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Abstract. Radiative transfer, described by the radiative transfer equation (RTE), is one of the dominant energy
exchange processes in the inertial confinement fusion (ICF) experiments. The Marshak wave problem is an
important benchmark for time-dependent RTE. In this work, we present a neural network architecture termed
RNN-attention deep learning (RADL) as a surrogate model to solve the inverse boundary problem of the
nonlinear Marshak wave in a data-driven fashion. We train the surrogate model by numerical simulation
data of the forward problem, and then solve the inverse problem by minimizing the distance between the
target solution and the surrogate predicted solution concerning the boundary condition. This minimization
is made efficient because the surrogate model by-passes the expensive numerical solution, and the model is
differentiable so the gradient-based optimization algorithms are adopted. The effectiveness of our approach
is demonstrated by solving the inverse boundary problems of the Marshak wave benchmark in two case
studies: where the transport process is modeled by RTE and where it is modeled by its nonlinear diffusion
approximation (DA). Last but not least, the importance of using both the RNN and the factor-attention blocks
in the RADL model is illustrated, and the data efficiency of our model is investigated in this work.
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1 Introduction

Inertial confinement fusion (ICF) refers to the fusion energy released when a small amount
of hot nuclear fuel is ignited by high-power substances (such as laser, electron beam, and
ion beam) to make it reach the ignition conditions under inertial confinement. The laser
inertial confinement fusion device uses a powerful laser to irradiate the target, compress
the fuel inward, and the plasma formed by the target material is heated to a very high
temperature and a fusion reaction occurs before it has time to fly around due to its own
inertia, full thermonuclear combustion is carried out to release a large amount of fusion
energy.

The ICF implosion is characterized by the equations of radiation hydrodynamics, which
are mainly composed of equations describing fluid motion, electron heat conduction,
ion heat conduction, photon transport, nuclear reaction and charged particle transport
[8,130,35]. Among the processes, the photon transport in a medium which absorbs, emits,
and scatters radiation is governed by the frequency-dependent radiative transfer equa-
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tion. One of the main challenges in the numerical simulation of the RTE is its high-
dimensionality, as its independent variables include time, space, the radiation frequency
and the propagation direction of photons. In practice, a common way of addressing this
challenge is to reduce its dimension by integrating the transport equation against all an-
gles and approximating the radiation flux using the Fick’s law of diffusion. This yields the
diffusion approximation (DA) to the transfer equation [4]. When away from the boundary
and initial layers, the DA is valid in optically thick regions where the photon’s mean free
path is small, but it leads to notable deviation in the optically thin regions [26}32}34,44].

In this work, we mainly concern with the material temperature and radiation temper-
ature in the ICF process, which are spatial-temporal distributed functions, and investigate
the inverse problem: Given the desired target temperature, we are aiming to work out
a boundary condition with which the solution of the RTE and its nonlinear diffusion ap-
proximation approaches the target temperature. The corresponding forward problem is
thus to predict the material temperature from an input boundary condition. The accuracy
and efficiency of solving the inverse problem largely depend on the effectiveness of the for-
ward problem solver. A common practice is to build the forward problem surrogate mod-
els that are expected to preserve the accuracy of the original forward problem solution,
and to substantially relieve the computational burden [2,09]15,18,131,146]. Recently deep
artificial neural networks are used to build surrogate models [36}43]. From the theoretical
perspective, the success of the deep neural networks may be attributed to their power of
universal approximation [5,21], especially for high-dimensional functions [12}[13]].

In the forward RTE problem, both the boundary condition and the solution (mate-
rial temperature) are time sequences, thus the ordering of the input and output should
be properly taken into consideration in the construction of the surrogate forward model.
A large amount of model constructions that map sequence to sequence (seq2seq) have
been proposed in the field of natural language processing (NLP), including but not lim-
ited to recurrent neural network [24], Long Short-Term Memory (LSTM) [20], bidirectional
recurrent neural network (BRNN) [42], bidirectional LSTM [17]. Recently large scale pre-
trained models based on the attention architecture [47] have prospered, and some exam-
ples are XLNet [48], ELMo [37], BERT [11] and GPT-3 [6]. Using the seq2seq modeling to
solve PDE problems is not unprecedented. Anshuman et al. applied a novel LSTM-based
seq2 model to solve the groundwater contaminant sources identification and parameter
estimation. The model takes both sequential inputs to predict breakthrough curves at ob-
servation points, effectively reducing the computational cost caused by the numerous runs
of the computationally expensive optimization algorithm [3]. To the best of our knowl-
edge, the seq2seq idea has not yet been used to establish the surrogate model and solve
the inverse RTE problems.

In this work, we introduce an RNN-attention deep learning (RADL) model architecture
for the surrogate model of the RTE and its diffusion approximation. We have shown that
both the RNN and the factor-attention blocks in the RADL model are crucial for accuracy.
Besides the high efficiency, the RADL model is differentiable, which makes it possible to
solve the inverse problem with gradient-based optimization algorithms. The effectiveness
of the proposed RADL is demonstrated by solving the Marshak wave problem for a model
RTE and its diffusion approximation.
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The rest of this paper is organized as follows. In Section[2] we introduce the preliminary
knowledge of the equations, involving the radiative transfer equation, the gray equation
of transfer and its diffusion approximation, the Marshak wave problem and the corre-
sponding inverse problem setup. Section [3lintroduces our RADL surrogate model archi-
tecture and the methodology for solving the inverse boundary problem. Section@ exhibits
numerical experiments. Section 5l concludes the work.

