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Abstract. There are two types of critical values for birandom variable: the optimistic and pessimistic
values. In this paper, some theoretical aspects of optimistic and pessimistic values of birandom variable are
investigated. Based on the results, some properties of birandom chance-constrained programming models can
be further discussed.
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1 Introduction

As a general mathematical description for the stochastic phenomenon with incomplete statistical information,
birandom variable is firstly introduced by Liu [9] and studied by Peng & Liu [17][18], Yang & Liu [20]. Birandom
variable is defined as a mapping with some kind of measurability from a probability space to a collection of
random variables. Naturally, birandom variable is an extension of conventional random variable and it plays an
important role in birandom decision system as good as a random variable does in probability theory. Similar to
the case of random variable, we are concerned with the mathematical properties of the optimistic and pessimistic
values of birandom variables [10].

In probability theory and statistics, the quantile function (or fractile function) of a random variable is widely
studied by many researchers. In fact, the quantile function is exactly the pessimistic value of a random variable
in optimization. There are internal relationships between the optimistic value and pessimistic value of a ran-
dom variable. For more detail about the quantile functions of random variables, we may consult the references
[2][3][5][6][7][10] [15][19].

In birandom theory, the optimistic and pessimistic values of a birandom variable are also very important
concepts, which play a key role in birandom chance-constrained programming. Actually, they act as a class of
optimization objects in birandom environments.

In this paper, some aspects of optimistic and pessimistic values of birandom variable are investigated. Based
on the results, some properties of birandom chance-constrained programming models can be further discussed
and expected to use in sensitivity analysis of birandom programming.

The remaining sections of the paper are organized as follows. In the next section, the basic concepts related
to birandom variable are introduced. In Section 3 is devoted to studying some properties of the optimistic and
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pessimistic values of birandom variables. Section 4 illustrates one of the properties to birandom optimization.
Finally, Section 5 concludes this paper with a summary.

2 Preliminary Concepts

As the extentions of random variable from different angles, Banach-valued random variables, fuzzy random vari-
ables and random fuzzy variables have been studied by some researchers such as Araujo[1], Cuesta & Matran[4],
Merlevéde[16], Liu [11][12], and Liu & Liu [13][14].

Birandom variable is an extension of conventional random variable from a new angle of view. It is a kind of
mathematical tool to describe a birandom phenomenon. Peng and Liu [17] studied birandom variable compre-
hensively, and defined the chance measure of birandom event and the critical values of birandom variable.

Definition 1 Let (Ω, A, Pr) be a probability space. A birandom variable ξ is a mapping from a probability space
(Ω, A, Pr) to a collection of random variables S such that Pr{ξ(ω) ∈ B} is a measurable function with respect
to ω for any Borel subset B of the real line <.

Definition 2 An n-dimensional birandom vector ξ is a mapping from the probability space (Ω, A, Pr) to a col-
lection of n-dimensional random vector such that Pr{ξ(ω) ∈ B} is a measurable function with respect to ω for
any Borel subset B of the real space <n.

Definition 3 Let ξ be a birandom variable on (Ω, A, Pr), and B a Borel set of <. Then the chance of birandom
event characterized by ξ ∈ B is a function from (0, 1] to [0, 1], defined as

Ch {ξ ∈ B} (α) = sup
Pr{A}≥α

inf
ω∈A

Pr {ξ(ω) ∈ B} .

Remark: Equivalently, the chance measure may be written as

Ch {ξ ∈ B} (α) = sup
{
β

∣∣ Pr
{
ω ∈ Ω

∣∣ Pr {ξ(ω) ∈ B} ≥ β
} ≥ α

}
.

There are two types of critical values for birandom variable: the optimistic and pessimistic values. Below,
we give the definitions of optimistic value and pessimistic value of birandom variable.

