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Abstract: In this paper, by the simple linear controller, the coupled dynamos dynamical system can be 
controlled to a stable periodic orbit and a stable fixed point. Meanwhile, the stability of the period orbit and 
fixed point is proved by the values of Lyapunov exponent. Furthermore, by the nonlinear feedback controller, 
the efficient complete Synchronization of the coupled dynamos dynamical system is completed. Numerical 
simulation results show the effectiveness and feasibility of the simple linear controller and nonlinear 
controller.   
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1. Introduction 
In the last decade, controlling chaos has been the focus of the research of nonlinear chaotic systems. 
Recently, there has been increasing interest in the research of chaos control and synchronization. Various 
methods of chaos control and synchronization have been proposed in recent years. The current control 
algorithms can be classified into two main categories: feedback control and non-feedback control. Among 
these, linear feedback control is an important and effective method, based on the design of different 
controller has achieved a lot of satisfactory results (see [1]-[5]). At the same time, chaos synchronization also 
is an important topic, and has obtained a lot of availability results (see [6] - [7]). 

 The system that we will study in this paper comes from H.N. Agiza (see [1]). The system consists of two 
dynamos systems which are connected with each other so that the current generated by any one of them 
produces the magnetic field for the other. We denote the angular velocities of their rotors by 21,ωω  and the 
current generated by yx, , respectively. Then with appropriate normalization of variables, the mathematical 
model equations for this system are: 
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Where and are the torques applied to the rotors, and 1q 2q 2121 ,,, εεμμ are positive constants representing 
dissipative effects. By setting 1,0 2121 ==== qqεε , the above system can be simplified as the following 
dynamical system:                        
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This system is difference from the Lorenz system and L system and Chen system.  u
For this system in [1], H.N.Agize used the method of linear feedback control and bound feedback control, 

and chosen the following control input  
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Such that the chaos of the coupled dynamos dynamical system can be controlled to the equilibrium point. 

Furthermore, the above method was be used and suitable control input is chosen to stabilize the unstable 
equilibrium points . At the same time, in order to suppress the chaotic behaviors, H.N.Agize (see [1]) 
choice the following control input 

21, EE

),sin()( 21 tfftu ω+= . 

Added it to the second equation, so that the chaos of the dynamical system is controlled to the limit cycles. 
The numerical simulations showed the effect of the control. 

The outline of this paper is as follows: Section 1 introduces the coupled dynamos dynamical system and 
gives its properties; Section 2 introduces the models and mathematical structure of the linear control for 
chaos; Section 3 by the simple linear controller, the coupled dynamos dynamical system can be controlled to 
a stable periodic orbit and a stable fixed point. Meanwhile, the stability of the period orbit and fixed point is 
proved by the values of Lyapunov exponent; Section 4 completes the efficient Synchronization of the 
coupled dynamos dynamical system by the nonlinear controller. The numerical simulation results will prove 
the correctness of the simple linear controller and nonlinear controller. 

2. The coupled dynamos dynamical system 
The coupled dynamos dynamical system introduced by H.N.Agiza (see [1]) is a nonlinear dynamical system. 
The system consists of two dynamos systems connected together so that the current generated by any one of 
them produces the magnetic field for the other. By simplification, finally, the coupled dynamos dynamical 
system can be written as follows 

⎪
⎩

⎪
⎨

⎧

−=
−+−=
++−=

xyz
zxyy
zyxx

1
)(
)(

αμ
αμ

                                                             (1.1) 

Where α and μ are constant of the motion. When 1,2 == αμ , it has a chaotic attractor as shown in 
Fig.1.The derivative of the flow (1.1) is given by   
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Where F= ( ) = (321 ,, FFF xyzxyzyx −−+−++− 1),(),( αμαμ ).Then system (1.1) is a forced 
dissipative system similar to Lorenz system. But they are different from. Thus the solutions of the system 
(1.1) are bounded as ∞→t for positive values of α and μ . But in a sense defined by Vanecek and 
Celikovsky (see [8]), the Lorenz system satisfies the condition , while the coupled dynamos 
dynamical system satisfies the condition

02112 >aa
02112 <aa , Hence the coupled dynamos system and the Lorenz 

system are different types of system.  
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Fig.1 The chaotic attractor of the coupled dynamos dynamical system 

3. Mathematical models of linear feedback control for chaos 
Consider an -dimensional system N

 ),( λxfx =                                                                     (2.1) 

Where , )( ,2,1 nxxxx = ),,( 21 mλλλλ =  are the parameters of system (2.1). 

