
Journal of Machine Learning ISSN: 2790-2048(e), 2790-203X(p)

Why Self-Attention is Natural for Sequence-to-Sequence

Problems? A Perspective from Symmetries

Chao Ma * 1 and Lexing Ying † 1

1Department of Mathematics Stanford University, Stanford, CA 94305, USA

Abstract. In this paper, we show that structures similar to self-attention are natural for learning many sequ-
ence-to-sequence problems from the perspective of symmetry. Inspired by language processing applications,
we study the orthogonal equivariance of seq2seq functions with knowledge, which are functions taking two
inputs – an input sequence and a knowledge – and outputting another sequence. The knowledge consists
of a set of vectors in the same embedding space as the input sequence, containing the information of the
language used to process the input sequence. We show that orthogonal equivariance in the embedding space
is natural for seq2seq functions with knowledge, and under such equivariance, the function must take a form
close to self-attention. This shows that network structures similar to self-attention are the right structures
for representing the target function of many seq2seq problems. The representation can be further refined if
a finite information principle is considered, or a permutation equivariance holds for the elements of the input
sequence.

Keywords:
Self attention,
Symmetry,
Orthogonal equivariance,
Permutation equivariance.

Article Info.:
Volume: 2
Number: 3
Pages: 194 - 210
Date: September /2023
doi.org/10.4208/jml.221206

Article History:
Received: 06/12/2022
Accepted: 28/08/2023

Communicated by:
Zhi-Qin Xu

1 Introduction

Neural network models using self-attention, such as Transformers [47], have become the
new benchmark in the fields such as natural language processing and protein folding.
Though, the design of self-attention is largely heuristic, and a theoretical understanding
of its success is still lacking. In this paper, we provide a perspective for this problem from
the symmetries of sequence-to-sequence (seq2seq) learning problems. By identifying and
studying appropriate symmetries for seq2seq problems of practical interest, we demon-
strate that structures like self-attention are natural for representing these problems.

Symmetries in learning problems can inspire the invention of simple and efficient neu-
ral network structures. This is because symmetries reduce the complexity of the prob-
lems, and a network with matching symmetries can learn the problems more efficiently.
For instance, convolutional neural networks (CNNs) have seen great success in vision
problems, with the translation invariance/equivariance of the problems being one of the
main reasons. This is not only observed in practice but also justified theoretically [21].
Many other symmetries have been studied and exploited in the design of neural network

*Corresponding author. chaoma@stanford.edu
†lexing@stanford.edu

https://www.global-sci.com/jml Global Science Press

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 195

models. Examples include permutation equivariance [57] and rotational invariance [8,17],
with various applications in learning physical problems. See Section 2.1 for more related
works.

In this work, we start by studying the symmetry of seq2seq functions in the embedding
space, the space in which each element of the input and output sequences is represented.
For a language processing problem, for example, words or tokens are usually vectorized
by a one-hot embedding using a vocabulary. In this process, the order of words in the
vocabulary should not influence the meaning of input and output sentences. Thus, if
a permutation is applied on the dimensions of the embedding space, the input and output
sequences should experience the same permutation, without other changes. This implies
a permutation equivariance in the embedding space. In our analysis, we consider equiv-
ariance under the orthogonal group, which is slightly larger than the permutation group.
We show that if a function f is orthogonal equivariant in the embedding space, then its
output can be expressed as linear combinations of the elements of the input sequence,
with the coefficients only depending on the inner products of these elements. Concretely,

let X ∈ R
d×n denote an input sequence with length n in the embedding space R

d. If

f (QX)=Q f (X) holds for any orthogonal Q∈R
d×d, then there exists a function g such that

f (X) = Xg(XT X).