Definition 4 Let ξ be a birandom variable and γ, δ ∈ (0, 1]. Then

ξsup(γ, δ) = sup {x|Ch{ξ ≥ x}(γ) ≥ δ} (1)

is called the (γ, δ)-optimistic value to ξ, and

ξinf(γ, δ) = inf {x|Ch{ξ ≤ x}(γ) ≥ δ} (2)

is called the (γ, δ)-pessimistic value to ξ.

3 Propositions

In this section, we proceed to prove some theorems to show some properties of the optimistic and pessimistic
values of birandom variables.

Theorem 1 Let ξ be a birandom variable and γ, δ ∈ (0, 1] be given. Assume that ξsup(γ, δ) is the (γ, δ)-
optimistic value and ξinf(γ, δ) is the (γ, δ)-pessimistic value to ξ. Then we have
(a) Ch{ξ ≤ ξinf(γ, δ)}(γ) ≥ δ;
(b) Ch{ξ ≥ ξsup(γ, δ)}(γ) ≥ δ.
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Proof. It follows from the definition of (γ, δ)-pessimistic value that there exists a decreasing sequence {xn} such
that Ch{ξ ≤ xn}(γ) ≥ δ and xn ↓ ξinf(γ, δ) as n →∞. Since Ch{ξ ≤ x}(γ) is a right-continuous function of
x, the inequality Ch{ξ ≤ ξinf(γ, δ)}(γ) ≥ δ holds.

Similarly, there exists an increasing sequence {xn} such that Ch{ξ ≥ xn}(γ) ≥ δ and xn ↑ ξsup(γ, δ) as
n → ∞. Since Ch{ξ ≥ x}(γ) is a left-continuous function of x, the inequality Ch{ξ ≥ ξsup(γ, δ)}(γ) ≥ δ
holds. The theorem is proved.

Theorem 2 Let ξ be a birandom variable, and γ, δ ∈ (0, 1]. Then we have
(a) if λ ≥ 0, then

(λξ)sup(γ, δ) = λξsup(γ, δ), (3)

and
(λξ)inf(γ, δ) = λξinf(γ, δ); (4)

(b) if λ < 0, then
(λξ)sup(γ, δ) = λξinf(γ, δ), (5)

and
(λξ)inf(γ, δ) = λξsup(γ, δ). (6)

Proof: Without loss of generality, we only prove the first equation in each part.
If λ = 0, then the equation is obvious. When λ > 0, we have

(λξ)sup(γ, δ) = sup {r | Ch{λξ ≥ r}(γ) ≥ δ}
= λ sup {r/λ | Ch {ξ ≥ r/λ} (γ) ≥ δ}
= λξsup(γ, δ).

A similar way may prove the other equation in part (a).
When λ < 0, we have

(λξ)sup(γ, δ) = sup {r | Ch{−λξ ≤ −r}(γ) ≥ δ}
= − inf {(−r) | Ch{(−λ)ξ ≤ (−r)}(γ) ≥ δ}
= −(−λ)ξinf(γ, δ)

= λξinf(γ, δ).

The rest equations in part (b) may be similarly proved. This completes the proof.

Theorem 3 Let ξ be a birandom variable, and γ, δ ∈ (0, 1]. Then
(a) for fixed δ0 ∈ (0, 1], ξsup(γ, δ0) is a decreasing and left-continuity function of γ;
(b) for fixed δ0 ∈ (0, 1], ξinf(γ, δ0) is an increasing and left-continuity function of γ;
(c) for fixed γ0 ∈ (0, 1], ξsup(γ0, δ) is a decreasing and left-continuity function of δ;
(d) for fixed γ0 ∈ (0, 1], ξinf(γ0, δ) is an increasing and left-continuity function of δ.