In the following discussion, if the linear control input  is added to the right hand, thus the system ),( kxu
),(),( kxuxfx += λ                                                           (2.2) 

Can be considered as a controlled system, if 0),( =kxu , the nonlinear system (2.1) have been considered as 
a chaotic system. By suitable choice , the chaotic system (2.1) can be controlled to a stable period 
orbit or a stable fixed point. In this paper, with this kind controlling models complete the control of the 
coupled dynamos dynamical system.  

),( kxu

4. Linear feedback control of the coupled dynamos dynamical system 
Consider the controlled coupled dynamos dynamical system 
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 Where is a control input for the coupled dynamos dynamical system. If the 
parameter , then the above system is a chaotic system. 

)(),( zykkxu +=
0=k

If , then the (3.1) can be rewritten as 265.0=k
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v
η    It can be proved that the system is a dissipation system, 

and the chaotic system (1.1) can be controlled to a stable period orbit. Moreover according to the A.Wolf, 
J.Swift,H.Swinney and J.Vastano(see[9]), we can obtain the Lyapunov exponents λ of the dynamical 
system(3.2) are 0.00051684, -0.40289 and -3.3272,respectly.the Lyapunov exponents graph as Fig.2.Thus 
the controlled chaotic coupled dynamos dynamical system (3.2) is a stable period orbit. By the numerical 
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simulation we can obtain the graph of the stable period orbit as Fig.3. 

 
Fig.2 The evolution of the Lyapunov exponent of the controlled chaotic system 
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Fig.3 controlled stable periodic orbit 

If we choice the controller as )(),( zyxkkxu ++= and then add it to the first equation of system (1.1), 
we can obtain the controlled system as following 
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When parameter , then the system (3.3) can be rewritten as 066.0=k
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Like the above, the system is a dissipation system, and the chaotic system (1.1) can be controlled to a 
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stable fixed point. According to the A.Wolf, J.Swift,H.Swinney and J.Vastano(see[9]), we can obtain the 
Lyapunov exponents λ of the dynamical system(3.4) are -1.30785,-1.30789 and -12.5643,respectly.the 
Lyapunov exponents graph as Fig.4.Thus the controlled chaotic system (3.4) is a stable fixed point. By the 
numerical simulation, we can obtain the graph of the stable fixed point as Fig.5. 

 
 

Fig.4 The evolution of the Lyapunov exponent of the controlled chaotic system 
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Fig.5 stable fixed point 

5. Synchronization of the coupled dynamos dynamical system 
Consider the system of differential equations 

)(xfx =                                                                         (4.1) 

),( yxgy =                                                                       (4.2) 

Where  are assumed to be analytic functions. nnnn RRgfRyRx →∈∈ :,,,

Let  be solutions to (4.1) and (4.2), respectively. The solutions are 
said to be efficient complete synchronize if   

),(),,( 00 ytyxtx ),(),,( 00 ytyxtx
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cytyxtx
t

=−
∞→

),(),(lim 00                                                          (4.3) 

Where  is a constant (see [7]). If , then are said complete synchronization (see [10]). c 0=c ),(),,( 00 ytyxtx
If we choice the drive system as 
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Construct the respond system as 
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Then the error between drive system and respond system is 
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Choice the Lyapunov function 
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when choice the control input as 
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As long as 0,, 321 <−>−> kkk μμ . Then the derivative 
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So the error system is stable. 

 

Fig.6 Time series of state variable ,  and synchro error  )(1 tx )(2 tx )()( 21 txtx −
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Choice ,1,0,1 321 −==−= kkk 1)0(1 =x , 0)0(,0)0( 11 == zy , 1)0(2 =x , 1)0()0( 22 == zy ,this 

particular choice will lead to the error states  converge to constant as time t  tends to infinity and 
hence the efficient synchronization is achieved. Numerical simulation results as Fig.6, Fig.7 and Fig.8. 

321 ,, eee

 
Fig.7 Time series of state variable ,  and synchro error  )(1 ty )(2 ty )()( 21 tyty −

 
Fig.8 Time series of state variable and synchro error  )(),( 21 tztz )()( 21 tztz −

6. Conclusion 
In this paper, we use the simple linear controller, so the coupled dynamos dynamical system is controlled to 
a stable periodic orbit and a stable fixed point; by the nonlinear controller, the efficient synchronization is 
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achieved. The Lyapunov exponent values and Lyapunov function prove the correctness of the methods that 
used in this paper. Actually, as long as chose a suitable control input and , the complete 
synchronization between system (4.4) and (4.5) is also achieved. 

21 ,uu 3u
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