However, the symmetry on the embedding space is actually more complicated than a sim-
ple orthogonal equivariance. In Section 3.2, we show that the target function for a sim-
ple seq2seq problem is not orthogonal equivariant, because the target function works in
a fixed embedding. To accurately catch the symmetry in the embedding space, we pro-
pose to study seq2seq functions with knowledge, which are functions with two inputs,

f (X, Z), where X ∈ R
d×n is the input sequence and Z ∈ R

d×k is another input represent-
ing our knowledge of the language. The knowledge lies in the same embedding space as
X and is used to extract information from X. With this additional input, the symmetry
in the embedding space can be formulated as an orthogonal equivariance of f (X, Z), i.e.
f (QX, QZ) = Q f (X, Z) for any inputs and orthogonal matrix Q. Intuitively understood,
in a language application, as long as the knowledge is always in the same embedding as
the input sequence, the meaning of the output sequence will not change with the embed-
ding. Based on the earlier theoretical result for simple orthogonal equivariant functions, if
a seq2seq function with knowledge is orthogonal equivariant, then it must have the form

f (X, Z) = Xg1(X
TX, ZTX, ZTZ) + Zg2(X

TX, ZTX, ZTZ).

If Z is understood as a parameter matrix to be learned, the following subset of this repre-
sentation:

f (X, Z) = Xg(XTZ)

is close to a self-attention used in practice, with Z being the concatenation of query and
key parameters. This reveals one possible reason behind the success of self-attention-
based models on language problems.

Based on the results from orthogonal equivariance, we further study the permutation
equivariance on the elements of the input sequence. Under this symmetry, we show that

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 196

seq2seq functions with knowledge have a further reduced form which only involves four
different nonlinear functions. Finally, discussions are made on the possible forms of g
(or g1 and g2) in the formulations mentioned above. Based on the assumption that these
functions are described by a finite amount of information (although their output sizes
need to change with respect to the sequence length n), we reason that a quadratic form
with nonlinearity used in usual self-attentions is one of the simplest choices of g. We
also discuss practical considerations that add to the complexity of the models used in
application compared with theoretical forms.

2 Background and related work

2.1 Neural networks and symmetries

Implementing symmetries in neural networks can help the models learn certain problems
more efficiently. A well-known example is the success of convolutional neural networks
(CNNs) on image problems due to their (approximate) translation invariance [19]. Many
types of symmetries have been explored in the design of neural networks, such as permu-
tation equivariance and invariance [15, 36, 37, 39, 57], rotational equivariance and invari-
ance [13, 17, 45, 46], and more [23, 40, 42, 52]. Some works deal with multiple symmetries.
In [49], the forms of functions with various symmetries are studied. These networks see
many applications in physical problems, where symmetries are intrinsic in the problems
to learn. Examples include fluid dynamics [20, 24, 29, 51], molecular dynamics [1, 43, 58],
quantum mechanics [25,26,48], etc. Theoretical studies have also been conducted to show
the benefit of preserving symmetry during learning [3, 12, 21, 30].

2.2 Self-attention

Self-attention [22,32,33,44,47] is a type of attention mechanism [2,28] that attends different
elements in a same input sequence. It is the building block of a series of large language
models (e.g. [6, 10, 38]), and is under extensive research. See [5, 31] for reviews.

As preparation for later studies, we briefly summarize the structure of (multihead) self-
attention. A self-attention is a seq2seq operator which takes a sequence of vectors as the

input, and another sequence of vectors (of the same size) as the output. Let X ∈ R
d×n

be the input sequence with length n. A self-attention computes the output using three

parameter matrices: the query parameters WQ ∈ R
d1×d, the key parameters WK ∈ R

d1×d,

and the value parameters WV ∈ R
d×d. Given the input X, a query and a key is computed

for every column of X by multiplying with WQ and WK , i.e. we compute Q(X) = WQX ∈
R

d1×n and K(X) = WKX ∈ R
d1×n. Then, an attention matrix is obtained by computing

the inner product of all pairs of queries and keys

A(X) = Q(X)TK(X) = XTWT
QWKX ∈ R

n×n.

Next, a weight matrix is computed by applying softmax over rows of A, and the output
of the attention is obtained by a linear combination of the values, WV X, using rows in the

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 197

weight matrix as coefficients. In practice, A(X) is usually scaled by a factor of 1/
√

d1, and
a residual connection is added, thus we have

Attn(X) = X + WV XSr

(

1√
d1

XTWT
QWKX

)T

, (2.1)

where Sr(·) computes the softmax of an input matrix over rows.

Remark 2.1. In this paper, we use X ∈ R
d×n to denote sequences with length n in the space

R
d. Each column of X is an element of the sequence. In many works, the same sequence

is represented by an n × d matrix. The two representations are intrinsically equivalent.