Proof: (a) Assume that γ1, γ2 ∈ (0, 1]. If γ1 ≤ γ2, then it follow immediately from the definitions of the
(γ, δ0)-pessimistic value that

ξsup(γ1, δ0) = sup {r|Ch{ξ ≥ r}(γ1) ≥ δ0}
≥ sup {r|Ch{ξ ≥ r}(γ2) ≥ δ0}
= ξsup(γ2, δ0).
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Therefore, ξsup(γ, δ0)is a decreasing function of γ.
Next, we prove the left-continuity of ξsup(γ, δ0) with respect to γ. Let γ0 ∈ (0, 1] be given and {γn} be an

arbitrary sequence with γn ↑ γ0 as n →∞. It is sufficient to prove that lim
n→∞ ξsup(γn, δ0) = ξsup(γ, δ0).

Write
αn = ξsup(γn, δ0), n = 0, 1, 2, · · ·

Since ξsup(γ, δ0) has been proved to be an decreasing function of γ, the sequence {αn} is decreasing and αn ≥ α0

holds for any positive integer n. Thus the limitation ρ = lim
n→∞αn exists and ρ ≥ α0 holds.

On the other hand, note that the monotonicity of possibility measure and the continuity of ξ. By Theorem 1,
we obtain that

Ch{ξ ≥ ρ}(γn) ≥ Ch{ξ ≥ αn}(γn) ≥ δ0.

Letting n → ∞, by the left-continuity of chance function Ch{ξ ≥ x}(γ) with respect to γ, we get Ch{ξ ≥
ρ}(γ0) ≥ δ0, which implies that ρ ≤ α0. Hence ρ = α0 and thus ξsup(γ, δ0) is proved to be left-continuous.

(b) It follows from ξinf(γ, δ0) = −(−ξ)sup(γ, δ0) and the above proved (a) that ξinf(γ, δ0) is also a left-
continuous function of γ.

(c) Assume that δ1, δ2 ∈ (0, 1]. If δ1 ≤ δ2, then it follow immediately from the definitions of the (γ0, δ)-
optimistic value that

ξsup(γ0, δ1) = sup {r|Ch{ξ ≥ r}(γ0) ≥ δ1}
≥ sup {r|Ch{ξ ≥ r}(γ0) ≥ δ2}
= ξsup(γ0, δ2).

Therefore, ξsup(γ0, δ)is a decreasing function of δ.
Next, we prove the left-continuity of ξsup(γ0, δ) with respect to δ. Let δ0 ∈ (0, 1] be given and {δn} be an

arbitrary sequence with δn ↑ δ0 as n →∞. It is sufficient to prove that lim
n→∞ ξsup(γ0, δn) = ξsup(γ0, δ0).

Write
βn = ξsup(γ0, δn), n = 0, 1, 2, · · ·

Since ξsup(γ0, δ) has been proved to be an decreasing function of δ, the sequence {βn} is decreasing and βn ≥ β0

holds for any positive integer n. Thus the limitation ρ = lim
n→∞βn exists and ρ ≥ β0 holds.

On the other hand, note that the monotonicity of possibility measure and the continuity of ξ. By Theorem 1,
we obtain that

Ch{ξ ≥ ρ}(γ0) ≥ Ch{ξ ≥ βn}(γ0) ≥ δn.

Letting n → ∞, we have Ch{ξ ≤ ρ}(γ0) ≥ δ0, which implies that ρ ≤ β0. Hence ρ = β0 and thus ξsup(γ0, δ)
is proved to be left-continuous.

(d) It follows from ξinf(γ0, δ) = −(−ξ)sup(γ0, δ) and the above proved (c) that ξinf(γ0, δ) is also a left-
continuous function of δ.

Theorem 4 Let ξ be a birandom variable, and γ, δ ∈ (0, 1]. Then the following assertions are true:
(a) If γ ≤ 0.5 and δ ≤ 0.5, then ξinf(γ, δ) ≤ ξsup(γ, δ);
(b) If γ > 0.5 and δ ≥ 0.5, then ξinf(γ, δ) ≥ ξsup(γ, δ).