2 Preliminaries

2.1 The frequency-dependent radiative transfer equation

The radiative transfer equation is a mathematical description of the conservation of pho-
ton as it transports in medium. Under the assumption that the scattering kernel is both
coherent and isotropic, and in the absence of internal source, the RTE is written in the
following form [40]:

101 os(v, T
T Q-VI=—(0a(v,T) +0s(v,T)) I+ 0a(v,T)B(v,T) + % /SZ 1d0.  (2.1)
In Eq. @), I(x,t,v, Q) is the specific intensity of radiation, t € R" denotes time, x € R3
are the spatial coordinates, and v € R™ is frequency. Q is the angular variable which lies
on S2, the surface of the unit sphere, denoting the direction in which radiation propagates.
c denotes the speed of light. ¢, and o; are the absorption and scattering coefficients re-
spectively, describing the interaction of photons with matter. Note that ¢, is modified to
take into account induced emission. The assumption of local thermodynamic equilibrium
(LTE) leads to B(v, T) taking the form of the Planck function
2hv3 _
B(v, T) = —— (/BT —1)7, (2.2)
where /i is Planck’s constant, kg is Boltzmann’s constant, and T is the local temperature of
matter. We will discuss the governing equation of T in the next section.
We consider a system confined within a volume D with its boundary denoted by dD.
The initial condition at t = 0 can be given by

I(x,0,v,Q) = A(x,v,Q), VY(x,v,Q) € D x [0,00] x S?, (2.3)

where A is a specified function. Assuming the system surface is non-re-entrant and con-
sidering a simulation time interval of t € [0, t¢], where f; is the ending time, one can impose
the inflow boundary condition

I(x,t,v,Q) =T (x,t,v,Q2) on oD_, (2.4)

where dD_ = {(x,t,v,Q) € dD x [0, (] x [0,00] x S? : n(x) - Q < 0}, x is an arbitrary point
on dD, and n(x) is the outward unit normal vector at this point. I’ is a specified function
of all its arguments. The above initial (2.3) and boundary (2.4) conditions together with
Eq. @.1), completely specify the radiative transfer problem.
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2.2 The gray equation of transfer and its diffusion approximation

Our discussion focuses on the case where there is no scattering and the absorption coeffi-
cient 0, (T) is independent of frequency, but in general depends on the temperature T. In
this case, integrating the RTE over the whole frequency domain yields the gray equation
of transfer [40]

191 B 1
_§+Q VI =0,(T) (EacT —I). (2.5)

With some abuse of notation, here I(x,t,Q) is the integration of the specific intensity
against v € [0,0). a is the radiation constant given by
514
_ 8mky ‘
15h3¢3
Following the dimensional analysis procedure in [33], we write the gray equation of trans-
fer in nondimensional form as

(2.6)

c ot

where € is the ratio between the typical mean free path and the macroscopic length scale.
In the absence of convection and heat conduction, as in [10//44], we consider the case where
material temperature, denoted by T'(x, t), satisfies the energy balance equation

e, L = 2% _ ;1 (/2 1dO— acT4) . (2.8)
S

€?al 1 4
—— +eQ-VI=0,(T) EacT -1, (2.7

ot ot

Cy(x, t) is the heat capacity. The relationship between the material temperature T (x, t) and
the material energy density U(x, t) satisfies
ou

57 = Co > 0. (2.9)

Integrating Eq. (2.7) over Q and combining with Eq. (2.8) produce the conservation of
energy

eC, aaT+e— / 0-VIdO =0, (2.10)
where E is the energy density defined as
E= 1 1dQ. (2.11)
cJg2
The total energy is then defined as
&=U+E. (2.12)

When € goes to zero, the specific intensity goes to a Planckian at the local temperature
[4/45]. In such cases, the radiative flux F(x, t) is related to the material temperature by the
Fick’s law of diffusion given by

F(x,t) = m dQ = —3—VT4 (2.13)
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Therefore, when away from initial and boundary layers, the corresponding local temper-
ature T(0) satisfies the nonlinear diffusion equation

auU(T®) 3

R S— A, + a—

ot ot

Moreover, at this time the total energy equation (2.12) is expressed as

(TO)* = v Z9(TO)% (2.14)

4

E=UO +a(T)", (2.15)

2.3 The Marshak wave problem

The Marshak wave problem is an important benchmark for time-dependent RTE simula-
tions. Its setup consists of an initially cold material occupying a halfspace with radiation
incident on its boundary [39]. We are concerned with how the radiation wavefront pene-
trates the slab.

This problem has been studied in various literature [23,138}139,44]. In our studies, we
consider a system with slab geometry, the same as in [44]. Also, scattering effects are omit-
ted, and the absorption coefficient is assumed to be independent of frequency. Therefore,
the gray equation of transfer characterizing this physical process could be written in the
following dimension reduced form:

Lol + yﬂ =—0,(T)I + 1(Ta(T) acT#,
c ot ox : 2 (2.16)
CU%—Z: = UQ(T)/ I(p)du — 0q(T)acT?,
-1
where y = Q). The corresponding initial condition for Eq. (2.16) is
I(x,0) = lach, T(x,0) = T,(x), Vx € [0,00), (2.17)

2

which means that we assume initially the specific intensity is isotropic, and that initially
radiation and material temperature are equal. The following inflow boundary condition
is imposed upon x = 0:

1
1(0,t, 1) = Each“d, Vt>0, u>0. (2.18)

The boundary condition is assumed to be isotropic in terms of the photon propagation
direction, i.e. I(0,t, ) is independent of . When o0,(T) approaches infinity, the same
analysis as in Section[2.2] yields the following diffusion approximation:

0, 4 d 1 d )
The interpretation of the physical quantities are the same as defined in Sections2.T]and
except that the x is the 1D spatial variable, and p = Q) € [—1, 1] is the cosine of the angle
between the photon propagation direction and the x coordinate.
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Following the setup in [44], we take

3
0u(T) = 00 (M> , (2.20)

where T,y is the temperature corresponding to the energy of 1 keV, i.e. Tyoy = 1 keV/kp
with kg being the Boltzmann constant. ¢; o is a constant of unit cm L. Other constants are
chosen as C, = 0.0259 GJ/MK/cm3, ¢ = 29.98cm/ns, a = 7.5651 x 10~7GJ/cm3/MK?.
The initial material temperature T(x,0) is set to T(x,0) = 10 %keV /kg.

