
Journal of Machine Learning ISSN: 2790-2048(e), 2790-203X(p)

Reinforcement Learning with Function Approximation:

From Linear to Nonlinear

Jihao Long * 1 and Jiequn Han † 2

1Program of Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
2Center for Computational Mathematics, Flatiron Institute, New York, NY 10010, USA

Abstract. Function approximation has been an indispensable component in modern reinforcement learning
algorithms designed to tackle problems with large state spaces in high dimensions. This paper reviews re-
cent results on error analysis for these reinforcement learning algorithms in linear or nonlinear approxima-
tion settings, emphasizing approximation error and estimation error/sample complexity. We discuss various
properties related to approximation error and present concrete conditions on transition probability and re-
ward function under which these properties hold true. Sample complexity analysis in reinforcement learning
is more complicated than in supervised learning, primarily due to the distribution mismatch phenomenon.
With assumptions on the linear structure of the problem, numerous algorithms in the literature achieve poly-
nomial sample complexity with respect to the number of features, episode length, and accuracy, although the
minimax rate has not been achieved yet. These results rely on the L∞ and UCB estimation of estimation error,
which can handle the distribution mismatch phenomenon. The problem and analysis become substantially
more challenging in the setting of nonlinear function approximation, as both L∞ and UCB estimation are in-
adequate for bounding the error with a favorable rate in high dimensions. We discuss additional assumptions
necessary to address the distribution mismatch and derive meaningful results for nonlinear RL problems.

Keywords:
Reinforcement Learning,
Function Approximation,
High-Dimensionality Analysis,
Distribution Mismatch.

Article Info.:
Volume: 2
Number: 3
Pages: 161 - 193
Date: September/2023
doi.org/10.4208/jml.230105

Article History:
Received: 05/01/2023
Accepted: 17/05/2023

Communicated by:
Weinan E

1 Introduction

Reinforcement learning (RL) studies how an agent can learn, through interaction with the
environment, an optimal policy that maximizes his/her long-term reward [52]. When
the problem involves a finite set of states and actions of moderate size, the correspond-
ing value or policy functions can be represented precisely as a table, which is called the
tabular setting. However, when the problem contains an enormous number of states or
continuous states, often in high dimensions, function approximation must be introduced
to approximate the involved value or policy functions. With the rapid development of
machine learning techniques for function approximation, modern reinforcement learning
(RL) algorithms increasingly rely on function approximation tools to tackle problems with
growing complexity, including video games [41], Go [50], and robotics [32].

Despite the astonishing practical success of RL with function approximation when ap-
plied to challenging high-dimensional problems, the theoretical understanding of RL al-

*Corresponding author. jihaol@princeton.edu
†jiequnhan@gmail.com

https://www.global-sci.com/jml Global Science Press

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 162

gorithms with function approximation remains relatively limited, particularly when com-
pared to the theoretical results in the tabular setting. In the tabular setting, roughly speak-
ing, we can achieve the minimax sample complexity up to the logarithm term: we need
samples of the order of H3|S||A|/ǫ2 to obtain an ǫ-optimal policy, where H denotes the
episode length, |S| and |A| denote the size of the state space and action space (see [8,13,25]
for detailed discussions). Apparently, these kinds of results become vacuous when |S|
(and/or |A|) is extremely large or infinite. Therefore, the study of sample complexity
in the presence of function approximation has received considerable attention in recent
years in the RL community. Relatively simple function approximation methods, such as
the linear model in [29, 57] or generalized linear model in [37, 56] have been examined
in the context of RL algorithms. Meanwhile, nonlinear forms like kernel approxima-
tion [15, 39, 40, 58, 59] have also been studied in RL problems to further bridge the gap
between theoretical results under restrictive assumptions and practice.

In this paper, we review recent theoretical results in RL with function approximation,
from linear setting to nonlinear setting. We mainly focus on the results regarding approx-
imation error and estimation error/sample complexity, which are errors introduced by
function approximation and finite datasets, respectively. We first review the basic con-
cepts of RL in Section 2 and introduce two categories of RL algorithms: value-based meth-
ods and policy-based methods in Section 3. We are interested in these algorithms when
combined with function approximation. In Section 4, we give a general framework for the
theoretical analysis of RL with function approximation. We adopt the concepts of approxi-
mation error, estimation error, and optimization error from supervised learning to RL and
discuss the crucial challenges of analyzing these errors in RL. In Section 5, we introduce RL
algorithms with linear function approximation, as it is the simplest function approxima-
tion. We introduce the basic linear MDP assumption [29], which assumes that both reward
function and transition probability are linear with respect to d known features. Under this
or similar assumptions, the Q-value function can be represented as a linear function with
respect to the features, and numerous algorithms in the literature can achieve polynomial
sample complexity with respect to the number of features d, episode length H, and accu-
racy ǫ. However, the minimax sample complexity has not been achieved yet.

In Section 6, we further discuss RL with nonlinear function approximation. We first in-
troduce the theoretical results of supervised learning on reproducing kernel Hilbert space,
neural tangent kernel, and Barron space, and then discuss how to analyze the approxima-
tion error in RL problems with nonlinear function approximation. We then focus on the
distribution mismatch phenomenon, which is a crucial challenge of RL compared to su-
pervised learning when analyzing the estimation error in the presence of function approx-
imation. In tabular and linear settings, the distribution mismatch is handled by the L∞ and
UCB estimation. However, as we will point out, both L∞ and UCB estimation suffer from
the curse of dimensionality for various function spaces, including neural tangent kernel,
Barron space, and many common reproducing kernel Hilbert spaces. This challenge re-
veals an essential difficulty of RL problems with nonlinear function approximation, and
thus additional assumptions are needed to derive meaningful results for nonlinear RL in
the literature, including assumptions on the fast eigenvalue decay of the kernel and as-
sumptions on the finite concentration coefficient. We finally introduce the perturbational

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 163

complexity by distribution mismatch in [39], which quantifies the difficulty of a large class
of the RL problems in the nonlinear setting, as it can give both lower bound and upper
bound of the sample complexity of these RL problems. Directions for future work are
discussed in Section 7.

Notations. GivenX as an arbitrary subset of Euclidean space, we use C(X) to denote the
bounded continuous function space onX , andP(X) to denote the probability distribution
space on X . For any random variable X, we use L(X) to denote its law. Given a positive
integer H, [H] denotes the set {1, . . . , H}. Id denotes the identity matrix of size d. The
notation Õ(·) ignores poly-logarithmic factors.

2 Preliminary

2.1 Markov decision processes

Throughout this article, otherwise explicitly stated, we mainly focus on the finite-horizon
Markov decision process (MDP) M = (S ,A, H, P, r, µ) with general time-inhomogeneity
as the mathematical model for the RL problem. The specifications are the following:

• S is the state space and we assume S is a subset of a Euclidean space.

• A is the action space and we assumeA is a compact subset of a Euclidean space.

• H is the length of each episode.

• P : [H]× S ×A 7→ P(S) is the state transition probability. For each (h, s, a) ∈ [H]×
S ×A. P(· | h, s, a) denotes the transition probability for the next state at step h if the
current state is s and action a is taken.

• r : [H] × S × A 7→ R is the reward function, denoting the reward at step h if we
choose action a at the state s. Unless explicitly stated, we assume r is deterministic
and the range of r is a subset of [0, 1]. We also assume that r is a continuous function.

• µ ∈ P(S) is the initial distribution.

We denote a policy by π = {πh}H
h=1 ∈ P(A | S , H), where

P(A | S , H) =
{

{πh(· | ·)}H
h=1 : πh(· | s) ∈ P(A) for any s ∈ S and h ∈ [H]

}

.

In some cases, we need to work with time-homogeneous, infinite-horizon MDP M =
(S ,A, γ, P, r, µ), where

• S ,A and µ are the same with the finite-horizon case,

• γ ∈ [0, 1) is the discount factor,

• P : S ×A 7→ P(S) is the state transition probability,

• r : S ×A 7→ R is the deterministic reward function.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 164

2.2 Total reward, value function and Bellman equation

Given an MDP M and a policy π, the agent’s total reward is defined according to the
following interaction protocol with the MDP. The agent starts at an initial states S0 ∼ µ;
at each time step h ∈ [H] the agent takes action Ah ∼ πh(· | Sh), obtains the reward
r(h, Sh, Ah) and observes the next state Sh+1 ∼ P(· | h, Sh , Ah). In this way, we generate
a trajectory (S0, A0, . . . , SH , AH) and we will use PM,π and EM,π to denote the probability
and expectation of the trajectory generated by policy π on the MDP M. The expected total
reward under policy π is defined by

J(M, π) = EM,π

[
H

∑
h=1

r(h, Sh, Ah)

]

,

and our goal is to find a policy π to maximize J(M, π) for a fixed MDP M. We will use

J∗(M) = sup
π∈P(A|S ,H)

J(M, π)

to denote the optimal value. For ease of notation in analysis, we will use ρh,P,π,µ to de-

note the distribution of (Sh, Ah) under transition P, policy π and initial distribution µ.
Moreover, we use Π(h, P, µ) to denote the set of all the possible distributions of ρh,P,π,µ

Π(h, P, µ) =
{

ρh,P,π,µ : π ∈ P(A | S , H)
}

,

and let
Π(P, µ) =

⋃

h∈[H]

Π(h, P, µ).

Given an MDP M, a policy π, a state s ∈ S , an action a ∈ A and time step h ∈ [H], we
define the value function and Q-value function as follows:

Vπ
h (s) = EM,π

[
H

∑
h′=h

r(h′, S′h, A′h) | Sh = s

]

,

Qπ
h (s, a) = EM,π

[
H

∑
h′=h

r(h′, S′h, A′h) | S′h = s, A′h = a

]

,

as the expected cumulative reward of the MDP starting from step h. We have the following
Bellman equation:

Qπ
h (s, a) = r(h, s, a) + Es′∼P(· | h,s,a)

[
Vπ

h+1(s
′)
]

,

Vπ
h (s) =

∫

A
Qπ

h (s, a)dπh(a|s),

where we define Vπ
H+1 = 0. The optimal value function and the optimal Q-value function

are defined by

V∗h (s) = sup
π∈Π(S ,A,H)

Vπ
h (s),

Q∗h(s, a) = sup
π∈Π(S ,A,H)

Qπ
h (s, a).

