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Abstract. Considering the characteristics of Simulated Annealing Algorithm (SAA), based on the agents’ 
perception and retroaction to their surroundings, in this paper a new algorithm called Multi-agent Annealing 
Algorithm (MAA) is presented. And the global convergence of MAA is gotten. Finally, we make several 
numerical experiments to compare MAA with SAA and Genetic Algorithm (GA) by three classical test 
functions in optimization, which suggest that MAA is superior to GA and SAA. 
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1. Introduction  
Many engineering problems can be concluded to a global optimization as follows 

min ( )
S

f x
∈x                                                                  （1） nR⊆S  

( ){ }1 2, ,..., | , 1,2,...,n i i iS x x x x x x i n= ≤ ≤ =( )f x  is the objective function andwhere  is its solution space. 
Methods for global optimization can be divided into two classes: deterministic and stochastic. The former 
such as analytic method has a high convergence, but it cannot be used to non-differentiable functions and is 
sensitive to initial guess points. It is usually trapped in a local solution. Therefore, the latter including 
Genetic Algorithm (GA) and Simulated Annealing Algorithm (SAA) is widely used in engineering problems 
recently. GA has characteristics of strong robustness and parallel processing, but its weak capacity of 
climbing hill limits its application [1-2]. SAA is a new method for global optimizations, which can avoid being 
trapped in a local solution by carefully allowing the configuration of input variables to temporarily make the 
output worse, enabling the solution to jump out of a local solution and fall into a more productive path 
toward the global solution [3-6]. But single-point searching, the main drawback of SAA, brings on a 
contradiction between accuracy and running time, especially when the objective function is complicated or 
multidimensional, the running time of SAA is unacceptable. Based on their perception and retroaction to 
their surroundings in artificial intelligence, agents are utilized in SAA to overcome the algorithm’s 
drawbacks. 

2. Simulated Annealing Algorithm and Agents 

2.1. Annealing Algorithm and Agents 
SAA is a stochastic method based on Monte Carlo iterative algorithm. It derives from a simulation of 

solid matter’s annealing process. This algorithm utilizes a decreasing cooling schedule. During the annealing 
process, particles in the solid matter get more regular and the energy keeps decreasing. The essence of SAA 
is to search the energy solution of the solid matter, that is, to repeat searching stochastic in solution space by 
Metropolis sampling technique as the temperature descends until the optimum solution is obtained. 

An agent is anything that can be viewed as perceiving its environment through sensors and acting upon 
that environment through effectors. For each possible percept sequence, an ideal rational agent should do 
whatever action is expected to maximize its performance measure on the basis of the evidence provided by 
the percept sequence and whatever built-in knowledge.[7-9] According to the definition, we can give different 
descriptions for different problems. 
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For the optimization problem (1), an agent represents a solution point that is a real vector ( )1,...,
T

nx x . 

Many agents are placed in a gridding whose size is size sizeL L× . Each agent is fixed in an intersection of the 
gridding. Each agent can only perceive locally and interact with the agents in its surroundings. Only the 
conjoint agents can interact.   

,i jL ( ), 1,2,..., sizei j L= ( ),i jDefinition 1. Let  denote the agent at in the intellective gridding, whose 

neighborhood is denoted by { }1 1 2 2, , , , ,, , ,i j i j i j i j i jNbs L L L L= where 
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Every agent has certain energy which should embody the objective functional value. The purpose of the 
agents’ evolution is to decrease its energy, which leads to competition between the conjoint agents. At last, 
the agents with higher energy will die off, whose position will be replaced by new agents, because the agents 
are intelligent and they can learn from their surroundings to generate new agents.  

2.2. The agents’ abilities of competition and learning 
When the temperature is , we suppose that the intellective griddingmT L equals to the intellective 

gridding ,  denotes the agent at  in intellective 

gridding

(, 1 2, ,...,m
TT m m m

i j nL l l l= ) ( ),i jmTL

L , denotes the agent with the lowest energy in the neighborhood of , 

denotes the best agent in the intellective gridding, 

(, 1 2, ,...,m
TT m m m

i j nMax m m m= )
)

,
mT

i jL

( 1 2, ,...,m
TT m m m

nBest b b b= ,i jFL  denotes the energy of 

 and denotes the energy of ,
mT

i jL ,
mT

i jMax,i jFM . Then there is the competitive rule or surviving rule as follows 

( )
⎪
⎩
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j.ij,iT
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 is a random digit in [ ]0, 1( ).rand β, where  is a parameter related to the size of independent variables. 