Proof: (a) Assume that γ ≤ 0.5. For any given ε > 0, we define

Ω1 =
{
ω ∈ Ω

∣∣ Pr {ξ(ω) > ξsup(γ, δ) + ε} ≥ δ
}

,

Ω2 =
{
ω ∈ Ω

∣∣ Pr {ξ(ω) < ξinf(γ, δ)− ε} ≥ δ
}

.
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It follows from the definitions of ξsup(γ, δ) and ξinf(γ, δ) that Pr{Ω1} < γ and Pr{Ω2} < γ. Thus Pr{Ω1} +
Pr{Ω2} < γ + γ ≤ 1. This fact implies that Ω1 ∪ Ω2 , Ω. Let ω∗ < Ω1 ∪ Ω2. Then we have

Pr {ξ(ω∗) > ξsup(γ, δ) + ε} < δ and Pr {ξ(ω∗) < ξinf(γ, δ)− ε} < δ.

Since Pr is self dual, we have

Pr {ξ(ω∗) ≤ ξsup(γ, δ) + ε} > 1− δ and Pr {ξ(ω∗) ≥ ξinf(γ, δ)− ε} > 1− δ.

It follows from the definitions of 1−δ optimistic value ξ(ω∗)sup(1−δ) and 1−δ pessimistic value ξ(ω∗)inf(1−δ)
of random variable ξ(ω∗) that

ξsup(γ, δ) + ε ≥ ξ(ω∗)inf(1− δ),

ξinf(γ, δ)− ε ≤ ξ(ω∗)sup(1− δ),

which implies that
ξinf(γ, δ)− ε− (ξsup(γ, δ) + ε)

≤ ξ(ω∗)sup(1− δ)− ξ(ω∗)inf(1− δ)

≤ 0

where the last inequality holds because δ ≤ 0.5. Letting ε → 0, we obtain ξinf(γ, δ) ≤ ξsup(γ, δ).
(b) Assume γ > 0.5. For any given ε > 0, we define

Ω1 =
{
ω ∈ Ω

∣∣ Pr {ξ(ω) ≥ ξsup(γ, δ)− ε} ≥ δ
}

,

Ω2 =
{
ω ∈ Ω

∣∣ Pr {ξ(ω) ≤ ξinf(γ, δ) + ε} ≥ δ
}

.

It follows from the definitions of ξsup(γ, δ) and ξinf(γ, δ) that Pr{Ω1} ≥ γ and Pr{Ω2} ≥ γ. Thus Pr{Ω1} +
Pr{Ω2} ≥ γ + γ > 1. This fact implies that Ω1 ∩ Ω2 , ∅. Let ω∗ ∈ Ω1 ∩ Ω2. Then we have

Pr {ξ(ω∗) ≥ ξsup(γ, δ)− ε} ≥ δ,

Pr {ξ(ω∗) ≤ ξinf(γ, δ) + ε} ≥ δ.

It follows from the definitions of ξ(ω∗)sup(δ) and ξ(ω∗)inf(δ) that

ξsup(γ, δ)− ε ≤ ξ(ω∗)sup(δ),

ξinf(γ, δ) + ε ≥ ξ(ω∗)inf(δ),

which implies that

ξsup(γ, δ)− ε− (ξinf(γ, δ) + ε) ≤ ξ(ω∗)sup(δ)− ξ(ω∗)inf(δ) ≤ 0

where the last inequality holds because δ ≥ 0.5. Letting ε → 0, we obtain ξinf(γ, δ) ≥ ξsup(γ, δ).