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 165

The famous Bellman optimality equation gives,

Q∗h(s, a) = r(h, s, a) + Es′∼P(· | h,s,a)

[
V∗h+1(s

′)
]

,

Vπ
h (s) = max

a∈A
Qh(s, a),

(2.1)

where we again define V∗H+1 = 0. We will use π∗ to denote an optimal policy of Q∗h
satisfying the following greedy condition:

supp
(
π∗h(· | s)

)
⊂
{

a ∈ A : Q∗h(s, a) = V∗h (s)
}

for any (h, s, a) ∈ [H]× S ×A. The optimal policy π∗ satisfies that Vπ∗
h = V∗h and Qπ∗

h =
Q∗h . We refer readers to [44] for an in-depth discussion of the value function, Bellman
equation, and optimal policy.

In the case of the time-homogenous MDP, our goal is to find a policy to maximize the
discounted total reward

EM,π

[
∞

∑
h=1

γh−1r(Sh, Ah)

]

.

We can then introduce the value function, Bellman equation, and optimal policy similarly
as in the time-inhomogeneous case, and we refer [44] for details.

2.3 Simulator models

In RL problems, the exact form of the transition probability P and reward function r is un-
known, and we can only interact with the MDP to obtain a near-optimal policy. Obviously,
the sample complexity of an algorithm depends on the way in which we are allowed to
interact with the MDP (the interaction can be different from the interaction according to
which the total reward is defined, as described above). There are two main types of sim-
ulators for the MDP, which specify the allowed interaction: the generative model setting
and the episodic setting. We describe these settings below, and the results in both settings
will be reviewed in this paper.

Generative model setting. In the generative model setting, one can take any time-state-
action tuple (h, s, a) as the input of the simulator and obtain a sample s′ ∼ P(· | h, s, a)
and the reward r(h, s, a). In this sense, the MDP simulator works as a general generative
model.

Episodic setting. The episodic setting is a more restrictive scenario compared to the gen-
erative model setting. In the episodic setting, one can only decide an initial state s and the
action on each time step to obtain from the simulator a trajectory (S1, A1, . . . , SH , AH) and
the rewards on the trajectory r(1, S1, A1), . . . , r(H, SH , AH). In the episodic setting, it is
common to consider the regret: the cumulative difference between the obtained reward
and the optimal reward over K episodes

Regret(K) =
K

∑
k=1

[
J∗(M)− J(M, πk)

]

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 166

for any given policy sequence (π1, . . . , πK) and we aim to minimize the regret over K
episodes. If we define a random policy π̄, which uniformly chooses a policy among
π1, . . . , πK and apply it to the MDP, then

J∗(M)− J(M, π̄) =
1

K
Regret(K).

Therefore, a policy sequence with low regret can generate a near-optimal policy.

3 RL algorithms with function approximation

In this section, we introduce some typical RL algorithms with function approximation.
They can be divided into two categories: valued-based methods and policy-based meth-
ods.

3.1 Value-based method

Value-based methods approximate the value or Q-value functions and use the Bellman op-
timality equation (2.1) to learn the optimal value or Q-value functions. The near-optimal
policy can then be obtained through the greedy policy with respect to the optimal Q-value
function.

If we have access to a generative model, one typical value-based algorithm with func-
tion approximation is the fitted Q-iteration algorithm [4, 12, 22, 42]. Its main idea is as
follows: noticing that the conditional expectation minimizes the L2-loss corresponding to
the Bellman optimality equation (2.1), we know that for any function space F such that
Q∗h ∈ F , Q∗h is the minimizer of the following optimization problem:

min
f∈F

E(s,a)∼µ,s′∼Ph(· | s,a)| f (s, a)− r(h, s, a)−V∗h+1(s
′)|2. (3.1)

Therefore, in the fitted Q-iteration algorithm, we compute the Q∗h backwardly through
the Bellman optimality equation (2.1). At each step h, we choose n state-action pairs

{(Si
h, Ai

h)}1≤i≤n, submit the queries {(Si
h, Ai

h, h)}1≤i≤n to the generative model, and ob-

tain the reward and next state {(ri
h, Ŝi

h+1)}1≤i≤n. We solve an empirical version of the
least-square problem (3.1) for h = H, H − 1, . . . , 1 backwardly. The pseudocode of the
fitted Q-iteration is presented in Algorithm 1. We comment that the performance of the

fitted Q-iteration algorithm relies on the samples of state-action pairs {(Si
h, Ai

h)}1≤i≤n: we
hope these samples are representative enough among those encountered under the opti-
mal policy.

In contrast to the generative model setting where we can directly choose arbitrary state-
action pairs to query at each step, when we work in the episodic setting, we need to decide
how to take action on each step in order to balance the trade-off between exploitation and
exploration. Exploitation concerns taking actions with large estimated Q-values in order
to obtain large rewards, while exploration concerns taking actions with high uncertainty
in their Q-values in order to obtain more accurate estimates. On the one hand, taking

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 167

Algorithm 1 Fitted Q-iteration algorithm

Input: MDP (S ,A, H, P, r, µ), function classes {Fh}H
h=1, regularization terms {Λh}H

h=1,

number of samples n, state-action pairs {(Si
h, Ai

h)}h∈[H],i∈[n].
Initialize: QH+1(x, a) = 0 for any (x, a) ∈ S ×A.
for h = H, H − 1, . . . , 1 do

Send (S1
h, A1

h, h), . . . , (Sn
h , An

h , h) to the generative model and obtain the rewards and

next states (r1
h, Ŝ1

h+1), . . . , (rn
h , Ŝn

h+1) for all the state-action pairs.

Compute yi
h = ri

h + maxa∈AQh+1(Ŝ
i
h+1, a).

Compute Q̂h as the minimizer of the optimization problem

min
f∈Fh

1

n

n

∑
i=1

∣
∣yi

h − f (Si
h, Ai

h)
∣
∣2 + Λh(f). (3.2)

Set Qh = max{0, min{Q̂h, H}}.
end

Output: π̂ as the greedy policies with respect to {Qh}H
h=1.

actions with large estimated Q-values can lead to large estimated total rewards in this
episode, but it can also prevent the agent from discovering better actions. On the other
hand, taking actions with high uncertainty can lead to more accurate Q-value estimates,
but it may also result in lower total rewards in this episode. Finding the proper balance be-
tween exploitation and exploration is an important challenge in RL. The upper confidence
bound (UCB) method is a common approach used in reinforcement learning to balance
such a trade-off. In the UCB method, a bonus function is added to the estimated Q-value
function to reflect the uncertainty in the Q-value estimates. The action that is chosen is the
one with the highest sum of the estimated Q-value and the bonus. Since the estimated Q-
value and the bonus reflect exploitation and exploration, respectively, the UCB method is
widely used in reinforcement learning algorithms and often achieves good performance.
The UCB method allows the algorithm to balance the need for exploitation, in order to
obtain large immediate rewards, with the need for exploration, in order to obtain more
accurate Q-value estimates. We present the pseudocode of one typical such algorithm, the
value iteration algorithm [29], in Algorithm 2.

3.2 Policy-based method

In policy-based methods, the policy function is approximated and optimized based on
cumulative reward using stochastic gradient descent. A key step in this process is cal-
culating the gradient with respect to the cumulative reward. This relies on the policy
gradient theorem [53]

∇θ J(πθ) = EM,πθ

[
H

∑
h=1

∇θ log πθ(Ah | Sh)
T

∑
h′=h

r(h′, Sh′ , Ah′)

]

.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 168

Algorithm 2 Value iteration with function approximation and bonus term

Input: MDP (S ,A, H, P, r, µ), number of episodes K, function classes {Fh}H
h=1, regulariza-

tion terms {Λh}H
h=1.

Initialize: Q1
h(s, a) = 0 for any (h, s, a) ∈ [H] × S ×A, Qk

H+1(s, a) = 0 for any (k, s, a) ∈
[K]× S ×A.
for k = 1, . . . , K do

Sample Sk
1 from the initial state distribution µ.

for h = 1, . . . , H do

Take action Ak
h = arg maxa∈AQk

h(S
k
h, Ak

h) and observe the reward rk
h = r(h, Sk

h, Ak
h)

and next state Sk
h+1 ∼ P(· | h, Sk

h , Ak
h).

end
if k < K then

for h = H, H − 1, . . . , 1 do

Compute Q̂k+1
h as the minimizer of the optimization problem

min
f∈Fh

{

1

n

k

∑
i=1

∣
∣ri

h + max
a∈A

Qk+1
h+1(S

i
h+1, a)− f (Si

h, Ai
h)
∣
∣2 + Λh(f)

}

. (3.3)

Compute the bonus function bk+1
h : S × A → [0,+∞) based on {(Si

h, Ai
h)}k

i=1

and Fh. Set Qk+1
h+1 = max{0, min{Q̂k+1

h + bk+1
h , H}}.

end

end

end

Output: π̂k as the greedy policies with respect to {Qk
h}H

h=1 for k = 1, . . . , K.

Here we only state the naive method to compute the gradient. Several variants can be used

to replace ∑
T
h′=h r(h′, Sh′ , Ah′) to reduce the variance, see [48] for a detailed discussion. Al-

gorithm 3 gives the pseudocode of the policy gradient method. Besides the vanilla policy
gradient method, several variants of the policy gradient method have been proposed by
adding various regularization terms to the cumulative reward as the target of the opti-
mization, including the natural policy gradient [30], proximal policy optimization [49],
and trust region policy optimization [47].

4 General framework of theoretical analysis on RL with function

approximation

In this section, we will discuss how to distinguish and quantify different sources that affect
the performance of RL algorithms that use function approximation. To begin, we will
provide a brief overview of supervised learning and error decomposition in that context.
Then, we will examine how to adapt these concepts for application in the analysis of RL
algorithms with function approximation.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 169

Algorithm 3 Policy gradient method

Input: MDP (S ,A, H, P, r, µ), parametrization of policy πθ , initialization θ0, batch size N,
iteration step K, learning rate η.

Initialize: Set θ = θ0.
for k = 1, . . . , K do

Sample N i.i.d. states {Si
1}N

i=1 from µ and collect N trajectories {(Si
1, Ai

1, . . . ,

Si
H, Ai

H)}N
i=1 using policy πθ .

Estimate the gradient

gk =
1

N

N

∑
i=1

H

∑
h=1

∇θ log πθ(Ai
h | Si

h)
T

∑
h′=h

r(h′, Si
h′ , Ai

h′).

Update θ ← θ + ηgk.
end
Output: πθ .

In supervised learning, the goal is to estimate the target function f ∗ based on a finite
training set

D = {xi, yi}n
i=1,

where x1, . . . , xn are i.i.d. sampled from a fixed distribution µ,

yi = f ∗(xi) + ǫi

and the noises ǫ1, . . . , ǫn are i.i.d. standard normal distribution independent of x1, . . . , xn.