The dead agent will be replaced by a new agent generated by the simulated 
annealing search, which is the embodiment of agents’ learning ability. First, a new real vector is generated, 
that is

(, 1 2, ,..., T
i j nNew e e e= )

( )1 2, , , T
nZ z z z= " , where  

3
2

1

1 1 , 1, 2, ,i
i n

i
jj

Wz i n
uW

=

⎡ ⎤
= − =⎢ ⎥

⎣ ⎦∑
"

 
where  is a set of independent stochastic variables of uniform distribution in nWWW ",, 21

[ ]1, 1− , is a set of independent stochastic variables of uniform distribution in[ ]0, 1nuuu ",, 21 ,and 

and {  are independent to each other. Suppose the dead agent is , then 

a new agent is generated as follows 
{ }1

n
iW }1

n
iu ( ), 1 2, ,..., T

i j nOld d d d=

,i jNew

( ) ( ), , , ,2 .i j i j i j i jNew Old Rand Max Old LENGTH Z= + × × − + ×
 

( ).Randwhere  is a diagonal matrix whose diagonal elements are a set of independent stochastic variables 

of uniform distribution in[ ]0, 1 . If the new agent satisfies surviving rule (2), it will be placed at ( ),i j  in 
the intellective gridding. Otherwise, the searching for the new agent continues. A new agent will not be 
generated at random until the searching for a new agent at ( ),i j  has repeated for certain times. 
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3. Multi-agent Annealing Algorithm 

3.1. The agents’ abilities of competition and learning 
 

Algorithm 

Step 1 Initialize of the intellective gridding and search for 0TL 0TBest . 

Step 2 When the temperature is ,let the agents in compete in their surroundings and learn from 
their environment. 

mTLmT

Step 3 Search for mTBest in . mTL
mTBestStep 4 If the stopping criterion is satisfied, will be outputted as the approximate optimum 

solution and the energy corresponding as the approximate optimum value, then the iteration is over; 
Otherwise, ,go to Step 2. 1m m← +

In MAA, we assume the renewal function of temperature to be 

( )
0

21m
TT

m
=

+
. 

For problem (1), if the precision of the ith variable is iε , the solution space can be thought to be an 
discrete space whose size is 

S

( )
1

n i i

i i

x x
S

ε=
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∏  

( ){ }|E Eng X X S= E S≤∈ where Eng(X) denotes the energy of the agent X, obviouslyLet , then 

{ }1 2, ,..., EE E E E= 1 2 ... EE E E< < <where . According to the agents’ energy, S can be divided into 

many subsets{ }iS , where 

( ){ }| , ,i iS X X S and Eng X E= ∈ = 1,2,...,i E=,  

{ }1, 2,...,i∀ ∈
1

E i
i

S S
=

=∑
iS ≠ ∅ E

;
 ,                                             (3) 

i jS S =∅∩ i j≠ , 
1

E i
i

S S
=

=∪  , 

Obviously, is the optimum value and includes all the agents whose energy is . 1E 1E1S
size sizeL LWG S ×=Let WG denote the set which includes all the intellective griddings, then . To evaluate 

the intellective griddings, we define the energy of intellective gridding L  to be 
{ }sizej,i L,,,j,iLEngLEng "21|)(Min)( ==  

( )1 EE Eng L E≤ ≤Then, for , the following holds:L WG∀ ∈ . So WG  can be divided into many 

subsets{ }iWG , where 

( ){ }| , ,i iWG L L WG and Eng L E= ∈ = 1,2,...,i E= ； ，

{ }1, 2,...,i E∀ ∈
1

E i
i

WG WG
=

=∑ iWG ≠ ∅；   ； ，

i jWG WG =∅∩ ， i j WGWGE

1i
i =

=∪≠ . ；

Accordingly,  includes all the intellective griddings whose energy is  1E1WG

( 1,2,..., , 1, 2,..., ii E j W= = )GijL denote the jth intellective gridding in . In the algorithm iWGLet 
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process, when the temperature is , we letmT mTij klL L⎯⎯→ denote the state transition form to , ijL klL

,
m
ij klp ,

m
ij kpdenote the trasition probability from to , ijL klL  denote the transition probability from  to any 

intellective gridding in , and 

ijL

,
m
i kpkWG  denote the transition probability from any intellective gridding in 

 to any intellective gridding in . Then iWG kWG

, ,1

kWGm m
ij k ij kll

p p
=

=∑ ,1
1E m

ij kk
p

=
=∑ , ,

m m
i k ij kp p≥， ， . 

3.2. Convergence of MAA 
{ }, 1, 2,...,i k E∀ ∈ m N∀ ∈Theorem 1. In MAA, for , the following holds ，

,

0
0

m
i kp

>⎧
= ⎨=⎩

k i
k i
≤
>

  . 

( )1,2,..., , 1, 2,...,ij i iL WG i E j WG∀ ∈ = = ( )*
1 2, ,..., T ij

nX x x x L∃ = ∈Proof: Firstly, for ， ，

and ( )* iEng X E= .According to the rules by which the new agents generate, the iteration of MAA only 

brings greater intellective griddings. Hence for { }, 1, 2,...,i k E∀ ∈ ， m N∀ ∈ , if i k , . , 0m
i kp =<

( )1 1 1 1
1 2, ,...,

T

nX x x x=Secondly, when the temperature is , we assumemT be the best agent in the 

neighborhood of dead agent ( )0 0 0 0
1 2, ,...,

T

nX x x x= ( )2 2 2 2
1 2, ,...,

T

nX x x x=, and be the new agent who replaces 

the (0 0 0 0
1 2, ,...,
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n )X x x x= in the intellective gridding . By formula (3), we can conclude that ijL
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[ ]1,0where  is used to ensure that  is an stochastic variable inik iW . 