Theorem 5 Let ξ be a birandom variable, and {Bn} a sequence of Borel sets of < such that Bn ↓ B. Then for
α ∈ (0, 1], we have

lim
n→∞Ch{ξ ∈ Bn}(α) = Ch

{
ξ ∈ lim

n→∞Bn

}
(α). (7)
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Proof: Write
β = Ch{ξ ∈ B}(α), βn = Ch{ξ ∈ Bn}(α), n = 1, 2, · · ·

Since Bn ↓ B, it is clear that β1 ≥ β2 ≥ · · · ≥ β. Thus the limitation

ρ = lim
n→∞βn = lim

n→∞Ch{ξ ∈ Bn}(α)

exists and ρ ≥ β. On the other hand, since ρ ≤ βn for each n and βn is actually the optimistic value of the
random variable Pr{ξ(ω) ∈ Bn}, it follows that

Pr{ω ∈ Ω
∣∣ Pr{ξ(ω) ∈ Bn} ≥ ρ}

≥ Pr{ω ∈ Ω
∣∣ Pr{ξ(ω) ∈ Bn} ≥ βn}

≥ α.

By using the probability continuity theorem, it is easy to verify that

{ω ∈ Ω
∣∣ Pr{ξ(ω) ∈ Bn} ≥ ρ} ↓ {ω ∈ Ω

∣∣ Pr{ξ(ω) ∈ B} ≥ ρ}.

It follows again from the probability continuity theorem that

Pr{ω ∈ Ω
∣∣ Pr{ξ(ω) ∈ B} ≥ ρ}

= lim
n→∞Pr{ω ∈ Ω

∣∣ Pr{ξ(ω) ∈ Bn} ≥ ρ}
≥ α

which implies that ρ ≤ β. Hence ρ = β and (7) holds.

Theorem 6 (a) Let ξ, ξ1, ξ2, · · · be birandom variables such that ξn(ω) ↑ ξ(ω) for each ω ∈ Ω. Then for any
real number r and α ∈ (0, 1], we have

lim
n→∞Ch{ξn ≤ r}(α) = Ch

{
lim

n→∞ ξn ≤ r
}

(α). (8)

(b) Let ξ, ξ1, ξ2, · · · be birandom variables such that ξn(ω) ↓ ξ(ω) for each ω ∈ Ω. Then for any real number r
and α ∈ (0, 1], we have

lim
n→∞Ch{ξn ≥ r}(α) = Ch

{
lim

n→∞ ξn ≥ r
}

(α). (9)

Proof: (a) Write
β = Ch{ξ ≤ r}(α), βn = Ch{ξn ≤ r}(α), n = 1, 2, · · ·

Since ξn(ω) ↑ ξ(ω) for each ω ∈ Ω, it is clear that {ξn(ω) ≤ r} ↓ {ξ(ω) ≤ r} for each ω ∈ Ω and β1 ≥ β2 ≥
· · · ≥ β. Thus the limitation

ρ = lim
n→∞βn = lim

n→∞Ch{ξn ≤ r}(α)

exists and ρ ≥ β. On the other hand, since ρ ≤ βn for each n, we have

Pr{ω ∈ Ω
∣∣ Pr{ξn(ω) ≤ r} ≥ ρ}

≥ Pr{ω ∈ Ω
∣∣ Pr{ξn(ω) ≤ r} ≥ βn}

≥ α.
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Since {ξn(ω) ≤ r} ↓ {ξ(ω) ≤ r} for each ω ∈ Ω, it follows from the probability continuity theorem that

{ω ∈ Ω
∣∣ Pr{ξn(ω) ≤ r} ≥ ρ} ↓ {ω ∈ Ω

∣∣ Pr{ξ(ω) ≤ r} ≥ ρ}.

By using the probability continuity theorem again, we get

Pr{ω ∈ Ω
∣∣ Pr{ξ(ω) ≤ r} ≥ ρ}

= lim
n→∞Pr{ω ∈ Ω

∣∣ Pr{ξn(ω) ≤ r} ≥ ρ}
≥ α

which implies that ρ ≤ β. Hence ρ = β and
The part (b) can be proved in a similar way.

Theorem 7 Let γ, δ ∈ (0, 1] be given and ξ, ξ1, ξ2, · · · be birandom variables. We have the following results:
(a) If ξn ↑ ξ, then lim

n→∞(ξn)sup(γ, δ) ≥ ξsup(γ, δ);

(b) If ξn ↓ ξ, then lim
n→∞(ξn)inf(γ, δ) ≤ ξinf(γ, δ).