The self-attention mechanism described above consists of one head, in the sense that
we have one query, key, and value for each element of X. Similar to the way that we
add more neurons to a layer of a fully connected neural network, we can add more heads
to a self-attention, which gives a multihead attention. For a multihead attention with m

heads, we have m different query, key, and value matrices, denoted by W
(i)
Q , W

(i)
K and W

(i)
V .

W
(i)
Q and W

(i)
K are still d1 × d matrices, while W

(i)
V are d2 × d matrices. Besides, in order to

still use the residual connection, an output parameter matrix W
(i)
out ∈ R

d×d2 is added for

each head to transform the value vectors in R
d2 into vectors in R

d. With these parameters,
each head is similar to a single-head self-attention

headi(X) = W
(i)
V XSr

(

1√
d1

XT
(

W
(i)
Q

)T
W

(i)
K X

)T

,

and the output of the multihead attention is

Attnm(X) = X +
m

∑
i=1

W
(i)
outheadi(X)

= X +
n

∑
i=1

W
(i)
outW

(i)
V XSr

(

1√
d1

XT
(

W
(i)
Q

)T
W

(i)
K X

)T

.

Remark 2.2. In a practical model like a Transformer, a fully-connected layer is sometimes
added after a multihead attention. The fully-connected layer is applied to each element of
the output sequence.

Self-attention-based models such as transformers have also been studied theoretically
from different aspects. Many works focused on their approximation capability [16, 18, 27,
56]. Studies had also been done on the Turing completeness [34, 53], in-context learning
[9, 55], and inductive bias [11] of the models.

3 Orthogonal equivariance in the embedding space

In this section, we focus on the orthogonal equivariance in the embedding space. We
show that functions with such equivariance enjoy a representation that takes a similar but

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 198

more general form as self-attention. We start from a theoretical characterization for simple
seq2seq functions with orthogonal equivariance (Proposition 3.1). Then, we introduce and
study a class of functions called seq2seq function with knowledge, whose form is inspired
by typical seq2seq learning problems.

3.1 Simple orthogonal equivariant functions

We first consider orthogonal equivariant functions given by the following definition.

Definition 3.1. Let X =
⋃∞

n=1 R
d×n be the space of all sequences in R

d and f : X → X
a sequence-to-sequence function. The function f is called orthogonal equivariant in the embedding

space if for any X ∈ X and orthogonal matrix Q ∈ R
d×d, there is f (QX) = Q f (X).

For orthogonal equivariant functions, the following proposition shows that any col-
umn of the output must be a linear combination of the columns of X, with the coefficients
depending only on the inner products between X’s columns. A similar result has appeared
in [49] and played an important role for physics applications. For the completeness of the
work, we give the proof of the proposition in Appendix A.

Proposition 3.1. Let f : X → X be orthogonal equivariant in the embedding space given by
Definition 3.1. Then, there exists a function g taking XTX as input and producing a matrix with
appropriate shape as output such that for all X ∈ X we have

f (X) = Xg(XT X).

Proposition 3.1 shows that orthogonal equivariant seq2seq functions always represent
a linear combination of the elements of their input sequence X, with the coefficients being
orthogonal invariant.

3.2 Orthogonal equivariance with knowledge

Proposition 3.1 treats seq2seq functions that are strictly orthogonal equivariant in the em-
bedding space. For many practical language problems or other seq2seq learning problems,
the embedding indeed has some flexibility over orthogonal transformations – the infor-
mation is encoded only in the relative positions between vectors in the embedding space,
and an orthogonal transformation of those vectors does not change the meaning of the
sequence, hence the answer of the transformed input sequence should be the transformed
original answer.

However, this intuitive symmetry does not mean that the target function is orthogo-
nal equivariant. As an example, consider a seq2seq function f that takes an arithmetic
expression as the input and outputs the result of the expression, e.g f (“2 + 1”) = “3”,
f (“2 − 1”) = “1”. The tokens used in the input and output sequences include single-digit
numbers 0-9 and arithmetic operators. These tokens can be cast into vectors by a one-
hot embedding. To be simple, suppose we only use operators “+” and “−”. Then, the
embedding space has 12 dimensions. One possible embedding is

“ + ” → e1, “ − ” → e2, “0” → e3, “1” → e4, · · · , “9” → e12,

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 199

where ei is the i-th unit vector in the standard orthonormal basis of R
12. Under this em-

bedding, f (“2 + 1”) = “3” can be written as

f ([e5, e1, e4]) = [e6].

