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Abstract. Recently, the complementary behavior of restarted GMRES has been studied. We observed that 
successive cycles of restarted block BGMRES (BGMRES(m,s)) can also complement one another 
harmoniously in reducing the iterative residual. In the present paper, this characterization of BGMRES(m,s) 
is exploited to form a hybrid block iterative scheme. In particular, a product hybrid block GMRES algorithm 
for nonsymmetrical systems with multiple right-hand sides is proposed. The new algorithm combines the 
advantage of Simoncini’s Hybrid Block GMRES and Zhong’s Product Hybrid GMRES. Numerical 
experiments are conducted to show that the new algorithm can offer significant improvement over the hybrid 
block GMRES. 

Keyword: Linear systems, block iterative method, multiple right-hand sides, Krylov subspace, matrix 
polynomials. 

1. Introduction 

We are interested in the matrix polynomial method for solving systems with multiple right-hand sides 
AX B=                                                                          (1.1) 

where n nA R ×∈  is nonsymmetrical and nonsingular, 1[ , ] n s
sB b b R ×= ∈LL , s n<< . 

Given an initial guess 0X , the method generate a sequence of iterates { }mX , whose block residual 

{ }m mR B AX= −  satisfies 0( )m mR A R= Φ o . 

Here 
0

( ) m i
m ii

λ λ ξ
=

Φ =∑  is known as a matrix polynomial in ,m sP  ( ,m sP denotes the space of matrix 

polynomial 
0

( ) ,m i s s
m i ii

Rλ λ ξ ξ ×
=

Φ = ∈∑ , of degree not greater than m and sides s, and 

{ }, ,( ) : ( )m s m m s mP P Iλ λ= Φ ∈ Φ = ). Moreover, mΦ solves the minimization problem 

,
0min

m s
mP

R
Θ∈

Θ o .                                                                    (1.2) 

with which BGMRES method [8] is defined. 
It is sufficient to observe that in the exact arithmetic and under certain condition on R (R is n s×  residual 

block) and A, BGMRES achieves finite termination in [n/s] iteration. It follows that the number of iterations 
to termination for BGMRES is expected to decrease as the number of right-hand sides increase [3]. The 
property, combined with the built-in minimization of the block residual, makes BGMRES mathematically 
attractive. However, experiments in [5] indicated that BGMRES has great difficulty competing with the 
other solvers with respect to computational cost. 

To limit the average work per (block) iteration, BGMRES is often restarted every steps, leading to the 
BGMRES(m,s) algorithm: 

, , ( 1),( )k m m k k mR A R −= Φ o . 

, ( )m k λΦ  selected by (1.2) based on ( 1),k mR − ( 2,3 )k = LL . Restarting entails, however, loss of the 
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properties of finite termination and minimization over the entire Krylov subspace [1]. In particular, for small 
m and large n, the number of right-hand side s has to be large for an acceptable reduction of the number of 
iteration. But also it can increase the work per iteration. 

Considerably more practical algorithms are the hybrid block iterative algorithm. This algorithm extract 
the matrix polynomial obtained in the course of a BGMRES step, then reapply the matrix polynomial by 
means of a basic one-step iterated until convergence. Unfortunately, it is known that matrices exist for which 
BGMRES(m,s) convergence but the hybrid block iteration may perform much disappointedly. Therefore, the 
question that arises is how to modify the hybrid BGMRES method in order to make it viable. 

In this paper, we propose an approach for addressing the above question. Our experiments show that this 
approach offers substantially better performance than hybrid BGMRES [1]. The proposed method is referred 
to as Product hybrid block GMRES. It implements an the existing hybrid BGMRES algorithm, but the 
Richardson iteration is based on a product of several matrix polynomials rather than a single matrix 
polynomial. 

In Section 2, some properties of hybrid BGMRES are recalled. In Section 3, the complementary behavior 
of BGMRES(m,s) are illustrated, which provides the main motivation of developing the product hybrid block 
scheme. In Section 4, the product hybrid block GMRES algorithm is developed. In Section 5, numerical 
examples are presented to illustrate a remarkable superiority of the new algorithm. Finally, in Section 6 the 
paper is concluded. 

2. Hybrid BGMRES 
Hybrid BGMRES [1] attempts to combine the advantage of the block approach with those of hybrid 

methods proposed by Joubert [15], Saylor and Smolonski [16], and especially Nachtigal et al [4]. 
Hybrid BGMRES algorithm 
Given 0X  and 0 0R B AX= −   

(1) Generate mV , mH , mL ; 
(2) 1 0,0min

ms n m
Y R

E H Yχ
×∈

− ; 

(3) 0m mX X V Y= + ; 
(4) ( )m mEig H Lθ = + ; 
(5) ( , , , )mmX Richardson A X B θ= . 

The matrix 0,0χ  is chosen so that 0 0,0R χ  is orthonormal. The least square problem in the algorithm is solved 
by block QR decomposition. Hybrid BGMRES is an extension of the method used in the single right-hand 
side case [4]. As we show below, critical to the design of hybrid block method described in this paper is the 
characterization of BGMRES in terms of matrix polynomial according to the theory developed in [5]. 