The physical process described by the Marshak wave problem could be approximated
either by direct solving the transport equation, or its diffusion approximation. In generat-
ing our data, we solve both equations. When solving the transport equation, we employ
the spherical harmonics (P,) method for angular discretization. The P, method is a popu-
lar way of approximating the RTE, and more details of its derivation and properties could
be found in [40]. Specifically, we use the Pj; system, and evaluate it using the finite vol-
ume method. In solving the diffusion equation, we employ a backward Euler scheme for
temporal discretization, and a central difference scheme for spatial discretization. The re-
sulting nonlinear equation for T is solved using standard Newton iteration. We will refer
to solutions produced by the above methods as the ground truth.

2.4 The inverse problem of the transport equation and its diffusion
approximation

Assuming that all the constants and the initial condition are given and that a compact time
domain [0, t¢] is considered, the forward problem of the Marshak wave equation (2.16) is
a functional from the boundary condition Ty, (t) to the material temperature T(x, t), which
is defined as

T = F[Tpl. (2.21)

Given a target material temperature T* = T*(x, t), the inverse boundary problem of the
Marshak wave is to find a boundary condition, denoted by Tj;(t), so that the solution of
the forward problem is as close to the target T* as possible, i.e.

Tyq = arg n%inﬁ(]-'[de], T"), (2.22)
bd

where £ is a measure of the distance between the two spatial-temporal functions. In this
work, the distance in the L2 sense is used, i.e.

L(F[Tpa, T*) = / | FTpa) (x, £) — T* (x, ) dxcdt. (2.23)

Other measures can be considered analogously without substantial difficulty as long as
they are smooth with respect to the inputs.

The inverse problem (2.22) is an optimization problem which can be solved by well-
developed algorithms, like the gradient descent method. Solving the optimization prob-
lem requires solving the forward problem multiple times, i.e. solving the RTE multiple
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times, which can be very expensive. Moreover, if the optimization algorithm requires the
evaluation of the gradients, a common requirement of the gradient-based optimization
algorithms, the gradient of the forward mapping with the boundary condition should be
evaluated. This further increases the computational cost. Therefore, we propose a surro-
gate model

Fo[Tpa] = FTpal, (2.24)

which is an approximation of the forward problem @2.21I). We require that the computa-
tional cost of the surrogate is inexpensive, and that the gradients of the surrogate model
should be easy to evaluate. If the surrogate model approximates the forward problem
very well, we solve the surrogate inverse problem

T3, = arg min £ (F*[Tyal, T*), (2.25)
bd

instead of the original inverse problem (2.22). If the surrogate model is a close approxi-
mation to the original forward problem, one expect that the loss £(F[T%,], T*) is close to
zero. The inverse and surrogate-based inverse problems of the diffusion approximation
can be introduced in an analogous way to Egs. (2.22) and (2.25).

3 Method

In this section, we first give an explicit introduction to our RNN attention deep learning
surrogate model architecture. Then we present how to apply the already built-up sur-
rogate model to the inverse boundary problem to efficiently produce an approximated
boundary condition on the promise of a given desired target solution.

3.1 Surrogate model architecture

The structure of the RADL model is schematically illustrated in Fig. The time-discre-
tized boundary condition Ty4(t;), where i = 1,...,N, with N being the number of the
temporal discretization grid points. Each Ty,(t;) represents the boundary value at the
temporal grid t;, is passed to a factor-attention block and an RNN block to extract the
inherent content features and the time-series features, respectively. Then the features are
concatenated and passed through a fitting block to predict the spatial-temporal discretized
solution T(x]-, t;),j = 1,...,M, with M being the number of spatial discretization grid
points,and i =1,..., N. T(xj, t;) represents the numerical solution at the spatial-temporal
grid (x;,t;). We now present the details of the model structure. The factor-attention block
is composed of the factorization layer and the attention layer.

Factorization layer. The time-discretized boundary condition Tj4(t;) is firstly embedded
into a hidden space by a linear transform

g/ = whl(t), (3.1)

where w € RNi is the trainable weight, with Nj, being the dimension of the hidden space.
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Discretized solution T'(x, t)

Fitting block /

[ Dense layer ]

[ Dense layer ]

[ =

k [ Dense layer ]
Factor-attention block l Concat RNN block
| n |
[ Attention layer ]
T RNN layer

[ Factorization layer ]
*
[

Boundary condition T4

Figure 3.1: A schematic plot of the architecture of the RADL model.

Attention layer. The attention mechanism is usually used to encode long-range correla-
tion in the input series into the feature [47]. From the data-driven perspective, all kinds
of information in the equation are expressed with data as the carrier. Attention score can
reflect the relationship between the inputs, and a strong correlation leads to a large at-
tention score, so the attention mechanism can be regarded as a weighted sum of all the

input information. The factorized boundary condition glf is passed through a multi-head
attention layer denoted by A

(st =4({gl}). (3:2)

where both the input { g{ } and the output feature {g/} of the multi-head attention layer
are time series in the Nj, dimensional hidden space, with each element in the series de-

noted by ng and g, respectively. The attention layer is permutationally covariance, which

means if we exchange the order of any two steps in the input series, the corresponding
output steps also exchange. The architecture of the attention layer A is explained in detail
in Appendix /Al

RNN block. RNN is a type of neural network commonly used for processing sequential
data such as time series data. RNNs have loops that allow information to persist and be
passed from one step of the network to the next. This allows RNNs to model sequential
dependencies and make use of information from previous inputs. The RNN block in our
paper, denoted by R, is used to encode the temporal dynamics of the boundary condition

de(t), i.e.
{8/} = R({Tpa(t:)})- (3.3)
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Figure 3.2: The RNN block structure.

Fig. 3.2 shows the basic structure of the RNN block. The calculation process can be suc-
cinctly described as follows:

s; = tanh (de<t1’)uT + Si—le)/ (3.4)
¢/ = tanh (5;V7). (3.5)

In this expression, the hyperbolic tangent activation function tanh(-) [7] is utilized, and
the learnable weights W, U and V play a crucial role in determining the output of the
RNN block. The hidden state s; at each time step i is calculated based on the combination
of these weights and biases, as well as the current input at time step Ty4(t;). As a result of
this calculation, the output feature g7 of the RNN block is represented as a time series in the
hidden space, where each output is a function of the prior node’s information s;_; and the
current input {Tp,(t;)} information. This allows the RNN to maintain information from
previous time steps and effectively process sequences of inputs, making it well-suited for
tasks that involve time-series correlation.