Now, let Q12 ∈ R
12×12 be a linear transformation that swaps the first and second entries

of any vector in R
12. Then, Q12 is orthogonal. If f is orthogonal equivariant, we will have

f ([e5, e2, e4]) = f (Q[e5, e1, e4]) = [Qe6] = [e6].

This means f (“2 − 1”) = “3”, which is obviously not what we expect.
To summarize, the target function is not orthogonal equivariant because it works in

a fixed embedding and cannot deal with sequences from different embeddings. The intu-
itive symmetry we discussed earlier can be understood as symmetry in an equivalent class
of target functions. Let f be a seq2seq function in a certain embedding if an orthogonal
transformation Q is applied to this embedding, then there exists another function fQ that
satisfies

fQ(QX) = Q f (X).

fQ does the same thing as f in a different embedding. Collecting fQ for all orthogonal
transformations Q, the set { fQ} is an equivalence class of f in all embeddings (obtained
by orthogonal transformations).

The discussion above points out that the target function is aware of the embedding
it works in. Intuitively, this is because the function contains some knowledge used to
process the input sequence, and the knowledge depends on the embedding. Motivated by
this point of view, we propose to study functions that take the knowledge as an explicit
input. Like the input sequence, the knowledge also consists of vectors in the embedding
space, showing its embedding dependence. The knowledge is used to extract information

from the input sequence. Concretely, we consider functions f : X × R
d×k → X taking

two inputs, X ∈ X and Z ∈ R
d×k, with X being the original input sequence, and Z being

the knowledge. With this additional knowledge input, the function f can be orthogonal
equivariant – changing the embedding transforms X and Z simultaneously, and the true
meaning of what f does is not changed. In other words, the equivalent class { fQ} is
parameterized by the knowledge input such that fQ(·) = f (·, QZ).

From now on, we study orthogonal equivariant functions with knowledge, whose def-
inition is given below.

Definition 3.2. Let f : X × R
d×k → X be a seq2seq function with knowledge. For any Z ∈

R
d×k, f is called orthogonal equivariant with knowledge Z if for any X ∈ X and orthogonal

matrix Q ∈ R
d×d, there is f (QX, QZ) = Q f (X, Z).

As a corollary of Proposition 3.1, we have the following proposition characterizing the
formulation of functions satisfying Definition 3.2.

Proposition 3.2. Let Z ∈ R
d×k, and f : X × R

d×k → X be a function that is orthogonal
equivariant with knowledge Z. Then, there exist two functions g1 and g2 independent of Z, taking

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 200

XTX, ZTX, ZTZ as inputs, and producing matrices with appropriate shapes as outputs such that
for all X ∈ X , we have

f (X, Z) = Xg1(X
TX, ZTX, ZTZ) + Zg2(X

TX, ZTX, ZTZ). (3.1)

Proof. Let X̃ = [X, Z] ∈ R
d×(n+k). Viewed as a function of X̃, f satisfies f (QX̃) = Q f (X̃)

for any orthogonal matrix Q ∈ R
d×d. Hence, by Proposition 3.1, there exists a function g

depending on X̃TX̃ such that

f (X̃) = X̃g(X̃TX̃).

By the definition of X̃, g can be written as a function of XTX, ZTX and ZTZ, i.e. g(X̃TX̃) =
g(XTX, ZTX, ZTZ). Noticing that X̃ has n + k columns, g must have n + k rows. Letting

g(XTX, ZTX, ZTZ) =

[

g1(X
TX, ZTX, ZTZ)

g2(X
TX, ZTX, ZTZ)

]

with g1 taking the first n rows and g2 taking the next k rows, we have

f (X, Z) = Xg1(X
TX, ZTX, ZTZ) + Zg2(X

TX, ZTX, ZTZ).

The proof is complete.

In practice, the knowledge Z in a function f (X, Z) studied above can be treated as
a parameter matrix learned during the training process. We note that the self-attention
in Eq. (2.1) takes a similar form. In the self-attention, the product of X with the attention
matrix has the form Xg(ZTX), with Z = [WT

Q, WT
K] and g as the composition of a quadratic

function and a softmax operation

g(Y) = Sr

(

1√
d1

YT

[

0 I
0 0

]

Y

)

.