( ) 0P A υ= >Because the solution space is a discrete space, S .Then  if .  , 0m
i kp > i k≥

From the conclusions above, we can prove the global convergence of MAA as follows. To describe 
easily, we let  denote the temperature when the intellective gridding has altered for  times, denote a 

stochastic matrix. Each 

m mPmT

( 1, 2,...,iWG i E= )  can be seen as a state in a finite Markov chain. According to 

Theorem 1, , the transition matrix of that Markov chain, can be described as follows mP
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Theorem 2. In the condition of theorem 1, MAA is global convergent. 
Proof: By the formula (4), we can get that 
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m
P Eng L E

→∞
= =  

That is, SAA converges to the global solution. 

4. Numerical experiment 
To verify the efficiency of MAA, we make several numerical experiments to compare MAA with SAA 

and GA by three classical test functions in optimization. The test functions are listed as follows: 
1) Generalized Griewank function  

( ) 2
1

1 1

1 cos 1
4000

nn
i

i
i i

xf X x
i= =

⎛ ⎞= − + [ ]600, 600ix ∈ −  
⎜ ⎟
⎝ ⎠

∑ ∏    
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2) Ackley function  

( ) ( )2
2

1 1

1 120 exp 0.2 exp cos 2 20
n n

i i
i i

f X x x e [
n n

π
= =

⎛ ⎞ ⎛ ⎞
= − − − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ ]3 0 , 3 0ix ∈ −  

3) Rastrigin function 

( ) ( )2
3

1
1 0 c o s 2 1 0

n

i i
i

f X x xπ
=

⎡ ⎤= − +⎣ ⎦∑ [ ]5 .1 2 , 5 .1 2ix ∈ −   

The three functions have the same solution (zero vector) and the same optimum value (zero).  

Table 1. The results for functions of 5 variables 

Function Algorithm Approximate solution App. value CPU time 
(0.0050032,-0.0370384,0.018544, 

SA 0.969304 1046 
0.049868,0.0581997) T  

(0.180314,-0.0860113,-0.0261525, 
GA 

0.220705,0.441092) T  
26.5153 1250 Generalized 

Griewank 
(0.000229365,0.0082141,-7.70802e-005, 

MAA 0.0952871 343 
-0.000359218,0.0113358) T  

(0.038154,0.00120962,0.0145285, 
SA 1.73091 1187 

0.997239,-0.0209483) T  
(0.180314,-0.0860113,-0.0261525, 

GA 
0.220705,0.127479) T  

1.41461 1265 Ackley 

(0.000372097,-0.00255419,0.00151736, 
0.0090241 468 MAA 

0.00342458,0.00182566)  T

(0.00560495,0.00529649,7.825e-005, 
SA 1.04515 953 

0.987643,0.0118406) T  
(-0.0127323,-0.13267,0.963046, 

GA 
-0.0230955,-0.131381)  T 7.86428 1109 Rastrigin 

(0.000400278,-0.00145453,-0.00284663, 
0.00374522 234 MAA 

0.00281354,-0.000764573) T  

In the experiments, the operating condition is CPU 1.80GHZ, and VC++. To use the same program, the 
intervals of definition of the three functions are all turned into[ ]-1,1 by linear transformation. For SAA[10], 
we let the step size Length=1E-7, initial temperature T0=2000000 and the stopping criterion be t 1E-5. For 
GA

≤
[11], we let populations size M=61, evolutional generation size k=400, crossover rate pcross=0.9, and 

mutation rate pmutation=0.02. For MAA, we let the number of times we search for a new agent each time 
c0=4, LSIZE=7, the step size Length=1E-5, and the stopping criterion be ≤t 1E-5. In the experiments, the unit 
of time is 10-3s. The results in tables are the average of independent experiments for10 times.  

Table 2. The results for functions of 20/100 variables 

Function Algorithm Approximate optimum value CPU time 

SA 2.90129/895.59 2578/6609 
Generalized 
Griewank GA 253.715/2069.02 1953/7640 

MAA 1.23907/39.6328 1140/5953 
SA 0.724477/2.97288 2812/6531 
GA 3.08849/3.48865 2046/6640 Ackley 

MAA 0.379777/0.781705 1093/3093 
SA 11.0912/448.108 3203/10781 
GA 142.185/879.943 1578/6031 Rastrigin 

MAA 6.691/97.7543 1296/3875 
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From table 1, we can conclude that MAA is superior to GA and SAA on approximate optimum value and 
running time. The table 2 suggests that the single-point searching in SAA leads to the poor rapidity of 
convergence, and that GA is trapped in a local solution early and hard to get out, which is the embodiment of 
its weak capacity of climbing hill. 

5. Conclusion 
A multi-agent Annealing Algorithm for global optimizations is proposed in this paper, and whose global 

convergence is testified. The numerical results reveal that MAA is superior to GA and SAA. 
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