Fitting block. The output features of the factor-attention block (g{) and that of the RNN
block (g7) are concatenated as the overall input feature g; = concat(g?, g7) € R*Nr, and
are sent to the fitting block for final prediction T(x,t). The fitting block is a customized
neural network involving three feed-forward cells, each cell composed of several dense
layers. Additionally, there are two concatenation operations between the network cells to
assist in learning the function’s mapping knowledge better. The prediction process of the
titting block can be represented as

hgl) = G}(;I\I’z) oL(12 o G}(;I\I’l) o L(l'l)(gi),

hgz) = G](Szﬁg) oL(23) o G](SZN’Z) oL(22) o G](szN’l) oL(21) (Concat (gi, hgl))) ,

T, = L2 Gg\l’l) o LG (concat (h§1),h§2))) ,

T(xj,t;) = (Th)j, (3.6)

where o denotes function composition of layers. The L denotes dense linear layer, and the
Ggn denotes a function combining the batch normalization operator [22] and the Gaussian
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Error Linear Unit activation function [19]. The superscript (i, j) represent the j-th layer in
the i-th cell. The linear layer L(1')) doubles the dimension of the input vector, i.e. the
output size is 2Nj,. The output dimensions of the linear layers L(1?), L(21) are 4N, and
6N}, respectively, while L(22), L(23) and L) are 8N),. The output of the final linear layer
L32) is M. The j-th element of the output vector of the third layer, (T;) jr gives the solution
at the j-th spacial discretization point, i.e. T(x;, ;).

3.2 Solving the inverse problem

Given a target solution, the inverse problem seeks for a boundary condition T4 that min-
imizes the difference between the solution F[T,] and the target T*, i.e. Eq. 222). We
replace the forward problem solver F with the surrogate model F°, and introduce an
approximation equation (2.25) to the original inverse problem. The benefit of using the
surrogate model is two-fold: (1) the surrogate model is much faster than solving the for-
ward problem, and (2) the surrogate model is differentiable, i.e., the gradient of the MSE
concerning the boundary condition

IL(F*(Tpa), T*)

T, —
VTpa I

(3.7)

is easily calculated by the backward propagation technique [41]. Therefore, the optimiza-
tion problem (2.25) is solved by gradient-based optimization algorithms. In this work, we
find that the simplest steepest descent approach, i.e.

TS = TO¥ — aV Ty, (3.8)

can efficiently determine reasonably accurate solutions of inverse problems. In Eq. (3.8),
the parameter « is a fixed descent step-size, or learning-rate. We set &« = 500 in experi-
ments.

4 Experiments

In this section, we omit the unit of the physical quantities. It is noted that when we men-
tion the values of the spatial variable x, temporal variable ¢, the temperature T(x, t), the
absorption coefficient o; g, their units are cm, ns, keV/kp and cm L respectively.

4.1 Data preparation

Throughout this work, the time domain [0, 1] is discretized with a time step of At = 0.01,
thus we have in total N = 101 temporal discretization points. The spatial domain is chosen
s [0,1], and is evenly discretized with a step of Ax = 0.0025, thus we have M = 401
discretization points.
We use three methods, the delta, the constant and the piecewise constant method to
generate a sample of discretized boundary conditions for the Marshak wave problem.
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We generate 2500 boundary conditions by the delta method, 2000 of which serve as the
training data while the other 500 as the validation data. As two test sets, we generate 500
boundaries by the constant method and 500 boundaries by the piecewise constant method.

Delta method. The increment of the Tj; at each time step is randomly generated, i.e.

Tya(to) ~ U(0.2,2),

. 4.1
Tpa(tiin) = Toa(t]) +6;, 6 ~ U(—-0.1,01), i=0,1,...,N—1, 1)

where U(a,b) denotes the uniform distribution on the interval (a,b). The material tem-
perature T should not be larger than 0. If any Tj;(#;) in a sample is less than 0, the sample
is rejected and a new trail sample will be generated.

Constant method. The boundary condition is a random constant, i.e.

Tya(to) ~ U(0.2,2), Tua(t) = Tpalto), i=1,...,N. (4.2)

Piecewise constant method. The time interval is equally divided into 5 sub-intervals.
The material temperature T is chosen as a random constant on each of the sub-interval,
ie. fork=0,1,...,4,

T(taor) ~ U (1.1 — 033, 1.1 + V0.33),
de(ti) = de(tZOk)/ i=20k+1,...,20k+19,
Tpa(t100) = Tra(tso)- (4.3)

We employ both the RTE and its diffusion approximation as the radiative transfer model,
and numerically solve the Marshak wave problem with boundaries generated by the three
methods.

The boundary conditions and the corresponding numerical Marshak wave solutions
together form the dataset of this work. We use the delta method to generate the train-
ing and validation datasets. The constant and piecewise constant methods are used to
generate two test datasets.

4.2 The training of the surrogate model

The MSE of the RADL surrogate model prediction with respect to the numerical solution
is taken as the loss function £, i.e.

Z %i! [Toa] (%, ti) — N [Toa] (%), t:)

vd€B

2 (4.4)

where N[Tp;] denotes the numerical solution of the Marshak wave problem given the
boundary condition Ty4, B denotes a mini-batch of training data, |B| denotes the batch-
size.
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We take two extra criteria to evaluate the error of the model prediction, i.e. the L2 error
(& with a proper normalization) and the relative L2 error (g5), whose definition are

S

1 M N 2
& = [|S|TZ ;;\ [Toa] (xj, i) — N [Tpa (xj/fz')\] , (4.5)

dES

NI=

[ e T T 17 (T () = T (1)

€ = , (4.6)

Nl—=

[ZdeeS C EN [N [Tod] (x5, 1) m

where S represents the data set on which we calculate the errors. |S| denotes the number
of samplesin S.

