Seeking solution model of the installment process 
In order to accurately analogize the complex nonlinear mechanics features, we divide the boundary-value 

problem into two stages, installation and work. 
In the stage of installation, we break the installation process into stages of solution, of which the 

corresponding boundary-value problems are listed in Table 1, where the equation given is the over-all 
equation under the global coordinates, , ,  or  denoting the unit vector action on 
Node i. The unknown load is expressed by an unknown constant C multiplied a unit vector. So the value of C 
obtained means the unknown load obtained. Installment process of getting solution model is showed in table 
1.  

NL
t
tL

t
t KKK += γγ t= xie yie

3.3 Seeking solution model of the working process  
At the beginning of the work, a pressure  is brought to bear on Node 4 and the touch-point pressure 

CP
4yP

O is gradually diminished to zero. The upper unilateral constraint is relieved and the switch is in a critical 
state before bounding. Its corresponding work pressure is AF and the corresponding W4 is the action distance 
PT. When the switch is bouncing positive, its bouncing ways is not one. In this paper we have chosen three 
different bouncing ways, which are expressed as i, ii, iii in Table 2. This stage is written as E6 , the relieving 
force , the differential distance MD=46 ypRF =

44
56 WW −  (the i-type bounding way). 

After the touch point bounces to the lower touch point , an over distance OT is applied to Node 4. 
Node 11 is constrained unilaterally from below only, yet it cannot possibly move upward. During this stage 
(E

2h

7), we can consider it as being constrained by the Y-direction displacement and thereby incurs the 
followings: a lower touch-point pressure CP1= , the total work pressure TF= , the maximum 

distributed stress being 7

7
11yP 7

4yP

σ  whose maximum value is written as maxσ . The is discharged until 

CP

7
4yP

1=0.The unilateral constraint from below is relieved. The switch bounces back to h1, being finally 
discharged to zero and the switch returns to the installed state. This process can be divided into three stages, 
namely, E

4yP

8, E9, and E10. E4→  E10 corresponds to a stress cycle. 
In order to make a quantitative study of the life expectancy, we define: 

The mean cyclical stress 2
)( 47 σσ +=mS                                                     (15) 

The cyclical stress amplitude                                                       (16) σσ 47 −=aS

The cyclical stress )( maa SSSS +=                                                          (17) 

By comparing the value of  at various points, we can obtain  max and the corresponding aS aS maxS . In 
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the V-chapter of this paper we shall derive the relationship of maxS ~N, which can be used to make a 
quantitative computation of the fatigue life. The working process solution model is shown in table 2.             

Table1. Installation stages and corresponding boundary-value problems (Being the proportional increment load factor) 

Stage Controlling conditions Solution Equations Main Items to be obtained Constraint 
conditions 

E1 
To node 15 is applied 
the known isplacement 
Y 
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Node 15 is 
constrained in the 
Y-direction, but is 
a movable hinge 
joint in the Ζ -
direction. 11 is free
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11 0,yP CP = 4

11yP (The 
upper-touch-point 
reassure), 4σ (the 
installation stress) 

Node 15 is a 
fixed hinge joint, 
node 11 is 
constrained in the 
Y-direction 

Table2. Work process and its boundary-value problems (Node 15 being a fixed hinge point) 
Stage Controlling conditions Solution Equations Main Items to be 

obtained 
Constraints 
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h1.py4 is being applied to 
make  0 0CP =
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Node 11 is 
constrained in 
the y-direction to 
the end of this 
stage, the 
constrained is 
relieved 
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Node 11 is free. 

II Displacement increment 
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node 11 passing from 
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Node 4 is 
constrained in 
the y direction. 
Node 11 is free. 
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 They are the reverse process of  and , and 8 8   7 6,E E 5E
From  can be derived the curves of , , , etc. 5 1~E E 4 4~yP W 11 4~yP W 4 ~yP W
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4. Building model of a general unconventional problem  
In the boundary-value problems listed in table I, II, the items on the right-hand side contain unknown load 
factors, whose number is the same as that of known displacements is the controlling condition. This kind of 
problem is to reverse obtain load from the known displacements. Thus we call it from the conventional 
problem, which is to obtain the unknown displacements from the known load items. The ‘unconventional’ 
boundary-value problems listed in table 1, 2 can be generalized as the following math form ( , wγ γ  being 
include in 0p ): 

( 1)
0

1

m
i

k k
k

KU P C P+

=

= +∑                                                                    (18) 

( 1)iBU + C=                                                                         (19) 
Where the known quantities are matrix K , column vectors P,nxn mxnB 1kn× , k=0,1,2…m, C  the unknown 
quantities, the unknown quantities column vector U

1m×

1n× , and the scalar quantity , k=1,2…m and m<<n. kC

5. Superposition solution for a general unconventional problem  
First of all, we should solve m+1 n-order liner equation series: 

0( 1) ( )
0

iKU P+ = i

k

                                                                      (20) 

0,1, 2k
kKU P k m= = L                                                          (21) 

Then, according to the principle of super-position, from can be interpreted as: 
( 1) ( 1)

1

m
i o i

k
k

U U C U+ +

=

= +∑                                                            (22) 

Finally, by substituting equation (22) Into equation (19), we can derive the m-order equation series about 
 .in solving for the unknown factor C . We can obtain the unknown load, and again by substituting the 

result into equation (22) we can obtain the unknown displacement. The superposition method used in solving 
‘unconventional’ problems, as compared with that used solving the conventional problems, has only added 
m-times reverse substitutions and m-order equation series about C , maintain meanwhile the fine 
characteristics of matrix K is definite-positive, symmetric, scattered and belt-like. 

kC k

k

6. Typical computing result  
According to the model, we can get the computing result for the AK type microswitch’s static process 

from the superposition solution in section 4. The result can be showed in figure 2 and table 3. 
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Fig 2 Diagrams of the load-displacement curves and deformation 
Table 3A Variant’s areas  

Level z y h1 h2 b t 
Lowe 0.30 0.10 2.40 1.10 0.70 0.17 
Upper 0.40 0.20 2.80 1.70 0.90 0.21 
Zero 0.35 0.15 1.40 1.40 0.80 0.19 

             Table 3AB  The Computing and Test’s Result  ( Zero-Level) 
                   Parameters  
Values  AF RF PT MD CP0

Computing 505 264 0.49 0.05 81 
Test 520 254 0.51 0.06 79 

Error % 2.97 -3.79 -4.07 20.0 -2.47 

Table 3C  The Mean error of 32 groups computing and test’s results 
                   Parameters  
Mean error  AF RF PT MD CP0

% 1.3 4.0 -9.5 30.0 4.6 

C work process  5 6 7 8 9 10E E E E E E→ → → → →

7. Conclusion  
In this paper, we have given one kind of unconventional model and its superposition solutions. The 

computation’s real example for the static process of AK type microswitch and the corresponding test’s result 
are given as well. From the experimental result, a constructed model and its solution are stable and feasible . 
We can point out its stable degree and precision meet the requirement in practice.  
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