We aim to find an estimator f̂ with a small population loss

R(f̂) = Ex∼µ| f ∗(x)− f̂ (x)|2.

In a standard procedure of supervised learning, one first chooses a hypothesis space
or a set of trial functions Hm = { f (x; θ) : θ ∈ Θm}, where θ denotes the parameters and
m denotes the number of parameters in Hm. Common choices of the hypothesis space
include linear functions, kernel functions, and neural networks. The next step is to choose
a loss function and formulate an optimization problem. The loss function is typically
composed of the empirical lossRn(θ) and a regularization term Λ(θ)

Ln(θ) = Rn(θ) + Λ(θ) =
1

n

n

∑
i=1

|yi − f (xi; θ)|2 + Λ(θ).

The last step is to solve the optimization problem that aims to minimize the above loss
function. It is usually solved by the gradient descent method, stochastic gradient descent
method, or their variants.

Let fm be the minimizer of the population loss R(f), the best approximation to f ∗ in

Hm, fm,n be the minimizer of the loss function Ln(θ) in the hypothesis space Hm and f̂
be the output of the optimization algorithm. Then the total error between the true target

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 170

function f ∗ and the output of the supervised learning algorithm f̂ can be decomposed into
three parts, where ‖ · ‖L2(µ) denotes the L2-norm under the distribution µ

‖ f ∗ − f̂ ‖L2(µ) ≤ ‖ f ∗ − fm‖L2(µ)
︸ ︷︷ ︸

approximation error

+ ‖ fm − fm,n‖L2(µ)
︸ ︷︷ ︸

estimation error

+ ‖ fm,n − f̂ ‖L2(µ)
︸ ︷︷ ︸

optimization error

.

The first part is the approximation error ‖ f ∗ − fm‖L2(µ), which arises because the hy-

pothesis space Hm may not be able to represent the true function f ∗ exactly. The second
part is the estimation error ‖ fm − fm,n‖L2(µ), which arises because we only have a finite

dataset and may not be able to find the best approximation fm. The third part is the opti-

mization error ‖ fm,n − f̂ ‖L2(µ), which arises because the optimization algorithm may not

converge to the true minimizer of the empirical loss. We will then discuss the approxi-
mation error, estimation error, and optimization error in the context of RL with function
approximation.

4.1 Approximation error

To investigate the approximation error in the context of RL, we aim to understand the
requirements for the transition probability and reward function needed to accurately ap-
proximate the Q-value function for value-based methods and the policy function for po-
licy-based methods. Note that the value function V∗h is less significant, as we cannot di-
rectly compute the optimal policy based on it. The subsequent theorem demonstrates
that when the action space is finite and the optimal Q-value function can be accurately
approximated, the optimal policy can also be accurately approximated by the correspond-
ing softmax policy. Consequently, our primary focus is on the conditions that ensure the
Q-value function can be effectively approximated.

Theorem 4.1. Assume that A is a finite set. Given any β > 0 and continuous functions Q =
{Qh}H

h=1 : S ×A → R, let

π
Q,β
h (a | s) = exp(βQh(s, a))

∑a′∈A exp(βQh(s, a′))
.

Then,

0 ≤ J∗(M)− J(M, πQ,β)

≤ H log |A|
β

+ 2βH
H

∑
h=1

EM,πQ∗,β max
a∈A
|Q∗h(Sh, a)−Qh(Sh, a)|.

In supervised learning, a common approach to investigating the approximation er-
ror involves proving that the target function resides in specific function spaces, such as
reproducing kernel Hilbert space (RKHS) and Barron space. These spaces are ideal for
particular approximation schemes, like kernel function and neural network approxima-
tion, due to the direct and inverse approximation theorems present within these function

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 171

spaces. In other words, any function within the space can be approximated using the
selected approximation method at a specific rate of convergence, and any function that
can be approximated at a particular rate belongs to that function space. We will provide
a comprehensive introduction to RKHS and Barron space in Section 6.1.

In RL, our primary focus is on whether the Q-value function, as a function of state and
action, lies within the specific function space. Depending on the specific algorithm we
analyze, we need to determine the conditions of P and r under which the MDP satisfies
the following properties:

Property 1. The optimal Q-value function Q∗h lies in the specific function space.

Property 2. The Q-value function Qπ
h lies in the specific function space for any policy π.

This is often required in the policy iteration algorithm with function approximation (see,
e.g., [34]).

Property 3. The Bellman optimal operator

(T ∗h f)(s, a) = r(h, s, a) + Es′∼P(· | h,s,a)

[
max
a′∈A

f (s′, a′)
]

maps the specific function space to itself and ‖T ∗h f‖ ≤ C[1 + ‖ f‖] for a constant C > 0.
This is often required in the fitted Q-iteration and value iteration algorithm with function
approximation (see, e.g., [58–60]).

Property 4. The Bellman operator

(Th f)(s, a) = r(h, s, a) + Es′∼P(· | h,s,a)[f (s
′)]

maps any bounded function in C(S) to the specific function spaces and ‖Th f‖ ≤ C[1 +
‖ f‖C(S)] for a constant C > 0.

In these questions, we assume that the function space is a Banach space with norm ‖ · ‖
and a subset of the space of all bounded functions in C(S × A). Noticing that for any
policy π, we have that Qπ

h = ThVπ
h+1 and Vπ

h+1 ∈ [0, H], we know that Property 4 implies
Property 2 and hence implies Property 1. Observing that for any bounded function f in
C(S × A), maxa′∈A f (s′, a′) is a bounded function in C(S), we know that Property 4 im-
plies Property 3. Moreover, since Q∗h = ThQ∗h+1, Property 3 implies Property 1. Finally,
we remark that Property 2 and Property 3 cannot be inferred from each other [60, Propo-
sition 5]. We introduce Property 4 because it is the strongest one among those properties
and the conditions which imply Property 4 are easy to analyze due to the linearity of Th.

Proof of Theorem 4.1. By the definition of the optimal value, we have

J∗(M)− J
(

M, πQ,β
)
≥ 0.

Noticing that

J∗(M)− J
(

M, πQ,β
)
= J∗(M)− J

(
M, πQ∗,β)+ J

(
M, πQ∗,β)− J(M, πQ,β)

=: I1 + I2,

we will estimate I1 and I2 respectively.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 172

Using the classical performance difference lemma [31], we have

I1 =
H

∑
h=1

EM,πQ∗,β ∑
a∈A

Q∗h(Sh, a)
[

π∗h(a | Sh)− π
Q∗,β
h (a | Sh)

]

=
H

∑
h=1

EM,πQ∗,β

[

max
a∈A

Q∗h(Sh, a)− ∑a∈A Q∗h(Sh, a) exp(βQ∗h(Sh, a))

∑a∈A exp(βQ∗h(Sh, a))

]

.

We will then prove that for any q = (qa)a∈A,

qm − ∑a∈A qa exp(βqa)

∑a∈A exp(βqa)
≤ log |A|

β
,

where qm = maxa∈A qa. We can then conclude that

I1 ≤
H log |A|

β
. (4.1)

Noticing that

qm − ∑a∈A qa exp(βqa)

∑a∈A exp(βqa)
= − (qa − qm) exp(β(qa − qm))

exp(β(qa − qm))
.

Define φ : R|A| → R

φ(x) = β−1 log

(

∑
a∈A

exp(βxa)

)

.

Then

qm − ∑a∈A qa exp(βqa)

∑a∈A exp(βqa)
= −(q− qm)

T∇φ(q− qm).

Noticing that φ is a convex function, we have [24]

−(q− qm)
T∇φ(q− qm) = [0− (q− qm)]

T∇φ(q− qm)

≤ φ(0)− φ(q− qm)

=
log |A|

β
− φ(q− qm).

Noticing that there exists an a ∈ A such that qa − qm = 0, we have

φ(q− qm) ≥ 0.

Therefore,

qm − ∑a∈A qa exp(βqa)

∑a∈A exp(βqa)
≤ log |A|

β
.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 173

For I2, we again use the performance difference lemma to obtain that

I2 =
H

∑
h=1

EM,πQ∗,β ∑
a∈A

QπQ∗,β
h (Sh, a)

[

π
Q∗,β
h (a | Sh)− π

Q,β
h (a | Sh)

]

≤ H
H

∑
h=1

EM,πQ∗,β ∑
a∈A

∣
∣
∣π

Q∗,β
h (a | Sh)− π

Q,β
h (a | Sh)

∣
∣
∣

= H
H

∑
h=1

EM,πQ∗,β ∑
a∈A

∣
∣
∣
∣

exp(βQ∗h(Sh, a))

∑a′∈A exp(βQ∗h(Sh, a′))
− exp(βQh(Sh, a))

∑a′∈A exp(βQh(Sh, a′))

∣
∣
∣
∣

.

Given q = {qa}a∈A and q̄ = {q̄a}a∈A, we have

∑
a∈A

∣
∣
∣
∣

exp(βqa)

∑a′∈A exp(βqa′)
− exp(βq̄a)

∑a′∈A exp(βq̄a′)

∣
∣
∣
∣

≤ ∑a∈A ∑a′∈A | exp(βqa + βq̄a′)− exp(βq̄a + βqa′)|
∑a∈A exp(βqa)∑a∈A exp(βq̄a)

≤ β max
a∈A
|qa − q̄a|∑a∈A∑a′∈A[exp(βqa + βq̄a′) + exp(βq̄a + βqa′)]

∑a∈A exp(βqa)∑a∈A exp(βq̄a)

= 2β max
a∈A
|qa − q̄a|,

where we used |ex − ey| ≤ (ex + ey)|x− y|/2. Therefore,

I2 ≤ 2βH
H

∑
h=1

EM,πQ∗,β max
a∈A
|Q∗h(Sh, a)−Qh(Sh, a)| .

Combining the above estimation and inequality (4.1), we conclude our proof.

4.2 Estimation error

In the context of RL, sample complexity, i.e., the number of samples required to obtain
a near-optimal policy, is often used to refer to the estimation error and plays a central role
in the theoretical analysis of RL. However, in contrast to the estimation error in supervised
learning, which can be characterized by the gap between the empirical loss and the popu-
lation loss, the estimation error in RL is much more complex. The main challenge in the RL
problem is the so-called distribution mismatch phenomenon. Take value-based methods
as an example. Assume that we have an estimation of the optimal Q-value function Q∗h,

denoted by Q̂∗h, which is close to Q∗h in the sense of L2(ν) for a prespecified distribution ν.