Theorem 1. (Simoncini and Gallopoulos [5]) Let T
m m mH V AV= . The BGMRES residual matrix 

polynomial mΦ  coincides with the eigenvalues of the matrix m mH L+ , where [ ,0]m ms mH I H=  and 

1 1

T T
mm m mL H h h

−

+ +=  with 1 1
T

m m mh E H+ += . 

Note : [0 , , , ,0 ]T
i s s sE I= L L  is the rectangular matrix with sI  as its ith block element. 

From Theorem 1, the roots of the matrix polynomial ( ) 0m λΦ =  satisfy ( )m mH L z zλ+ = . The rank of 

mL  is s. Hence, the roots of the BGMRES residual are Ritz values of a rank-s modification of A. 

The parameters of the Richardson process are inverse of the latent roots of mΦ . These are the roots of 
the polynomial : det( ( ))ms mp λ= Φ , ,m smsp P∈ [1]. Consequently, from Theorem 1 we can get 

det( ( ))ms m mp I H Lλ= − + . Thus, the Richardson procedure accomplishes the multiplication [1]:  

mm msR p R= . 

3. Complementary behavior of restarted BGMRES 
Suppose that at the mth BGMRES step, we have  

OPEN ACCESS

DOI https://doi.org/2024-JICS-22829 | Generated on 2025-04-09 07:43:32



Journal of Information and Computing Science, Vol.1 (2006) No. 5, pp 303-310 
 

JIC email for subscription: info@jic.org.uk 

305

( ) (0)

(0) (0)

( )m
msR p A R

R R
τ= =  

for some 1τ < . 
For HBGMRES, our hope that  

( )msp A τ≈                                                                     (3.1) 
so that the Richardson iterative will continue to reduce the residual 

                              
( ) ( )

(0) (0)

kkm mR R

R R

 
 ≈
  

, 0k ≥ .                                                        (3.2) 

However, such a conclusion can never be guaranteed. The equation (3.1) may fail, leading us with  
( )

(0)
( )

m

ms

R
p A

R
τ = << . 

In such circumstances, (3.2) will be far from satisfied, and the Richardson iteration may convergence 
much more slowly than expected or may not convergence at all. 

We present a theorem in support of the convergence of HBGMRES. 
Theorem 2. Let ( )msp A  be the matrix polynomial obtained in the course of a BGMRES step, Λ  is the 

spectrum of A, HBGMRES algorithm convergence if and only if , 1mspλ∀ ∈Λ < . 

The BGMRES residual polynomial ( )msp λ  is likely to be considerably large for one cycle. This is fetal 
to the Richardson iteration. On the other hand, because of the complementary behavior of restarted GMRES, 

( )msp λ  can be correspondingly small in the next cycle. 

Example 1. Take  

0.5
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δ

δ
δ

δ

 
 
 
 

=  
 
 
  
 

; 
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B

δ δ
δ δ
δ δ
δ δ
δ δ

+ − 
 + − + 
 + −

=  + − + 
 + −
  − 

, ( 0.05)δ = . 

and run BGMRES(2,2). It is observed that the eigenvector components of residuals of every two successive 
cycles complement each other. 

BGMRES lemniscates [5] are employed to give a clear description of the complementary behavior of 
BGMRES(2,2). The lemniscates of the sth cycles was defined as { }: ( )ms sL z c p zτ τ= ∈ = , in which sτ  is 
the convergence rate of the cycle. 

In Fig.1, the complementary behavior of BGMRES(2,2) is observed clearly. The BGMRES lemniscates 
of the 1st to 8th restarting cycles are presented. Write the spectrum of A as 

{ } { }1 2 3 4 5 6, , , , , 0.5,1.0,1.5,2.0,2.5,3.0λ λ λ λ λ λΛ = = . At the 1st cycle, 2λ , 3λ , 4λ , 5λ , 6λ  are well enclosed by 
the BGMRES lemniscates and the corresponding eigenvector components are significantly reduced. After 
the 1st cycle, the residual is rich in the first eigenvector direction. For the  
2nd cycle, 1λ  is well enclosed by the BGMRES lemniscates, a significant reduction in the first eigenvector is 
occurred. The following BGMRES cycles behave similarly to these first two, with groups of two cycles 
complementing each other. 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22829 | Generated on 2025-04-09 07:43:32



C. Sun, et al: Product Hybrid Block GMRES for Nonsymmetrical Linear Systems with Multiple Right-hand Sides 

JIC email for contribution: editor@jic.org.uk 

306

0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

s=1

0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

s=2

0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

s=3

0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

s=4

 

0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

s=5

0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

s=6

 

0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

s=7

0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

1.5

s=8

 
Fig. 1: BGMRES lemniscates of the 1st to 8th cycles. Eigenvalues:• ; Harmonic Ritz values: +. 