The stochastic gradient descent optimizer Adam [25] is used to train the model param-
eters of RADL. As for the optimizer, we use an initial learning rate of 10~* with a batch
size of 100 to minimize the loss function. Besides, we use a learning-rate decay method
to assist model training. We empirically find that the cosine annealing decay [28] strategy
outperforms other learning rate decaying schemes. The idea of cosine annealing decay
strategy is to jump out of the local minima by periodically increasing the learning rate
once Tmax €pochs are performed. We compute the learning rate for each epoch by

7(T) = min + %(Umax — min) (1 +cos ((T mod Tmax) - 7)), 4.7)

where mod is modulo operation, T is the current number of epochs since the last restart,
Tmax 1S @ hyper-parameter, 77(7) is the learning rate at epoch T, #max and #min denote the
maximum and the minimum learning rate, respectively.

Additionally, we compare the performance of the Adam and L-BFGS optimizers in the
case of surrogate RTE model 0,y = 30 (see details in Section4.3). Upon convergence, the
absolute error on the validation set using Adam as the optimizer was 0.0240 and the rela-
tive error was 0.0219, while the absolute error using L-BFGS as the optimizer was 0.0268
and the relative error was 0.0239. We conducted five independently repeated experiments
to estimate the number of epochs needed to achieve convergence. The Adam optimizer,
on average, convergences in 2588 epochs, while the L-BFGS optimizer could achieve con-
vergence in 2440 epochs on average. Nonetheless, when the network representation and
the training samples were adequate, we found the difference between the two optimizers
to be not critical.

All of the following experiments adopt the same model structure and hyper-parame-
ters. The parameters configuration during the model training process is as follows. We
initialize the network parameters by the uniform Xavier method [16]. In cosine decay
strategy, #max = 1074, min = 1077, Tmax = 10. In our model training, we apply an early
stopping mechanism (with patience of 300 epochs) to prevent overfitting. a in solving
inverse problem (Section[3.2) is 500.
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4.3 Surrogate for the Marshak wave problem

For the Marshak wave problem, we consider two absorption constants with ¢, o = 30 and
04,0 = 150, which cover the typical range of material opacity in real-world applications.
The surrogate models for the two cases are trained by the delta method (@.1). The labels for
case 0,0 = 30 and 0,0 = 150 are separately generated by the numerical scheme described
in Section[2.3l The training protocols are detailed in Section 4.2l During the training, the
models are validated against a validation dataset generated by the delta method (4.1).
When the training finishes, the models are tested with datasets generated by the constant
and giecewise constant (£3) methods, and the errors are evaluated in the L? @5) and
relative L* (4.6) senses.

The accuracy of the surrogate model for solving the RTE is presented in Table We
find that both the absolute &, error and the relative &, errors on the validation set and two
test sets all achieve a magnitude of 10~2. The constant test error is close to the validation
error, while the piecewise constant test error is roughly twice as large as the validation
error. The high accuracy demonstrates that the surrogate model preserves high confi-
dence within or out-of-the-training sample space, thus presenting a considerable well-
fitting ability and generalization ability. Furthermore, for the validation set, we calculate
the, & and ¢; error at different time (see Table[d.2). The results illustrate that the surrogate
model is uniformly accurate in the temporal domain.

Table 4.1: The absolute (£;) and the relative (e3) errors in the L? sense of the surrogate model for the RTE and
its DA. The errors on the validation, constant test and piecewise constant test datasets are presented. Absorption
coefficients with 0, 0 = 30 and 150 are considered.

Model Data Ta9 = 30 0a,0 =150

& ) & 3
Validation 0.0240 | 0.0219 | 0.0285 | 0.0291
Surrogate RTE Constant test 0.0241 | 0.0253 | 0.0222 | 0.0287
Piecewise constant test | 0.0582 | 0.0649 | 0.0423 | 0.0623
Validation 0.0360 | 0.0820 | 0.0461 | 0.0816
Surrogate DA Constant test 0.0881 | 0.1267 | 0.0522 | 0.1235
Piecewise constant test | 0.0640 | 0.1343 | 0.0423 | 0.1536

Table 4.2: The validation error of the RTE surrogate model at different time. The absorption coefficient satisfies
0q0 = 30.

a0 = 30 a0 = 150
52 ) 52 )

0.2 | 0.0261 | 0.0291 | 0.0321 | 0.0422
0.4 | 0.0242 | 0.0222 | 0.0287 | 0.0289
0.6 | 0.0267 | 0.0222 | 0.0262 | 0.0249
0.8 | 0.0301 | 0.0235 | 0.0288 | 0.0240
1.0 | 0.0362 | 0.0277 | 0.0301 | 0.0253
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The surrogate model for the DA is less accurate than that for the RTE (see Table £.1)):
The absolute error is around 0.05 and the relative error ¢; is lower than 0.15. Interestingly,
the constant test error of the RTE surrogate is closer to the validation error, while it is closer
to the piecewise constant error in the case of DA surrogate model. The surrogate model
predicted material temperature T(x,t) = F*[Ty4](x,t) of a piecewise constant boundary
condition is graphically presented in Fig. 4.1 and is compared with the reference solution
N [Tp4]. The surrogate model is of an absolute error of 0.0640 and a relative error of 0.1343,
and is able to accurately capture the wave front location and the magnitude of the material
energy field.

t=0.1 t=0.3 t=0.7 t=1.0
\ — MTpdl A —
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1.0 \‘ bd \ \ Vo
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Figure 4.1: Comparison between the numerical solution (N[Tj4]) and the DA surrogate model prediction (F*[Ty4])
on a sample from the piecewise constant test set. The absolute and relative errors of the sample are & = 0.0755
and e, = 0.1533, respectively. The absorption coefficient satisfies 7, o = 30.

4.4 Inverse problem for Marshak wave problem

To investigate how accurately the inverse problems are solved, we set the numerical solu-
tions of the boundary conditions generated by the delta, constant and piecewise constant
methods as target solutions. The approximated inverse problem (2.25) is then solved by
the steepest descent approach (3.8), and the solution is denoted by Ti ;- The accuracy Tg J
is measured by the absolute and relative L2 errors between the numerically solved N/ [Tg Al
and the target.