Then, we consider the performance of the greedy policy π̂ with respect to Q̂∗h. Using the
performance difference lemma, we have

0 ≤ J(M, π∗)− J(M, π) = EM,π̂

H

∑
h=1

∑
a∈A

Q∗h(Sh, a) [π∗h(a | Sh)− π̂h(a | Sh)]

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 174

≤ EM,π̂

H

∑
h=1

∑
a∈A

[
Q∗h(Sh, a)− Q̂∗h(Sh, a)

] [
π∗h(a | Sh)− π̂h(a | Sh)

]
,

where in the last inequality, we use that ∑a∈A Q̂∗h(s, a)[π∗h (a | s)− π̂h(a | s)] ≤ 0 since π̂h is

the greedy policy with respect to Q̂∗h . Therefore, we need to control the difference between

Q∗h and Q̂∗h under the state distribution generated by the policy π̂, which is unknown

before we obtain Q̂∗h . We refer to this phenomenon as the distribution mismatch: a mis-
match between the distribution ν for estimation and the distribution for evaluation that is
unknown a priori. This phenomenon is ubiquitous in the analysis of RL; see, e.g., [31, Sec-
tion 6].

4.3 Optimization error

In the context of RL, the optimization error differs significantly between value-based meth-
ods and policy-based methods. In value-based methods, the optimization error arises
during the optimization process at each iteration, such as in (3.2) or (3.3) in Algorithm 1
or Algorithm 2. As these optimization problems typically have a similar form to those
in supervised learning, the analysis of the optimization error in RL is largely comparable
to the analysis of the optimization error in supervised learning. On the other hand, the
optimization error in policy-based methods, particularly the rate at which the algorithm’s
performance converges as the number of iterations increases, is a key focus in the theoret-
ical analysis of these methods. The analysis of the optimization problem in policy-based
methods is more challenging than in supervised learning due to the shift of the distri-

bution of the trajectories {Si
1, Ai

1, . . . , Si
H , Ai

H}N
i=1 in Algorithm 3 during the optimization

process in policy-based methods.

5 Linear setting

The simplest form of function approximation is linear function approximation. It is the
setting under which the most recent theoretical results in RL are derived with function ap-
proximation. In the linear setting, we do not assume that the state space and action space
are finite, and hence we need to make some structural assumptions to obtain meaningful
results. The most common one is the linear MDP assumption introduced in [29].

Definition 5.1 (Linear MDP). We say an MDP(S ,A, H, P, r, µ) is a linear MDP with a feature

map φ : S × A → Rd, if for any h ∈ [H], there exists d unknown signed measures µh =
(µ1

h, . . . , µd
h) over S and an unknown vector θh ∈ Rd, such that for any (s, a) ∈ S ×A

P(· | h, s, a) = φT(s, a)µh(·),
r(h, s, a) = φT(s, a)θh.

We shall notice that the tabular MDP is a special case of the linear MDP if we set d =
|S||A|, index each coordinate of Rd by state-action pair (s, a) ∈ S ×A, choose φ(s, a) as

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 175

the canonical basis in Rd and set

(θh)s,a = r(h, s, a),
(
µh(·)

)

s,a
= P(· | h, s, a)

for any (h, s, a) ∈ [H]× S ×A.

5.1 Approximation error

The next theorem demonstrates that the linear MDP assumption is the necessary and
sufficient condition of the Property 4 holding true when discussing the approximation
error in Section 4.1. Noticing that Property 4 is the strongest one among the four, we
know that under linear MDP assumption, for any policy π, the corresponding Q-value
function Qπ

h lies in the linear space, i.e., there exist weights {wπ
h }h∈[H] such that for any

(h, s, a) ∈ [H]× S ×A,

Qπ
h (s, a) = φT(s, a)wπ

h .

Theorem 5.1. Assume that S ×A is a compact set and φ : S ×A → R
d is a feature map. Then

the following two statements are equivalent:

1. There exist d signed measures µh = (µ1
h, . . . , µd

h) over S and a vector θh ∈ Rd, such that for
any (s, a) ∈ S ×A

P(· | h, s, a) = φT(s, a)µh(·),
r(h, s, a) = φT(s, a)θh.

2. For any f ∈ C(S), there exists ω f ,h ∈ Rd such that

(Th f)(s, a) = r(h, s, a) + Es′∼P(· | h,s,a)[f (s
′)] = φT(s, a)ω f ,h

and ‖ω f ,h‖ ≤ C[‖ f‖C(S) + 1] for a constant C > 0, where we use ‖ · ‖ to denote the l2-norm

on Rd.

The linear MDP assumption completely ensures Property 4 (in Section 4.1) in the linear
setting, but it rules out non-trivial deterministic MDPs that are frequently encountered
in real-world situations. This is because P(· | h, s, a) is a delta distribution and hence the
supports of µ1

h, . . . , µd
h are all single point sets. Therefore, the MDP can only visit at most

d state when h ≥ 2. Hence, there are some studies that direct assume Property 2 [2] or
Property 3 [60]. However, there has been little investigation into the concrete conditions of
the transition probability and reward function under which the MDP satisfies Property 2
or Property 3.

Proof of Theorem 5.1. 1⇒ 2: For any f ∈ C(S), we have

Th f = r(h, s, a) + Es′∼P(· | h,s,a)[f (s
′)] = φT(s, a)

[

θh +
∫

S
f (s′)dµh(s

′)
]

.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 176

Therefore, let

ω f ,h = θh +
∫

S
f (s′)dµh(s

′).

Hence,
‖ω f ,h‖ ≤ ‖θh‖+ ‖|µh|TV‖‖ f‖C(S×A),

where |µh|TV = (|µ1
h |TV , . . . , |µd

h|TV) is the total variation of signed measures µh. We can
then choose C = max{‖θh‖, ‖|µ|TV‖}.

2 ⇒ 1: Let f = 0, we know that we can choose θh = ω0,h such that r(h, s, a) =

φT(s, a)θh. Moreover ‖θh‖ ≤ C.
Let

W0 =
{

ω ∈ R
d : φT(s, a) ·ω = 0, ∀(s, a) ∈ S ×A

}

.

Noticing that W0 is a subspace of Rd, we can define W as the orthogonal complement
ofW0. For any f ∈ C(S), let ω′f ,h be the orthogonal projection of ω f ,h toW . Then by the

definition ofW0, we have

(Th f)(s, a) = φT(s, a)ω f ,h = φT(s, a)ω′f ,h.

On the other hand, for any ω ∈ W such that (Th f)(s, a) = φT(s, a)ω holds for any (s, a) ∈
S × A, by the definition of N0, we know that ω = ω′f ,h. We can then define a mapping

from f to ω′f ,h and B : C(S ×A)→ N

B f = ω′f ,h − θ′h,

where θ′h is the orthogonal projection of θh toW . Then,

Es′∼P(· | h,s,a)[f (s
′)] = φT(s, a)(B f).

We can then prove that B f is a linear mapping and

‖B f‖ ≤ ‖ω′f ,h‖+ ‖θ′h‖ ≤ ‖ω f ,h‖+ ‖θh‖ ≤ C
(
‖ f‖C(S×A) + 2

)
.

Then for any ‖ f‖C(S×A) = 1, we have ‖B f‖ ≤ 3C, which means that

‖B f‖ ≤ 3C‖ f‖C(S×A).

Therefore, B f is a bounded linear mapping from C(S ×A) toW . Noticing thatW is a fi-
nite-dimensional linear space, we can use the Risez representation theorem on C(S ×A)
[45] to show that there exists d signed measure µh = (µ1

h, . . . , µd
h) such that for any f ∈

C(S ×A),

Es′∼P(· | h,s,a)[f (s
′)] = φT(s, a)(B f) = φT(s, a)

∫

S
f (s′)dµh(s

′)

=
∫

S
f (s′)dφT(s, a)µh(s

′),

which means that
P(· | h, s, a) = φT(s, a)µh(·).

The proof is complete.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 177

5.2 Estimation and optimization error

Under the linear MDP assumption, the above analysis justifies our use of a linear function
to approximate the Q-value function. We can then apply the fitted Q-iteration algorithm or
value iteration methods in Section 3.1 with linear function approximation. We can also use
the linear function to approximate the Q-value function and then use the softmax policy
to approximate the optimal policy to apply the policy gradient algorithms in Section 3.2.
Here we take the value iteration (Algorithm 2) in the episodic setting [29] as an example
to discuss the estimation error. In [29], they set

Fh =
{

φT(s, a)θ, θ ∈ R
d
}

,

Λh(f) = λ‖θ‖2,

bk+1
h (s, a) = β

φ(s, a)T

(
k

∑
i=1

φ(Si
h, Ai

h)φ
T(Si

h, Ai
h) + nλI

)−1

φ(s, a)

1
2

.

Intuitively speaking, the bonus term bk+1
h is proportional to the standard deviation of the

Q̂k+1
h . It is proved that [29, Lemma B.5], with high probability,

Q∗h(s, a) ≤ Qk+1
h (s, a), ∀(s, a) ∈ S ×A.

In this sense, Qk+1
h is the uniformly upper confidence bound of Q∗h. The introduction

of the bonus term bk+1
h and resulting UCB estimation is the crucial step to address the

distribution mismatch phenomenon. By properly choosing the parameters β and λ, [29]
prove that Algorithm 2 can achieve the following regret bounds (recalling that K denotes
the number of episodes):

Regret(K) = Õ(
√

d3H4K),

which implies that to obtain an ǫ-optimal policy, the algorithm needs at most Õ(d3H5/ǫ2)
samples. Such a result is independent of the number of states and actions and is much
more general than the tabular setting.

In Algorithm 2, the optimization problem (3.3) is a ridge regression problem whose
solution can be exactly computed, so there is no error introduced in this optimization step.

However, we need to compute maxa∈AQk
h(s, a) many times. If |A| is finite, the maximum

can be exactly computed. However, if |A| is infinite, numerical errors may be introduced
when calculating the maximum value.

There are other works in the RL literature studying RL problems in the linear setting.
[36, 54, 57] consider the linear setting with a generative model in the time-homogeneous
case. These works use L∞ estimation instead of UCB estimation to handle the distribution
mismatch phenomenon. [60] considers a similar assumption with [29] but provides an
algorithm with a tighter regret bound. [61] also considers the RL problem in a linear setting
but with respect to discounted MDP with infinite horizons. [1, 2, 10] study the policy-
based methods for the RL problem in the linear setting. Most of these results establish
the polynomial sample complexity with respect to the number of features d, the length

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 178

of the episode H, and the accuracy ǫ under similar assumptions. However, so far, the
gap between the lower bound and upper bound in sample complexity still exists in the
linear setting, except for results in [54, 57], which require a generative model and a very
restrictive assumption called anchor state-action pairs assumption. This gap is evident by
noticing that the tabular MDP is a special case of the linear MDP, and the lower bound in
the tabular MDP implies a naive lower bound dH3/ǫ2; see [29, Section 5] for a detailed
discussion. Bridging the gap is an important direction for future work.