Indeed, similar to our understanding of Z, the query and key parameters in self-attention
are usually understood as knowledge of the language used to extract information from
the input sequence. These parameters are naturally embedding-dependent. Certainly, the
self-attention used in practice contains more components than merely a Xg(ZTX) form.
For example, as shown in Eq. (2.1), a linear transformation in the embedding space is
applied by WV , and a residual connection is added. In Section 5, we discuss some practical
considerations that may cause additional complications of the model in practice.

Broadly speaking, though, Z is not limited to the network parameters. For instance, for
conditional generation tasks such as translation, question answering, and text-guided im-
age synthesis, Z could include the representations of the source-language text, database-
retrieved paragraphs, or user-input descriptions. This understanding can also help us
build insights on how to use the side knowledge in these tasks efficiently.

Coming back to the formulation (3.1), if Z is understood as a parameter matrix, it is
fixed after training. Then, among the three inputs of g1 and g2, ZTZ is a constant, and
XTX is an identity matrix under one-hot embedding. Hence, ZTX is the most informa-
tive input. Moreover, since Z is a constant matrix, the linear combination of its columns,

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 201

Zg2(X
TX, ZTX, ZTZ) becomes less important than the linear combination of X’s columns,

Xg1(X
TX, ZTX, ZTZ). Extracting the most meaningful parts in the formulation (3.1), we

obtain a simpler form f (X, Z) = Xg1(Z
TX). This coincides with what appears in self-

attention.

3.3 Finite information and the representation of coefficients

In formulation (3.1) or the simplified formulation f (X, Z) = Xg1(Z
TX), the coefficient

functions g1, g2 can be quite arbitrary. They can have a highly complicated dependence
on their inputs. For example, for a function f (X, Z) = Xg(ZTX) whose output has the

same length as the input, when X ∈ R
d×n, we have g(ZTX) ∈ R

n×n. In the most general

case, g can have a different formulation gn : R
k×n → R

n×n for each n. Because n can be
arbitrarily large, the description of g requires an infinite amount of information. However,
if these functions can be described and implemented by machine learning models, they
must contain only a finite amount of information. In other words, the functions cannot
get infinitely complicated when the sizes of their inputs become large. In this section,
based on this finite information principle, we discuss possible forms of the g’s.

For the convenience of the discussion, we focus on the form f (X, Z) = Xg(ZT X)
and assume that the output of f has the same length as its input. Hence, for any input

X ∈ R
d×n, we have g(ZTX) ∈ R

n×n. In this case, we put our discussion on g under the
following more specific statement of the finite information principle.

Assumption 3.1 (Finite Information Principle). g is represented by a parameterized model with
a finite number of parameters not depending on n.

This assumption concerns only one aspect of the broader idea of finite information. But
it is the only aspect that we can quantify easily. A related concept is the description length,
which also captures the amount of information one needs to describe an object [14,50]. For
practical machine learning models, the description length should naturally be finite. The
description length of deep learning models has been studied in previous works [4].

Now, we consider parameterized representations for g. Given Assumption 3.1, one of
the simplest parameterizations is the composition of a nonlinear function and a quadratic

form, such as σ(XT ZAZTX) for some matrix A ∈ R
k×k. To see this, denote Y = ZTX ∈

R
k×n and consider g represented by a composition of an elementwise nonlinear function

and a sum of matrix products involving Y, i.e.

g(Y) = σ

(

N

∑
i=1

W(i,0)
Ki

∏
j=1

ỸW(i,j)

)

, (3.2)

where Ỹ is either Y or YT, and N can be infinity. In the formulation above, W(i,j) are pa-

rameter matrices. By the finite information principle, the dimensions of W(i,j) in Eq. (3.2)
should not depend on n. Then, it is easy to show that we always have Ki ≥ 2 in Eq. (3.2),
because terms with Ki = 0 or 1 cannot have shape n × n without n-dependent parame-
ter matrices. Hence, there are no constant or linear terms in the sum of matrix products,

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 202

and thus the simplest terms are quadratic terms. In its simplest form, without higher order

terms, we have g(Y) = σ(YTWY) for some W ∈ R
k×k, in which case the output always has

the shape n × n for any n. Note that the self-attention matrix used in practice is very close
to this form. If Z is the concatenation of the query and key matrices, i.e. Z = [WT

Q, WT
K],

then by taking

A =

[

0 I
0 0

]

,

we have
XTZAZTX = XTWT

QWKX.