The errors of the inverse RTE and DA are presented in Table 4.3l The errors of the
inverse RTE problem on all datasets and those of the DA on the constant and piecewise
constant test datasets are only slightly larger than the corresponding errors of the surro-
gate model (compare Table4.Iland Table4.3), which means the inverse problem is solved
at almost the best accuracy one may expect. We notice that the error of the inverse DA on
the validation set is significantly larger than that of the surrogate DA validated against the
same dataset. The reason for the phenomenon is still not clear to us. We sample one target
solution from the DA validation set (0,0 = 150) and visualize the numerical solution of
the inverse boundary in Fig. This sample is chosen because its absolute and the rela-
tive L? error are 0.1001 and 0.4441, respectively, and are comparable to the average errors
of the whole validation dataset in Table[4.3] It is observed that the numerical solution of
the inverse boundary can accurately capture the wave front location of the target solution,
thus the accuracy is acceptable.
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Table 4.3: The absolute (£;) and the relative (e3) errors of the numerical solution of the inverse RTE and
DA boundaries. The errors on the validation, constant test and piecewise constant test datasets are presented.
Absorption coefficients with ¢, 0 = 30 and 50 are considered.

Problem Data Ta0 = 30 Tap = 150
& ) & )
Validation 0.0280 | 0.0265 | 0.0263 | 0.0278
RTE Constant test 0.0221 | 0.0229 | 0.0260 | 0.0332
Piecewise constant test | 0.0660 | 0.0762 | 0.0660 | 0.0796
Validation 0.1280 | 0.1857 | 0.1580 | 0.3114
DA Constant test 0.1006 | 0.1506 | 0.0623 | 0.1486
Piecewise constant test | 0.0721 | 0.1511 | 0.0480 | 0.1509
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Figure 4.2: Comparison between the numerical solution of the inverse DA boundary (./\/[T;d]) and the target
solution (T*) sampled from the validation set. The absolute and relative errors of the sample are & = 0.1001
and e, = 0.4441, respectively. The absorption coefficient satisfy o, o = 150.

4.5 Discussions
4.5.1 Ablation study on the network architecture

We investigate the role of the factor-attention and RNN blocks on the accuracy of the sur-
rogate models through an ablation study. We respectively prune the RNN block (denoted
as “noRINN"), the factor-attention block (denoted as “noAtt”) and both blocks (denoted as
“noBoth”) from the model, and test the accuracy of the RTE surrogate model against the
validation, constant and piecewise constant test datasets.

The absolute and relative L2 errors (£, and ¢;) are presented in Table. Not surpris-
ingly, the “noBoth” model presents errors that are almost an order of magnitude larger
than the complete model architecture. The poor fitting and generalization performance
is attributed to the lack of an effective temporal feature characterization. The “noRNN"
model that only uses the factor-attention block for extracting features seems to miss some
critical time information, thus it gives nearly the same accuracy as the “noBoth” model.
The “noAtt” model, using the RNN block for featurization, is significantly more accurate
than the “noRNN" model, but is still notably less accurate than the complete model struc-
ture. The ablation study proves that both the factor-attention and the RNN blocks are
crucial for extracting the temporal feature from the boundary condition, thus are indis-
pensable for the high accuracy of the surrogate models.
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Table 4.4: The ablation study of the RADL model architecture. The errors of the surrogate RTE on the validation,
the constant test and the piecewise constant test sets are presented. The RNN block (“noRNN"), the factor-
attention block (“noAtt”) or both of them (“noBoth”) are pruned. The absorption coefficient satisfies 0 o = 30.

noRNN noAtt noBoth complete
Data
52 & 52 & 52 & 52 &
Validation 0.2740 | 0.2514 | 0.0412 | 0.0455 | 0.2740 | 0.2495 | 0.0180 | 0.0180
Constant test 0.1880 | 0.1961 | 0.0398 | 0.0401 | 0.1581 | 0.1654 | 0.0220 | 0.0224
Piecewise constant test | 0.4700 | 0.5219 | 0.0524 | 0.0520 | 0.4540 | 0.5041 | 0.0340 | 0.0391

4.5.2 Estimation for the model uncertainty

In this section, we take the bootstrap method [14] to estimate the model uncertainty with
the effect on the training size. The bootstrap method is a type of re-sampling where large
numbers of smaller samples of the same size are repeatedly drawn, with replacement,
from a single original sample. In our experiment, we prepare a training dataset, denoted
by D, that has 5000 boundary conditions generated by the delta method (4.1)), and the
corresponding RTE solution is prepared by the numerical scheme. We use the bootstrap
method to randomly draw a training dataset Dy of size | D| from the dataset D, and then
train a surrogate model by the dataset Dy. The error of the surrogate model is evaluated
on the validation dataset and the test dataset generated by the constant method @.2). The
above procedure is repeated 5 times. The model error and the uncertainty in the error are
estimated by the average and the standard deviation of the 5 model errors.

We visualize the accuracy and uncertainty of the RADL surrogate model at different
training sample sizes in Fig. It is observed from the figure that the error reduces as the

1072

+— Average valid &;
—#— Average test &

R ---- « (data size)™5/3

Error (&3)

103

102 10°
Training size

Figure 4.3: The uncertainty of the RTE surrogate model versus the size of the training data. The absorption
coefficient satisfy ¢, 9 = 30.
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training data size increase up to the largest training data size of 4000 investigated in the
work. The speed of the error reduction fits almost perfectly to the —5/3-th power of the
size of the training data set (see the black dashed line in Fig.[4.3).

With the increase of the training size, the fluctuation range of errors on the validation
set and test set is narrowing (noticing that the error axis in the Fig. [4.3] is log-scaled).
This proves that the robustness of the surrogate model strengthens as the training size
increases. Besides, the model uncertainty on the validation set is significantly smaller
than that on the constant test set.