6 Nonlinear setting

6.1 RKHS, NTK and Barron space

As powerful function approximation tools (particularly in high dimensions), kernel func-
tions and neural networks are now widely used in various machine learning tasks, in-
cluding RL problems. Theoretical analysis of RL algorithms involving function approxi-
mations hinges on the proper choice of function spaces and a deep understanding of these
spaces. In this subsection, we will briefly introduce the concepts of reproducing kernel
Hilbert space (RKHS), neural tangent kernel (NTK), and Barron space, as they are suitable
function spaces associated with kernel function and neural network approximation. In
particular, we introduce the theoretical results of supervised learning algorithms in these
function spaces, which will be the foundation for analyzing RL algorithms with function
approximation.

RKHS. Suppose k is a continuous positive definite kernel that satisfies:

1. k(x, x′) = k(x′, x), ∀x, x′ ∈ X ;

2. For all m ≥ 1, x1, . . . , xm ∈ X and a1, . . . , am ∈ R, we have

m

∑
i=1

m

∑
j=1

aiajk(xi, xj) ≥ 0.

Then, there exists a Hilbert spaceHk ⊂ C(X) such that:

1. For all x ∈ Rd, k(x, ·) ∈ Hk;

2. For all x ∈ Rd and f ∈ Hk, f (x) = 〈 f , k(x, ·)〉Hk
.

k is called the reproducing kernel of Hk [5], and we use ‖ · ‖Hk
to denote the norm of the

Hilbert spaceHk. Common examples of reproducing kernels include the Gaussian kernel
k(x, x′) = exp(−α‖x− x′‖2) and the Laplacian kernel k(x, x′) = exp(−α‖x− x′‖) (α > 0).

The kernel method can efficiently learn functions in the RKHS with finite data. In the
kernel method, we set the hypothesis space asHk, the entire RKHS. In this sense, since the
target function f ∗ lies in Hk, the approximation error is zero. We can then define the loss
function

Ln(f) =
1

n

n

∑
i=1

|yi − f (xi)|2 + λ‖ f‖2
Hk

.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 179

We can then obtain the kernel ridge estimator f̂ = arg min f∈Hk
Ln(f). If we choose λ =

n−1/2, then the estimation error

‖ f ∗ − f̂ ‖L2(µ) ≤ O
(
[1 + ‖ f‖Hk

]n−
1
4
)
.

We can then show that the kernel ridge estimator can be computed exactly, and hence the
optimization error is zero. First, using [43, Proposition 4.2], we know that

min
f∈Hk

Ln(f) = min
f=∑

n
i=1 αik(·,xi)

Ln(f).

Then we only need to compute the α1, . . . , αn to minimize the loss function. Moreover, if
f = ∑

n
i=1 αik(·, xi), then

Ln(f) =
1

n
[y− Knα]T[y− Knα] + λαTKnα,

where y = (y1, . . . , yn)T, α = (α1, . . . , αn)T and Kn = (k(xi, xj))1≤i,j≤n is an n× n matrix.
Therefore,

α̂ = (Kn + λnId)
−1y,

which can be computed directly. See [11, 46, 51] for more details on the kernel method.

NTK. Neural tangent kernel (NTK) was first introduced to study the overparameterized

neural networks [27]. For the input data x ∈ Rd, we consider a two-layer ReLU neural
network with m neurons

f (x; θ) =
1√
m

m

∑
i=1

aiσ
(
ωT

i x
)
,

where σ(x) = max{x, 0} is the ReLU activation function. Here θ denotes the collection of
all the parameters (a1, ω1, . . . , am, ωm), with ai ∈ R, ωi ∈ Rd, i = 1, . . . , m. If we initialize θ
according to the following rule:

ai
i.i.d.∼ N (0, 1), ωi

i.i.d.∼ N (0, Id/d), (6.1)

then the fully trained neural networks approximate the kernel ridge regression on the
RKHS with respect to the NTK kNTK when the width m goes to the infinity [6], where

kNTK(x, x′) = Eω∼N (0,Id/d)

[

xTx′σ′(ωTx)σ′(ωTx′) + σ(ωTx)σ(ωTx′)
]

and σ′(x) = 1x>0 is the derivative of σ. The theory of NTK establishes a connection be-
tween neural network and kernel methods and shows that it is sufficient to study the
corresponding NTK if we are interested in the overparameterized neural networks with
the NTK scaling (6.1). Therefore, we will not discuss RL with neural network approxima-
tion under the NTK regime, as it is covered by the kernel function approximation. For
more details on the NTK theory, including the NTK corresponding to multi-layer neural
networks, see [3, 6, 7, 18, 27].

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 180

Barron space. Barron space is introduced to study the overparameterized neural net-
works as well but with a different scaling. We consider the two-layer ReLU neural network
with mean-field scaling

f (x; θ) =
1

m

m

∑
i=1

aiσ
(
ωT

i x
)
.

The function in the Barron space serves as the continuous analog of the two-layer neural
network as the width m goes to infinity

f (x) =
∫

Rd
a(ω)σ(ωTx)dρ(ω). (6.2)

The Barron space is defined as follows:

B =

{

f (x) =
∫

Rd
a(ω)σ(ωTx)dρ(ω), ρ ∈ P(Rd) and

∫

Rd
|a(ω)|dρ(ω) < +∞

}

.

Due to the scaling invariance of the ReLU function, the norm of the Barron space can be
defined by

‖ f‖B = inf
a,ρ

∫

Sd−1
|a(ω)|dρ(ω),

where the infimum is taken over all possible ρ ∈ P(Sd−1) and a ∈ L1(ρ) such that Eq. (6.2)
is satisfied. We have the following relationship between the RKHS and Barron space:

B = ∪
π∈P(Sd−1)

Hkπ
, (6.3)

where kπ(x, y) = Eω∼π[σ(ω
Tx)σ(ωTy)]. We shall also point out that compared to the

RKHS, the Barron space is much larger in high dimensions, see [21, Example 4.3]. We refer
to [17, 20] for more details and properties of the Barron space. For a detailed comparison
between the NTK and the Barron space, see [16, 18].

We can approximate the target function in Barron space with the two-layer neural net-
works

Hm =

{

f (x, θ) =
1

m

m

∑
i=1

aiσ
(

ωT
i x
)

: θ = (a1, ω1, . . . , am, ωm), ai ∈ R, ωi ∈ S
d−1, 1 ≤ i ≤ m

}

.

Then we have that for any f ∗ ∈ B and µ ∈ P(Rd)

inf
fm∈Hm

Ex∼µ| f ∗(x)− fm(x)|2 ≤ ‖ f‖2
B

m
.

Similar to the kernel ridge regression, we can define the following loss function:

Ln(θ) =
1

n

n

∑
j=1

max
{

(ln n)2, [yi − f (xi, θ)]2
}

+
λ

m

m

∑
i=1

|ai|‖ωi‖

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 181

to obtain the estimator f̂ . Under proper condition, we can obtain that

‖ f ∗ − f̂‖L2(µ) = Õ
(

‖ f‖B
[
m−

1
2 + n−

1
4
])

,

if we set λ = Õ(n−1/2), see [19] for details. However, it is still not clear how to efficiently

compute the estimator f̂ , see, e.g., [16,18]. More work is needed to further understand the
optimization error in this case.

6.2 Reinforcement learning with nonlinear function approximation

We first discuss the approximation error in the nonlinear setting. To this end, we general-
ize Theorem 5.1 to the case of RKHS.

Theorem 6.1. Assume that S ×A is a compact set. Let ρ be a probability distribution on S ×A,
we will use {λi}+∞

i=1 and {ψi}+∞
i=1 to denote the eigenvalues and eigenfunctions of the operator

(Kρg)(x) :=
∫

S×A
k(x, x′)g(x′)dρ(z′)

from L2(ρ) to L2(ρ). We further require that {λi}+∞
i=1 is nonincreasing and {ψi}+∞

i=1 is orthonormal

in L2(ρ). Then, the following statements are equivalent:

1. For any h ∈ [H], r(h, ·) ∈ Hk and there exist signed measures {µi
h}+∞

i=1 over S , such that
for any (s, a)

P(· | h, s, a) =
+∞

∑
i=1

ψi(s, a)µi
h(·)

in the sense that for any f ∈ C(S)
∫

S
f (s′)dP(s′|h, s, a) =

+∞

∑
i=1

∫

S
f (s′)dµi

h(s
′)ψi(s, a),

where the convergence is in the sense of L2(ρ). Moreover, for any f ∈ C(S)
+∞

∑
i=1

1

λi

∣
∣
∣
∣

∫

S
f (s′)dµi

h(s
′)
∣
∣
∣
∣

2

≤ C‖ f‖2
C(S)

for a constant C > 0.

2. For any f ∈ C(S) and h ∈ [H],

(Th f)(s, a) = r(h, s, a) + Es′∼P(· | h,s,a)[f (s
′)] ∈ Hk

and ‖Th f‖Hk
≤ C′[‖ f‖C(S) + 1] for a constant C′ > 0.

Proof. We will use the following representation of the RKHS norm:

‖g‖2
k =

+∞

∑
i=1

1

λi
|〈g, ψi〉L2(ρ)|2. (6.4)

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 182

See, e.g., [9, Section 2.1].

1⇒ 2: For any f ∈ C(S),

(Th f)(s, a) = r(h, s, a) +
+∞

∑
i=1

∫

S
f (s′)dµi

h(s
′)ψi(s, a).

Let

g f ,h =
+∞

∑
i=1

∫

S
f (s′)dµi

h(s
′)ψi,

then

〈g f ,h, ψi〉L2(ρ) =
∫

S
f (s′)dµi

h(s
′)

for any i ∈ N+. Therefore g f ,h ∈ Hk and

‖g f ,h‖Hk
=

√
√
√
√

+∞

∑
i=1

1

λi

∣
∣
∣
∣

∫

S
f (s′)dµi(s′)

∣
∣
∣
∣

2

≤
√

C‖ f‖C(S).

Hence,
‖Th f‖Hk

≤ ‖r(h, ·)‖Hk
+ ‖g f ,h‖Hk

≤ C′
[
1 + ‖ f‖C(S)

]
.