Proof: (a) Since ξn ↑ ξ, that is, ξn(ω) ↑ ξ(ω) for each ω ∈ Ω, it follows from Theorem 6 that for any γ ∈ (0, 1],
we have Ch{ξn ≤ r}(γ) ↓ Ch{ξ ≤ r}(γ). Hence, for any δ ∈ (0, 1], we have

{r | Ch{ξn ≤ r}(γ) ≥ δ} ↓ {r | Ch{ξ ≤ r}(γ) ≥ δ} .

Therefore,
lim

n→∞ sup {r | Ch{ξn ≤ r}(γ) ≥ δ} ≥ sup {r | Ch{ξ ≤ r}(γ) ≥ δ} .

That is, lim
n→∞(ξn)sup(γ, δ) ≥ ξsup(γ, δ).

(b) Since ξn ↓ ξ, it follows from Theorem 6 that Ch{ξn ≥ r}(γ) ↓ Ch{ξ ≥ r}(γ) for any γ ∈ (0, 1]. Hence,
for any δ ∈ (0, 1], we have

{r | Ch{ξn ≥ r}(γ) ≥ δ} ↓ {r | Ch{ξ ≥ r}(γ) ≥ δ} .

Therefore,
lim

n→∞ inf {r | Ch{ξn ≥ r}(γ) ≥ δ} ≤ inf {r | Ch{ξ ≥ r}(γ) ≥ δ} .

That is, lim
n→∞(ξn)inf(γ, δ) ≤ ξinf(γ, δ). The theorem is proved.

4 Applications

There are several types of optimization models in birandom chance-constrained programming. With the help of
above properties of optimistic and pessimistic values of birandom variable, we can discuss some relationships
among the different models or analyze the bound or sensitivity of the solutions of birandom chance-constrained
programming model.

Assume that γ and δ, αj and βj are specified confidence levels for j = 1, 2, · · · , p, x is the decision variable
and ξ is the parametric birandom variable. Let max f be the (γ, δ)-optimistic value to the return function f(x, ξ)
and min f be the (γ, δ)-pessimistic value to the return function f(x, ξ), respectively.
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An analysis could be performed to see how the optimal objective value changes at various confidence levels.
Given δ1 ≤ δ2. Consider the following maximax birandom CCP models,





max f

subject to:

Ch
{
f(x, ξ) ≥ f

}
(γ) ≥ δ1

Ch {gj(x, ξ) ≤ 0} (αj) ≥ βj

j = 1, 2, · · · , p,

(10)





max f

subject to:

Ch
{
f(x, ξ) ≥ f

}
(γ) ≥ δ2

Ch {gj(x, ξ) ≤ 0} (αj) ≥ βj

j = 1, 2, · · · , p.

(11)

From Theorem 3, we have

Theorem 8 If δ1 ≤ δ2, then the optimal objective value of (10) is larger than or equal to that of (11).

Take another example. Consider the following maximax birandom CCP model,





maxmax f

subject to:

Ch
{
f(x, ξ) ≥ f

}
(γ) ≥ δ

Ch {gj(x, ξ) ≤ 0} (αj) ≥ βj

j = 1, 2, · · · , p

(12)

and the following minimax birandom CCP model,





maxmin f

subject to:

Ch
{
f(x, ξ) ≤ f

}
(γ) ≥ δ

Ch {gj(x, ξ) ≤ 0} (αj) ≥ βj

j = 1, 2, · · · , p.

(13)

From Theorem 4, we have

Theorem 9 If γ > 0.5 and δ ≥ 0.5, then the optimal objective value of (12) is smaller than or equal to that of
(13).

5 Conclusions

In this paper we study two types of the critical values of birandom variables. Some properties of optimistic and
pessimistic values of birandom variable are investigated. The discussed results are expected to use in parameter
analysis of birandom programming.
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