4.5.3 Comparative experiments with other methods

This section presents a comparative analysis of the proposed method with two commonly
used approaches for operator approximation using neural networks: DeepONet [29] and
the Fourier neural operator (FNO) [27]. We control the numbers of network parameters to
be comparable and evaluate the accuracy of the models using the absolute (£;) and relative
(e2) errors as the metrics. The errors of the three methods in the spatial and temporal
domain are compared in Table[4.5] In our experiment, FNO contains 4 layers of the Fourier
layer. We set the parameters for all Fourier layers as follows: the maximum mode kmax
is set to 16, the dimension of the Fourier layer d is set to 64, other configurations are
set the same as the default ones provided in the FNO source code [27]. Regarding the
DeepONet, we set the depth of the trunk network to be 4 with [128, 256, 256, 400] neurons
in each layer, respectively, and set the depth of the branch network to be 7 with [512, 512,
512, 512, 256, 128, 400] neurons in each layer, respectively. We employ the delta method
to generate 4000 boundary conditions as the training set, and 500 as the validation. We
generate 500 boundaries by the constant method and 500 boundaries by the piecewise
constant method as two test sets. All other hyper-parameters in both DeepONet and FNO
are kept consistent with those of RADL aforementioned.

Table .5 reveals that RADL performed the best on both the validation and test sets,
followed by FNO. Notably, both RADL and FNO reached convergence after 3000 training
iterations. On the other hand, the training results of DeepONet, as displayed in the table,
were obtained after an extensive 1.2 million iterations. While further training would likely
result in a decline in the errors, it is evident that DeepONet’s performance is notably in-
ferior to that of RADL and FNO. Therefore, we opted not to continue training DeepONet
any further.

Table 4.5: Comparative Analysis of RADL, DeepONet, and FNO. The absorption coefficient satisfies o, o = 30.

RADL FNO DeepONet
Data
& € & € & &2
Validation 0.0180 | 0.0180 | 0.0273 | 0.0249 | 0.0758 | 0.0696
Constant test 0.0220 | 0.0224 | 0.0254 | 0.0263 | 0.0721 | 0.0747
Piecewise constant test | 0.0340 | 0.0391 | 0.0453 | 0.0503 | 0.1265 | 0.1405




100 J. Mach. Learn., 2(2):83-107

4.5.4 Surrogate model for anisotropic radiative transfer in a slab

This section further confirms the accuracy of the proposed RADL model for problems
involving anisotropy. We consider the radiation problem in a plane-parallel slab with an
anisotropic scattering,

101 al 1 p e

Eg*‘ﬂg——Us1+Usllp(V/ﬂ)1(x/ﬂ)dﬂ' (4.8)
In Eq. (4.8), 0 is a constant coefficient taken to be 100. The normalized scattering kernel
p(u, ') is described by an approximation to the Henyey-Greenstein phase function as
discussed in [1]],

= 2141

p(u ') =Y ——8'PimPR(), (49)
I=0

where g is the anisotropic coefficient and P; is the Legendre polynomial of order I. The

initial and boundary conditions the specific intensity I subject to are given in Eqs. (2.17)

and (2.18), respectively. The forward problem (2.2) is replaced by

E= %J—"[de], (4.10)

where E is the energy density as defined in (2.11). The surrogate model is for the RTE,
in the scenario of a forward-peaked scattering with ¢ = 0.9. During the training phase,
the labels were generated via solving the Pj; system by the finite volume method. The
training hyper-parameters were kept the same as the isotropic scattering cases.

The validation and test errors of the surrogate model for the RTE with anisotropic scat-
tering are reported in Table4.6 It is observed that the absolute and relative errors reach
an order of magnitude of 1072, across the validation, constant test, and piecewise constant
test cases. Notably, the errors on the constant test are even slightly lower than those on
the validation set. This proves that the proposed RADL handles the anisotropic scattering
cases as well as the isotropic cases. We visualize one sample in the piecewise constant test
set in Fig. We select this sample because its errors (£, = 0.0236 and &, = 0.0770) are

t=0.1 t=0.2 t=0.3 t=0.5
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Figure 4.4: Comparison between the numerical solution (N[Tp4]) and the surrogate model prediction (F¥[Ty4])

for the RTE with anisotropic scattering on a sample from the piecewise constant test. The absolute and relative

errors of the sample are & = 0.0236 and ¢, = 0.0770, respectively. The scattering cross-section satisfies o; = 100

and ¢ =0.9.
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Table 4.6: The absolute (£,) and the relative (e3) errors in the L2 sense of the surrogate model for the RTE with
anisotropic scattering. The errors on the validation, constant test and piecewise constant test are presented. The
scattering cross-section satisfies s = 100 and ¢ = 0.9.

Data/Metrics & &
Validation 0.0116 | 0.0133
Constant test 0.0078 | 0.0127
Piecewise constant test | 0.0224 | 0.0769

similar to the average errors of the entire test set. Despite the model’s highest errors on the
piecewise constant test set, as evidenced by the visualization in Fig. 4.4 its performance
remains remarkably good, which validates the high generalization capacity of the pro-
posed model. Importantly, the accuracy in simulating the RTE with anisotropic scattering
is maintained without modifications to the network structure, any increase in the network
parameter quantity and complexity, or adjustments to any hyper-parameters.

4.5.5 Impact of the spatial sampling

This section demonstrates the reliance of the model on different spatial sampling rates. In
this section, we use the delta method to generate 4000 boundary conditions for the training
set and 500 for the validation set. We generate two test sets: one with 500 boundaries
using the constant method, and another with 500 boundaries using the piecewise constant
method. The training data was subsampled in the spatial dimension at rates of 50%, 25%,
and 10%. The efficacy of the surrogate models was evaluated at these rates and compared
against non-subsampled models, providing a comprehensive analysis of the impact of
subsampling on the validation and testing errors.

Table[4.7]leads to the conclusion that the surrogate model yields results that are nearly
indistinguishable from those of non-subsampled models when the subsample rate is 50%.
At a rate of 25%, there is a slight increment in the model error. When the rate drops
below 25%, the piecewise constant test set exhibits a noticeable increase in the errors, while
the validation set and constant test sets are still retaining a relatively high accuracy. Our
analysis suggests that the model is robust to the spatial subsampling of training data of
rate > 50%. As the subsample rate further decreases, there is a gradual increase in the
validation and testing errors, indicating a dependence on the sampling rate.