2⇒ 1: Choose f = 0 we know that r(h, ·) ∈ Hk and ‖r(h, ·)‖Hk
≤ C′. Let

g f ,h = Es′∼P(· | h,s,a)[f (s
′)],

then for any f ∈ C(S), g f ,h ∈ Hk. If ‖ f‖C(S) = 1, we have

‖g f ,h‖Hk
≤ ‖Th f‖Hk

+ ‖r(h, ·)‖Hk
≤ 3C′.

Then by the linearity of g f ,h with respect to f , we have that for any f ∈ C(S),

‖g f ,h‖Hk
≤ 3C′‖ f‖C(S).

Noticing that g f ,h ∈ Hk ⊂ L2(ρ), we know that for any f ∈ C(S),
∫

S
f (s′)dP(s′|h, s, a) = g f ,h =

+∞

∑
i=1

∫

S×A
g f ,h(s

′, a′)ψi(s
′, a′)dρ(s′, a′)ψi(s, a).

Noticing that
∣
∣
∣
∣

∫

S×A
g f ,h(s

′, a′)ψi(s
′, a′)dρ(s′, a′)

∣
∣
∣
∣
≤ ‖g f ,h‖L2(ρ) ≤

√

λ1‖g f ,h‖Hk
≤ 3C′

√

λ1‖ f‖C(S).

We can then use the Riesz representation theorem to obtain that there exists signed mea-

sures {µi
h}+∞

i=1 such that

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 183

∫

S
g f ,h(s

′, a′)ψi(s
′, a′)dρ(s′, a′) =

∫

S
f (s′)dµi

h(s
′).

Therefore,

P(· | h, s, a) =
+∞

∑
i=1

µi
h(·)ψi(s, a).

Moreover,

‖g f ,h‖2
Hk

=
+∞

∑
i=1

1

λi

∣
∣
∣
∣

∫

S
f (s′)dµi

h(s
′)
∣
∣
∣
∣

2

≤ 9(C′)2‖ f‖2
C(S) =: C‖ f‖2

C(S).

The proof is complete.

Similar to the discussions in the linear setting, Theorem 6.1 provides a necessary and
sufficient condition to ensure Property 4 in the RKHS setting. The extension of Theo-
rem 6.1 to the Barron space is not yet clear, mainly due to the lack of a representation of
the Barron norm that is similar to (6.4). Nevertheless, it is still worthwhile to consider only
sufficient conditions for Property 4 in Barron space. [40] introduce one such condition: for
any h ∈ [H],

‖r(h, ·)‖B < +∞, sup
s′∈S
‖p(h, s′, ·)‖B < +∞, (6.5)

where p(h, s′, s, a) = dP(s′ | h, s, a)/ dρh(s
′) and ρh is a probability distribution on S . Sim-

ilar to the situation in the linear setting, these conditions rule out many interesting de-
terministic MDPs, since these MDPs can only visit countably infinite states when h ≥ 2.
Additionally, there has been little investigation into the concrete conditions on the transi-
tion probability and reward function that ensure Property 2 and Property 3 in Section 4.1
in the nonlinear setting.

With theoretical results in supervised learning and analysis on the approximation error
of RL in the nonlinear setting, it remains to develop tools to handle the distribution mis-
match phenomenon in the nonlinear setting, which leads to a paramount difference in RL
analysis between tabular/linear settings and nonlinear settings. In the tabular and linear
settings, the L∞ estimation and UCB estimation are used to handle the distribution mis-
match. The L∞ estimation or UCB estimation of the value function is obtained such that
the error under any distribution can be controlled. However, as pointed out in [33,40] and
the theorem below, both L∞ and UCB estimations will suffer from the curse of dimension-
ality for high-dimensional NTK, Barron space, and many common RKHSs. This challenge
reveals at least one essential difficulty of RL problems in the nonlinear setting compared
to the tabular and linear settings.

Theorem 6.2. Given an RKHS Hk on X associated with a continuous kernel k (assuming that
supx∈X k(x, x) ≤ 1) and any x1, . . . , xn ∈ X , letH1

k be the unit ball ofHk and Gn : H1
k → C(X)

be a mapping satisfying

Gn f = Gn f ′, ∀ f , f ′ ∈ H1
k such that f (xi) = f ′(xi), i = 1, . . . , n. (6.6)

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 184

For any given distribution ρ on X , let {λi}+∞
i=1 be the nonincreasing eigenvalues of the mapping

Kρ : L2(ρ)→ L2(ρ)

(Kρg)(x) =
∫

X
k(x, x′)g(x′)dρ(x′).

The following two statements hold true:

1. (L∞ estimation)

sup
f∈H1

k

‖ f − Gn f‖∞ ≥
(

+∞

∑
i=n+1

λi

) 1
2

.

2. (UCB estimation) If Gn additionally satisfies that

Gn f (x) ≥ f (x), ∀ f ∈ H1
k , x ∈ X , (6.7)

then,

sup
f∈H1

k

Eρ[Gn f − f] ≥
+∞

∑
i=n+1

λi.

We can interpret the mapping Gn in Theorem 6.2 as an abstraction of a function ap-
proximation algorithm that takes the function values at n points, x1, . . . , xn as input and
returns a continuous function. The requirement in Theorem 6.2 is naturally satisfied: if
two target functions have the same values at x1, . . . , xn, the function approximation result
will be identical. From the definition, UCB estimation must satisfy condition (6.7) as the
UCB estimation should give a pointwise upper bound of the target function. Therefore,
Theorem 6.2 gives the lower bound of the worst-case error of both L∞ and UCB estima-
tion based on the eigenvalue decay of the kernel. As pointed out in [40], if we choose

X = Sd−1, the unit ball in Rd and ρ the uniform distribution on Sd−1, the eigenvalue
decay ∑

+∞
i=n+1 λi of the following RKHSs:

k(x, x′) =

kLap(x, x′) = exp(−‖x− x′‖),
kNTK(x, x′) = Eω∼π(x · x′)σ′(ω · x)σ′(ω · x′),
kπ(x, x′) = Eω∼πσ(ω · x)σ(ω · x′)

is n−α/d for some universal constant α. Here π is also the uniform distribution on Sd−1.
Therefore, if the target function lies in the RKHS associated with the Laplacian kernel or
NTK, according to the first argument in Theorem 6.2, the L∞ estimation suffers from the
curse of dimensionality: the number of points needed to achieve an error tolerance scales
exponentially with respect to the dimension d. Since theHkπ

is the subspace of the Barron
space B (Eq. (6.3)), the L∞ and UCB estimation in the Barron space also suffer from the
curse of dimensionality.

Proof of Theorem 6.2. We first prove that

Ex∼ρ sup
f∈H1

k , f (x1)=···= f (xn)=0

| f (x)|2 ≥
+∞

∑
l=n+1

λl . (6.8)

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 185

Notice that

sup
f∈H1

k , f (x1)=···= f (xn)=0

f (x) = sup
‖ f ‖H≤1,〈 f ,k(xi,·)〉Hk

=0,1≤i≤n

〈 f , k(x, ·)〉Hk

= inf
c1,...,cn

∥
∥
∥
∥

k(x, ·)−
n

∑
i=1

cik(xi, ·)
∥
∥
∥
∥
Hk

.

Then, let φ1, . . . , φn be the Gram-Schmidt orthonormalization of {k(x1, ·), . . . , k(xn, ·)} in
H, then

inf
c1,...,cn

∥
∥
∥
∥

k(x, ·)−
n

∑
i=1

cik(xi, ·)
∥
∥
∥
∥

2

Hk

= k(x, x)−
n

∑
i=1

φ2
i (x).

Therefore,

Ex∼ρ sup
f∈H1

k , f (x1)=···= f (xn)=0

| f (x)|2 = Ex∼ρk(x, x)−
n

∑
i=1

Ex∼ρφ2
i (x).

Let {ψl}+∞
l=1 be the eigenfunctions corresponding to {λl}+∞

l=1 , which is an orthonormal basis

in L2(ρ). Let

cl =
n

∑
i=1

(
Ex∼ρψl(x)φi(x)

)2
,

then,

λl = λ2
l ‖ψl‖2

Hk
≥ λ2

l

n

∑
i=1

(
〈ψl, φi〉Hk

)2
= λ2

l

n

∑
i=1

(Ex∼ρψl(x)φi(x))2

λ2
l

= cl ≥ 0,

and
+∞

∑
l=1

cl

λl
=

n

∑
i=1

+∞

∑
l=1

(Ex∼ρψl(x)φi(x))2

λl
=

n

∑
i=1

‖φi‖2
H = n.

Hence,
n

∑
i=1

Ex∼ρφ2
i (x) =

+∞

∑
l=1

cl ≤
n

∑
l=1

λl.

The famous Mercer decomposition states that

k(x, x′) =
+∞

∑
i=1

λiψi(x)ψi(x′).

Therefore, with the observation that

Ex∼ρk(x, x) =
+∞

∑
l=1

λl ,

we obtain inequality (6.8).

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 186

To prove the first argument, first notice that

sup
f∈H1

k , f (x1)=···= f (xn)=0

‖ f‖∞ = sup
x∈X

sup
f∈H1

k , f (x1)=···= f (xn)=0

| f (x)|

≥
(

Ex∼ρ sup
f∈H1

k , f (x1)=···= f (xn)=0

| f (x)|2
) 1

2

≥
(

+∞

∑
l=n+1

λl

) 1
2

.

Then, noticing that for any f ∈ H1
k such that f (x1) = · · · = f (xn) = 0, we have Gn f =

Gn(− f). Therefore,

sup
f∈H1

k

‖ f − Gn f‖∞ = sup
f∈H1

k , f (x1)=···= f (xn)=0

‖ f − Gn f‖∞ + ‖ − f − Gn f‖∞

2

≥ sup
f∈H1

k , f (x1)=···= f (xn)=0

‖ f‖∞,

which concludes the proof.
For the second argument, let f0 = 0. For any f ∈ H1

k such that f (x1) = · · · = f (xn) = 0,
we have

Gn f0(x) = Gn f (x) ≥ f (x)

for any x ∈ X . Therefore,

Gn f0(x) ≥ sup
f∈H1

k , f (x1)=···= f (xn)=0

f (x) = sup
f∈H1

k , f (x1)=···= f (xn)=0

| f (x)|.

Combining the fact that

sup
f∈H1

k

| f (x)| = sup
f∈H1

k

|〈 f , k(x, ·)〉Hk
| = ‖k(x, ·)‖Hk

= k(x, x) ≤ 1,

we know that
Gn f0(x) ≥ sup

f∈H1
k , f (x1)=···= f (xn)=0

| f (x)|2.