  Let msπ  be a product of all the BGMRES polynomials. The lemniscates in Fig. 2 is computed by 
{ : ( ) }ms averageL z c zτ π τ= ∈ = , in which averageτ  is the average convergence rate of all the involved restarting 

OPEN ACCESS

DOI https://doi.org/2024-JICS-22829 | Generated on 2025-04-09 07:43:32



Journal of Information and Computing Science, Vol.1 (2006) No. 5, pp 303-310 
 

JIC email for subscription: info@jic.org.uk 

307

cycles.  
As it is seen in Fig. 2, all the eigenvalues are enclosed in the product BGMRES lemniscates, indicating 

that all the eigenvector components have been significant reduced by the product polynomial. In 
consequence, the product matrix polynomial associated with a complementary cycle can be used to form a 
more effective hybrid block method. 
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1.5

  
Fig. 2: BGMRES lemniscates of a product of all the cycles. Eigenvalues: • . 

4. Product hybrid block GMRES 
The product hybrid block GMRES algorithm is sketched in the following. 
Phase (i). Run BGMRES(m,s) until kmR  drops by a suitable amount. Set t=k and construct the 

BGMRES residual polynomials { }, 1

t
ms k k

p
=

 

Phase (ii). Re-apply the product polynomial 

, ,( 1) ,1( ) ( ) ( ) ( )t ms t ms t msz p z p z p zπ −= LL  

cyclically until convergence: , 0[ ( )]k
mt k tR A Rπ= o , ( 2,3 )k = LL . 

Table1:Leading computational costs per iterative of PHBGMRES 

 

   
The structure of the algorithm is practically appealing. In Phase(i) the BGMRES(m,s) iteration produces 

iterates as by-product, and its cost is only slightly greater(about 2 32m s  per step) than a standard 
BGMRES(m,s) iteration, due to the calculation of ( )s zπ . The computation cost of product hybrid BGMRES 
is summarized in Table 1. 

M N×                                           2( 1) 2s m ms+ +  

n-vector DOT                                     ( 1)
2

m m +  

n-vector DAXPY                                  ( 1) 2
2

m ms s ms+ + +  

MGS on n s×  block                              2( 1)
2

m m s s+ +  

Solve orders ms triang. system                        s 
Leading scalar costs                                3 2 2 3 36 4s m s m ms+ +  

Mult. of block of dim. n s×  and s s×                ( 1)
2

m m +
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The computational cost for the polynomial acceleration led us to re-use the same residual polynomial 
( ( )s zπ ) during the algorithm.  

The new algorithm has the advantage over the original one in that its convergence behavior is well 
understand, as stated in the following theorem. 

  Theorem 3. The product hybrid BGMRES algorithm convergence if BGMRES(m,s) convergence. 
  Proof: If BGMRES(m,s) convergence, it holds that 0lim ( ) 0t t z Rπ→∞ = . Then with a suitable t, we 

must have ( ) 1t zπ < , which leads to convergence of the Richardson iteration of Phase (ii).     

5. Numerical experiments  
In this section experimental results of using product hybrid BGMRES to solve (1.1) is presented. Its 

performance is compared with other iterative methods, including hybrid BGMRES (HBGMRES) and 
BGMRES(m,s). The right-hand sides were chosen as B=rand(n,s), where function rand creates a random 
matrix of dimension n s×  with values uniformly distributed in [0,1]. The initial guess 0 [0,0, ,0]X = LL , the 
convergence tolerance 1.0 10eε = − , and for each example, the plot shows 10log nR  as a function of work 
measured by vector operations. 

Example 2. This problem is taken from [4]. Let A be a large upper-triangular Toeplitz matrix of the 
form 
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1.0 1.0
0.5
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O O

O
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Fig. 3: Example 2. Convergence curve; Log. residual norm vs. work. 

In Fig. 3, we observe that hybrid BGMRES performs well. However, PH-BGMRES is further ahead. It 
shows that product hybrid BGMRES consistently and significantly improved the performance of hybrid 
BGMRES and BGMRES(m,s).     

Example 3. The experiment is conducted using matrix (e05r0000) that originate from the Harwell-
Boeing collection. 

It is seen that the hybrid BGMRES diverges, where PH-BGMRES convergence rapidly. Fig. 4 again 
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shows that the product hybrid BGMRES approach consistently and significantly improved the performance 
of hybrid BGMRES and BGMRES(m,s). After incorporating ILU preconditioning with no additional fill-in, 
we see that the product hybrid BGMRES algorithm can perform even better. 
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Fig. 4: Example 3. Convergence curve; Log. residual norm vs. work. 

6. Conclusions 
In this paper a product hybrid block GMRES algorithm for solving linear systems with multiple right-

hand sides is proposed. It is achieved by computing a product of the BGMRES matrix polynomials and then 
applying the product polynomial via a Richardson iteration cyclically. Numerical experiments show that the 
new algorithm can significantly improve the performance of hybrid BGMRES and BGMRES. 
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