Table 4.7: Discretization analysis of RTE surrogate models at various spatial subsampling rates. The absorption
coefficient satisfies 0, o = 30, r is the subsampling rate.

r = 100% r = 50% r=25% r =10%
Data
52 ) 52 ) 52 ) 52 )
Validation 0.0180 | 0.0180 | 0.0192 | 0.0175 | 0.0210 | 0.0212 | 0.0224 | 0.0204
Constant test 0.0220 | 0.0224 | 0.0201 | 0.0201 | 0.0228 | 0.0234 | 0.0256 | 0.0255
Piecewise constant test | 0.0340 | 0.0391 | 0.0354 | 0.0390 | 0.0399 | 0.0421 | 0.0596 | 0.0658
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4.5.6 Surrogate model for a two-dimensional RTE

We construct a surrogate model for the two-dimensional (2D) RTE hohlraum benchmark
problem, following the layout discussed in literature [26,[32]. For this problem, the in-
flow boundary condition is imposed at x = 0. The boundary condition is assumed to be
isotropic in the photon’s direction, equilibrious in frequency and invariant in space, but
is varying in time. We evaluated the performance of our surrogate model using the &,
and e, metrics. The labels are generated by solving the P5 system with the finite volume
method on a 100 x 100 2D mesh. The size of the training set, validation, and test sets
remains unchanged. We use the same hyper-parameters and network architecture as the
1D problem, with the exception of modifying the final layer of the fitting block to 10,000
neurons to predict the solution on the 2D mesh.

We train a surrogate model for the 2D RTE and evaluate the model performance on the
validation, constant test and the piecewise constant test by the absolute L? error &, and the
relative L? error e,. As Tabled.8 shows, the errors on the constant test are slightly higher
than those on the validation, while the absolute and the relative errors on the piecewise
constant test are 0.0288 and 0.1353 respectively. We visualize the true and predicted solu-
tions of a randomly selected sample from the piecewise constant test at distinct times in
Figld.hl

Table 4.8: The absolute (&) and the relative (g5) errors in the L? sense of the surrogate model for 2D RTE.
The errors on the validation, constant test and piecewise constant test datasets are presented. The absorption
coefficient satisfies 0, o = 30.

Data/Metrics & €
Validation 0.0097 | 0.0205
Constant test 0.0103 | 0.0345
Piecewise constant test | 0.0288 | 0.1353

T w3 T s T

Figure 4.5: Surrogate model performance for 2D RTE hohlraum benchmark problem.The absolute and relative
errors of the sample are & = 0.0326 and e, = 0.1343, respectively.
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The example presented in this section demonstrates the efficacy of our surrogate model
for the 2D scenario. It is worth noting that we did not account for anisotropic scattering,
frequency-dependent nor spatially inhomogeneous sources. Such challenging cases are
left for future investigations.

5 Conclusion

In this paper, we propose a new surrogate model structure, termed RADL, to solve the
inverse boundary problem of the Marshak wave problem for both the radiative transfer
equation and its diffusion approximation. We demonstrate the effectiveness of our ap-
proach by examples of solving the forward and inverse Marshak wave problems with
absorption coefficients satisfying ¢, o = 30 and 150. We have shown that the absolute and
relative errors in the L? sense reach an order of 1072 for both the forward and inverse
problems of the non-equilibrium Marshak wave radiative transport. The accuracy in solv-
ing the Marshak diffusion problem is lower than that of solving the RTE, but still reaches
~ 107!, which is acceptable.

By an ablation study, we argue that both the RNN and the factor-attention structures
are indispensable for the accuracy of the RADL. By numerical examples, we demonstrate
the effectiveness of the proposed RADL surrogate model in solving problems of 1D RTE
with anisotropic scattering and 2D RTE hohlraum benchmark problem. Importantly, the
high accuracy of the RADL model in these cases is achieved without modification to the
model structure and training hyper-parameters. We conduct a comparative study of the
RADL approach with two existing operator learning methods, i.e. DeepONet and FNO
that does not consider the source and solution of the RTE as time series, and show that
RADL outperforms both DeepONet and FNO in terms of accuracy when the numbers of
model parameters are comparable.

In the future, the RADL will be extended to model the forward solver at different ab-
sorption constant ¢, o values by one model. The model takes the ¢, g and other parameters
as input and is able to predict the solution given a boundary condition for a group of RTEs
with different absorption parameters. The forward surrogate model for solving inverse
boundary problems of higher dimensional RTEs and their DA is still an open question
and worth investigating in the future.
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Appendix A

Optionally include extra information (complete proofs, additional experiments and plots)
in the appendix. This section will often be part of the supplemental material.
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A.1 The architecture of attention layer

The attention layer A is a multi-head attention mechanism [47] . The multi-head attention
mechanism (Fig. is a powerful feature extractor. It is equivalent to determining which
information each element should pay attention to according to the similarity between se-
quence elements. In this work we employ h = 16 parallel attention heads. For each head,

the input { glf },i =1,...,N is firstly transformed into query, key, and value by a linear
mapping. We obtain the attention score by the following formula:

Q= {gif } we,

o~ {

V— {ng} WY, (A1)
Attention(Q, K, V) = softmax <8—_I;;> v,

where WQ € RN«>Ny WK ¢ RNix*Ni WV e RNi*Ni are the trainable parameters. Multi-
head attention allows the model to ensemble the information from different representation
subspaces and each head to focus on its own key point. We compute the attention layer A

{gi'}

“}@%
{g{}__,% i
E_}CH:)—B
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Figure A.1: Multi-head attention.
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output {g?} as

{gi1=A ({glf}) = Concat (heady, ..., heady) W°, (A.2)

where

Wi

head; = Attention(Q;, K;, Vi) = Attention ({ g } we, { g } Wk, { g } in> )

€ RNwNe, WK € RNixN, WV e RNix N, WO € RINXt)XNy e 1, .
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