Therefore,

sup
f∈H1

k

Ex∼ρ[Gn f − f] ≥ Ex∼ρGn f0(x) ≥ Ex∼ρ sup
f∈H1

k , f (x1)=···= f (xn)=0

| f (x)|2 ≥
+∞

∑
i=n+1

λi.

The proof is complete.

Theorem 6.2 indicates that the L∞ or UCB estimation is too strong as a requirement
to pursue in the high-dimensional cases with nonlinear function approximation. There-
fore, to obtain meaningful results in the nonlinear setting, besides the assumption that
ensures the value or policy function can be approximated by the kernel or neural func-
tions, some additional assumptions are needed to handle the distribution mismatch phe-
nomenon. Based on the assumptions used, most of the existing works addressing this

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 187

difficulty can be divided into two categories. The first category [58, 59] assumes the fast
eigenvalue decay of the kernel such that the L∞ and UCB estimation still provide a mean-
ingful bound in high dimensions. The second category [2, 12, 22, 23, 40, 55] requires the
following concentration coefficient condition: for any h ∈ [H], there exists a distribution
νh such that for any policy π, the corresponding state-action distribution ρh,P,π,µ satisfies

∥
∥
∥
∥

dρh,P,π,µ

dνh

∥
∥
∥
∥

L2(νh)

≤ C,

where C > 0 is a universal constant. Under this assumption, an L2 estimation under νh is
sufficient to handle distribution mismatch since we can control the estimation error under
the state-action distributions generated by all possible policies, including the optimal pol-
icy. This assumption is commonly used to study the convergence of the fitted Q-iteration
algorithm (Algorithm 1) [12,22,23,40]. In the episodic setting, due to the lack of a genera-
tive model, we need to additionally assume that νh is the state-action distribution ρh,P,π̄,µ

for a policy π̄ [55].
To better capture the influence of distribution mismatch in the RL problem, [39] in-

troduce a quantity called perturbational complexity by distribution mismatch for a large
class of the RL problems in the nonlinear setting when a generative model is accessible.
This quantity can give both the lower bound and upper bound of the sample complexity
of these RL problems and hence measure their difficulty. Moreover, both fast eigenvalue
decay and finite concentration coefficient can lead to small perturbational complexity by
distribution mismatch [39, Propositions 2 and 3] and hence the results in [39] generalize
both categories of the previous results in the nonlinear setting.

The formal definition of the perturbational complexity by distribution mismatch is
given as follows.

Definition 6.1. (i) For any set Π consisting of probability distributions on S × A, we define
a semi-norm ‖ · ‖Π on C(S ×A)

‖g‖Π := sup
ρ∈Π

∣
∣
∣
∣

∫

S×A
g(s, a)dρ(s, a)

∣
∣
∣
∣

.

We call this semi-norm Π-norm.

(ii) Given a Banach space B, a probability distribution ν ∈ P(S × A) and a positive constant
ǫ > 0, we define a ν-perturbation space Bǫ,ν with scale ǫ, as follows:

Bǫ,ν :=
{

g ∈ B : ‖g‖B ≤ 1, ‖g‖L2(ν) ≤ ǫ
}

.

(iii) The perturbation response by distribution mismatch is defined as the radius of Bǫ,ν under
Π-norm,

R(Π,B, ǫ, ν) := sup
g∈Bǫ,ν

‖g‖Π.

We consider an RL problem whose underlying MDP belongs to a family of MDPs

M =
{

Mθ = (S ,A, P, rθ , H, µ) : θ ∈ Θ
}

,

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 188

Algorithm 4 Fitted reward algorithm

Input: MDP familyM, generative model of MDP (S ,A, H, P, rθ , µ), sampling distribution

ν̂ = arg minν∈P(S×A)R(Π(P0, µ),Hk, n−1/4, ν).

for h = 1, 2, . . . , H do
Sample (s1, a1), . . . , (sn, an) i.i.d. from ν̂.
Sample r1

h, . . . , rn
h from N (rθ(h, s1, a1), 1), . . . ,N (rθ(h, sn, an), 1), respectively.

Compute r̂θ(h, ·) as the minimizer of the optimization problem

min
‖r‖B≤1

n

∑
i=1

[

r(si, ai)− ri
h

]2
.

end
Collect the fitted reward function to form the MDP (S ,A, H, P, r̂θ , µ), of which both re-
ward function and transition are known. Denote it as M̂θ .
Output: π̂θ as the optimal policy of M̂θ .

where S ,A, P, H and µ are common state space, action space, transition probability1,
length of each episode, and initial distribution. The unknown reward function lies in
the unit ball of a Banach space B

{rθ , θ ∈ Θ} = B1.

In the generative model setting, [39] prove that any RL algorithm Jn : θ → R onM with
at most n accesses to the generative model satisfies that

sup
θ∈Θ

E|Jn(θ)− J∗(Mθ)| ≥
1

12
∆M

(
n−

1
2
)
,

where
∆M(ǫ) = inf

ν∈P(S×A)
R
(
Π(P, µ),B, ǫ, ν

)
.

Therefore, the perturbational complexity by distribution mismatch gives a lower bound
for RL problems onM. Note that in [39], it is assumed that we can only obtain a noisy re-
ward with a standard normal noise in the generative model, rather than the exact reward.
On the other hand, if B is the Barron space or an RKHS, then the output π̂θ of Algorithm 4
satisfies

sup
θ∈Θ

|J(Mθ , π̂θ)− J∗(Mθ)| ≤ Õ
(

H∆M(n−
1
4)
)
.

Therefore, the perturbational complexity by distribution mismatch also gives an upper
bound for RL problems onM.

1In [39], the general case where the transition probability is unknown is also considered and fitted Q-iteration algorithm
(Algorithm 1) with kernel function approximation is studied in this case. Here for brevity we only discuss the case where
the transition probability is known.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 189

The perturbational complexity by distribution mismatch can also be used to construct
various RL problems that suffer from the curse of dimensionality [39]. The first example

involves a state space S consisting of a single point s0, while the action spaceA is Sd−1 and
H = 1. In this setting, the RL problem essentially aims to find the maximum value of the
reward function lying in the unit ball of B based on the values of n points. We can prove
that when B is the Barron space and the RKHS corresponding to the Laplacian kernel and
NTK, the convergence rate can be bounded below by the eigenvalue decay. Therefore, if
we consider the RKHS corresponding to the Laplacian kernel or neural tangent kernel, the
convergence rate suffers from the curse of dimensionality. We can then conclude that if
we want to solve RL problems with high dimensional action space, we need to assume the
decay of the eigenvalue is fast enough to break the curse of dimensionality. The other ex-
ample involves a high-dimensional state space and finite action space. For any dimension
d ≥ 2, length of each episode H ∈ N+ and positive constant δ > 0, we define an MDP
familyMd,H,δ as follows:

S = S
d−1, A = {0, 1}, H = H, µ = Uniform

Sd−1 ,

{rθr
: θr ∈ Θr} =

{
r : ‖r(h, ·)‖Hk

≤ 1, ∀h ∈ [H]
}

,

k
(
(s, a), (s′, a′)

)
= exp(−‖s− s′‖), P(· | h, s, a) = δTa,hs(·),

Ta,hs =

{

(φ1, . . . , φhd
+ δ, . . . , φd), when a = 0,

(φ1, . . . , φhd
− δ, . . . , φd), when a = 1,

where hd = h mod d and we use the spherical coordinates (φ1, . . . , φd) to denote the

points on Sd−1. Then we can show that there exist no universal constants α, β > 0 and
constant Cd > 0 only depending on d such that

sup
δ>0

∆Md,H,δ

(
n−

1
2
)
≤ CdHα

(
1

n

)β

holds for all n, H ∈ N+ and d ≥ 2. Therefore, the above RL problems cannot be solved
without the curse of dimensionality.

7 Discussion and conclusion

In this paper, we review existing research on reinforcement learning with function ap-
proximation. The results in the tabular and linear settings are well-developed because
methods such as L∞ and UCB estimation can be used to handle the phenomenon of dis-
tribution mismatch. When a generative model is available, the perturbational complexity
by distribution mismatch can be used to measure the impact of distribution mismatch and
assess the difficulty of reinforcement learning problems in the nonlinear setting. However,
it remains unclear how to extend these results to the episodic setting, and it is still an open
question how to use perturbational complexity information to guide the design of efficient
reinforcement learning algorithms in practice.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 190

Approximation error is also an important topic in RL, especially in the nonlinear set-
ting. Apart from the Theorem 5.1 for linear space, Theorem 6.1 for RKHS, and the condi-
tion (6.5) for Barron space, there are limited results in this area, particularly for determin-
istic MDPs. We remark that the solution of the continuous-time Hamilton-Jacobi-Bellman
equation, which is the value function of continuous-time MDPs, can be approximated by
neural networks, see, e.g., [26]. However, it is not clear whether this result can be applied
to discrete-time MDPs. Computational issues are another important topic in reinforce-
ment learning, particularly for reinforcement learning with neural function approxima-
tion. The convergence of the gradient descent method of neural networks in the mean
field regime is still not well-understood. We hope that further research will be conducted
on these topics.

Finally, a significant gap exists between the current theory and practice of reinforce-
ment learning, even in the absence of function approximation. The majority of theo-
retical results focus on algorithms that employ strategic exploration, such as the UCB
method [8, 28, 29, 59]. However, RL algorithms in practice often utilize the random ex-
ploration. Theoretical research suggests that, in the worst-case scenario, RL with random
exploration exhibits exponential difficulty with respect to the horizon [14], which does
not accurately explain practical performance. While some theoretical studies [35, 38] have
examined instance-based bounds by identifying specific RL problem properties that lead
to better performance than the worst case when random exploration is employed, these
properties do not fully account for the success of all practical RL problems, nor do they
address function approximation. Furthermore, many practical techniques, such as reward
shaping, experience replay, and pre-trained policies, have not been sufficiently explored
in theoretical research to explain their positive impact on RL algorithm performance. It is
essential for future research to bridge the gap between theory and practice, particularly in
the presence of function approximation.

References

[1] A. Agarwal, M. Henaff, S. Kakade, and W. Sun, PC-PG: Policy cover directed exploration for provable
policy gradient learning, Adv Neural Inf Process Syst, 33:13399–13412, 2020.

[2] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, On the theory of policy gradient methods: Opti-
mality, approximation, and distribution shift, J Mach Learn Res, 22(98):1–76, 2021.

[3] Z. Allen-Zhu, Y. Li, and Z. Song, A convergence theory for deep learning via over-parameterization. In:
International Conference on Machine Learning, PMLR, 242–252, 2019.

[4] A. Antos, C. Szepesvári, and R. Munos, Learning near-optimal policies with Bellman-residual mini-
mization based fitted policy iteration and a single sample path, Mach Learn, 71(1):89–129, 2008.

[5] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68(3):337–404, 1950.
[6] S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang, On exact computation with an in-

finitely wide neural net, Adv Neural Inf Process Syst, 32, 2019.
[7] S. Arora, S. Du, W. Hu, Z. Li, and R. Wang, Fine-grained analysis of optimization and generalization for

overparameterized two-layer neural networks. In: International Conference on Machine Learning, PMLR,
322–332, 2019.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 191

[8] M. G. Azar, I. Osband, and R. Munos, Minimax regret bounds for reinforcement learning. In: Interna-
tional Conference on Machine Learning, PMLR, 263–272, 2017.

[9] F. Bach, On the equivalence between kernel quadrature rules and random feature expansions, J Mach
Learn Res, 18(1):714–751, 2017.

[10] Q. Cai, Z. Yang, C. Jin, and Z. Wang, Provably efficient exploration in policy optimization. In: Interna-
tional Conference on Machine Learning, PMLR, 1283–1294, 2020.

[11] A. Caponnetto and E. De Vito, Optimal rates for the regularized least-squares algorithm, Found. Comput.
Math., 7(3):331–368, 2007.

[12] J. Chen and N. Jiang, Information-theoretic considerations in batch reinforcement learning. In: Interna-
tional Conference on Machine Learning, PMLR, 1042–1051, 2019.

[13] C. Dann, T. Lattimore, and E. Brunskill, Unifying PAC and regret: Uniform PAC bounds for episodic
reinforcement learning, Adv Neural Inf Process Syst, 30:5713–5723, 2017.

[14] C. Dann, Y. Mansour, M. Mohri, A. Sekhari, and K. Sridharan, Guarantees for epsilon-greedy reinforce-
ment learning with function approximation. In: International Conference on Machine Learning, PMLR,
4666–4689, 2022.

[15] O. D. Domingues, P. Ménard, M. Pirotta, E. Kaufmann, and M. Valko, Regret bounds for kernel-based
reinforcement learning, arXiv:2004.05599, 2020.

[16] W. E, C. Ma, S. Wojtowytsch, and L. Wu, Towards a mathematical understanding of neural network-
based machine learning: What we know and what we don’t, arXiv:2009.10713, 2020.

[17] W. E, C. Ma, and L. Wu, Barron spaces and the compositional function spaces for neural network models,
arXiv:1906.08039, 2019.

[18] W. E, C. Ma, L. Wu, A comparative analysis of optimization and generalization properties of two-layer
neural network and random feature models under gradient descent dynamics, Sci. China Math, 2019.

[19] W. E, C. Ma, and L. Wu, A priori estimates of the population risk for two-layer neural networks, Com-
mun. Math. Sci., 17:1407–1425, 2019.

[20] W. E, C. Ma, and L. Wu, The Barron space and the flow-induced function spaces for neural network
models, Constr. Approx., 55(1):369–406, 2022.

[21] W. E, S. Wojtowytsch, Kolmogorov width decay and poor approximators in machine learning: Shallow
neural networks, random feature models and neural tangent kernels, Res. Math. Sci., 8(1):1–28, 2021.

[22] J. Fan, Z. Wang, Y. Xie, and Z. Yang, A theoretical analysis of deep Q-learning. In: Learning for Dynamics
and Control, PMLR, 486–489, 2020.

[23] A.-m. Farahmand, M. Ghavamzadeh, C. Szepesvári, and S. Mannor, Regularized policy iteration with
nonparametric function spaces, J Mach Learn Res, 17(139):1–66, 2016.

[24] B. Gao and L. Pavel, On the properties of the softmax function with application in game theory and
reinforcement learning, arXiv:1704.00805, 2017.

[25] M. Gheshlaghi Azar, R. Munos, and H. J. Kappen, Minimax PAC bounds on the sample complexity of
reinforcement learning with a generative model, Mach Learn, 91(3):325–349, 2013.

[26] M. Hutzenthaler, A. Jentzen, and T. Kruse, Overcoming the curse of dimensionality in the numerical
approximation of parabolic partial differential equations with gradient-dependent nonlinearities, Found.
Comput. Math., 22(4):905–966, 2022.

[27] A. Jacot, F. Gabriel, and C. Hongler, Neural tangent kernel: Convergence and generalization in neural
networks, arXiv:1806.07572, 2018.

[28] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan, Is Q-learning provably efficient?, Adv Neural Inf Process
Syst, 31:4863–4873, 2018.

[29] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan, Provably efficient reinforcement learning with linear function
approximation. In: Conference on Learning Theory, 2137–2143, 2020.

[30] S. M. Kakade, A natural policy gradient, Adv Neural Inf Process Syst, 14, 2001.
[31] S. Kakade and J. Langford, Approximately optimal approximate reinforcement learning. In: Proceedings

of 19th International Conference on Machine Learning, Citeseer, 2002.
[32] J. Kober, J. A. Bagnell, and J. Peters, Reinforcement learning in robotics: A survey, Int. J. Robot. Res.,

32(11):1238–1274, 2013.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 192

[33] F. Y. Kuo, G. W. Wasilkowski, and H. Woźniakowski, Multivariate L∞ approximation in the worst case
setting over reproducing kernel Hilbert spaces, J. Approx. Theory, 152(2):135–160, 2008.

[34] M. G. Lagoudakis and R. Parr, Least-squares policy iteration, J Mach Learn Res, 4:1107–1149, 2003.
[35] C. Laidlaw, S. Russell, and A. Dragan, Bridging RL theory and practice with the effective horizon,

arXiv:2304.09853, 2023.
[36] T. Lattimore, C. Szepesvari, and G. Weisz, Learning with good feature representations in bandits and in

RL with a generative model. In: International Conference on Machine Learning, PMLR, 5662–5670, 2020.
[37] G. Li, Y. Chen, Y. Chi, Y. Gu, and Y. Wei, Sample-efficient reinforcement learning is feasible for linearly

realizable MDPs with limited revisiting, arXiv:2105.08024, 2021.
[38] Y. Liu and E. Brunskill, When simple exploration is sample efficient: Identifying sufficient conditions

for random exploration to yield pac RL algorithms, arXiv:1805.09045, 2018.
[39] J. Long and J. Han, Perturbational complexity by distribution mismatch: A systematic analysis of rein-

forcement learning in reproducing kernel Hilbert space, J. Mach. Learn., 1:1–34, 2022.
[40] J. Long, J. Han, and W. E, An L2 analysis of reinforcement learning in high dimensions with kernel and

neural network approximation, CSIAM Trans. Appl. Math., 3(2):191–220, 2022.
[41] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, Playing

Atari with deep reinforcement learning, arXiv:1312.5602, 2013.
[42] R. Munos, Error bounds for approximate value iteration. In: Proceedings of the 20th National Conference

on Artificial Intelligence, AAAI Press, Vol. 2, 1006–1011, 2005.
[43] V. I. Paulsen and M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces,

Vol. 152, Cambridge University Press, 2016.
[44] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, John Wiley & Sons,

2014.
[45] F. Riesz, Sur les opérations functionnelles linéaires, Gauthier-Vllars, 1909.
[46] A. Rudi, L. Carratino, and L. Rosasco, FALKON: An optimal large scale kernel method, Adv Neural Inf

Process Syst, 30, 2017.
[47] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, Trust region policy optimization. In: Inter-

national Conference on Machine Learning, PMLR, 1889–1897, 2015.
[48] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, High-dimensional continuous control using

generalized advantage estimation, arXiv:1506.02438, 2015.
[49] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy optimization algo-

rithms, arXiv:1707.06347, 2017.
[50] D. Silver et al., Mastering the game of Go with deep neural networks and tree search, Nature, 529(7587):

484–489, 2016.
[51] I. Steinwart, D. R. Hush, and C. Scovel, Optimal rates for regularized least squares regression. In:

Conference on Learning Theory, 79–93, 2009.
[52] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT press, 2018.
[53] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, Policy gradient methods for reinforcement learning

with function approximation, Adv Neural Inf Process Syst, 12, 1999.
[54] B. Wang, Y. Yan, and J. Fan, Sample-efficient reinforcement learning for linearly-parameterized mdps

with a generative model, Adv Neural Inf Process Syst, 34:23009–23022, 2021.
[55] L. Wang, Q. Cai, Z. Yang, and Z. Wang, Neural policy gradient methods: Global optimality and rates of

convergence, arXiv:1909.01150, 2019.
[56] Y. Wang, R. Wang, S. S. Du, and A. Krishnamurthy, Optimism in reinforcement learning with generalized

linear function approximation. In: International Conference on Learning Representations, 2021.
[57] L. Yang and M. Wang, Sample-optimal parametric Q-learning using linearly additive features. In:

International Conference on Machine Learning, PMLR, 6995–7004, 2019.
[58] Z. Yang, C. Jin, Z. Wang, M. Wang, and M. Jordan, Provably efficient reinforcement learning with kernel

and neural function approximations, Adv Neural Inf Process Syst, 33, 2020.
[59] Z. Yang, C. Jin, Z. Wang, M. Wang, and M. I. Jordan, On function approximation in reinforcement

learning: Optimism in the face of large state spaces, arXiv:2011.04622, 2020.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

J. Mach. Learn., 2(3):161-193 193

[60] A. Zanette, A. Lazaric, M. Kochenderfer, and E. Brunskill, Learning near optimal policies with low
inherent Bellman error. In: International Conference on Machine Learning, PMLR, 10978–10989, 2020.

[61] D. Zhou, J. He, and Q. Gu, Provably efficient reinforcement learning for discounted MDPs with feature
mapping. In: International Conference on Machine Learning, PMLR, 12793–12802, 2021.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230105 | Generated on 2024-12-19 03:49:12

	Introduction
	Preliminary
	Markov decision processes
	Total reward, value function and Bellman equation
	Simulator models

	RL algorithms with function approximation
	Value-based method
	Policy-based method

	General framework of theoretical analysis on RL with function approximation
	Approximation error
	Estimation error
	Optimization error

	Linear setting
	Approximation error
	Estimation and optimization error

	Nonlinear setting
	RKHS, NTK and Barron space
	Reinforcement learning with nonlinear function approximation

	Discussion and conclusion