The only difference is that the softmax operation is not elementwise.

A perspective from kernels

Another perspective to create g with a finite amount of information is from the kernels.

Viewing the input Y ∈ R
k×n as n vectors in R

k, g maps the n vectors into an n × n ma-
trix, characterizing the relations between these vectors. This can naturally be achieved

by a kernel function K(·, ·) : R
k × R

k → R. Denote Y = [y1, · · · , yn], then we can let
g(Y) = (K(yi, yj))n×n. When K is an inner product kernel K(x, y) = σ(xTy), which is
widely used in traditional machine learning models such as the support vector machine,
g takes a similar quadratic form (with an elementwise nonlinearity) as in the discussion
above, i.e. g(Y) = σ(YTY). Besides, there are more kernels to choose from. For in-
stance, a radio basis function (RBF) kernel K(x, y) = f (‖x − y‖) can produce a g defined
by gij(Y) = f (‖yi − yj‖). These representations of coefficients may see benefits in some
special applications. Actually, self-attention using kernels has already been studied in
previous works such as [7, 41].

4 Permutation equivariance for sequence elements

In this section, we consider another symmetry – the permutation equivariance for the ele-
ments of the sequence. With this permutation equivariance, the form (3.1) can be further
restricted. In a seq2seq problem, such as a language problem, though, the order of the
input is usually important. Hence, permutation equivariance on the order of the sequence
should not be expected. However, in practice, some parts of the problems or models may
have permutation equivariance. For example, when self-attention-based models are used
to learn seq2seq problems, a position encoding is usually added to the input sequence
before being fed into the model [47].1 In this case, the order information is included
in the input sequence and the function implemented by the model can be permutation
equivariant.

For any sequence X ∈ R
d×n, we call n the length of X, denoted by l(X). We consider

the following definition of permutation equivariance.

1When X ∈ R
d×n, one example of position encoding is adding a matrix P ∈ R

d×n to X that contains position information.

The elements of P are P2i−1,j = sin(j/n2i/d) and P2i,j = sin(j/n2i/d)

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 203

Definition 4.1. Let f : X × R
d×k → X be a seq2seq function with knowledge. Assume

l(f (X, Z)) = l(X) always holds. For any Z ∈ R
d×k, f is called elementwise permutation equiv-

ariant with knowledge Z if for any permutation matrix P ∈ R
l(X)×l(X), we have f (XP, Z) =

f (X, Z)P.

Based on the discussions in previous sections, we focus on functions with the form
f (X, Z) = Xg(ZTX). Given the additional permutation equivariance in Definition 4.1, we
have the following proposition that further narrows down the form of the functions. The
proof of the proposition is given in Appendix B.

Proposition 4.1. Let f be a function with form f (X, Z) = Xg(ZTX). Assume f is element-
wise permutation equivariant with knowledge Z. Then, for any specific n, there exist functions

ρ1, ρ2, ψ1, ψ2 such that for any X ∈ R
d×n we have

g̃ii(Z
TX) = ρ1

(

ZTxi,
n

∑
k=1, k 6=i

ψ1

(

ZTxk, ZTxi

)

)

,

g̃ij(Z
TX) = ρ2

(

ZTxi, ZTxj,
n

∑
k=1, k 6=i,j

ψ2

(

ZTxk, ZTxi, ZTxj

)

)

for i, j = 1, 2, . . . , n and j 6= i, and f (X, Z) = Xg̃(ZTX). Here, g̃ = (g̃ij)n×n.

Remark 4.1. For a self-attention layer used in practice, Z = [WQ , WK], in which case we
have

gij(Z
TX) =

exT
i WT

QWKxj

∑
n
k=1 exT

i WT
QWKxk

.

Using the form in Proposition 4.1, this g can be obtained by taking

ψ2(Z
Tx, ZT

y, ZT
z) = eyTWT

QWKx,

ρ2(Z
Tx, ZT

y, ψ) =
exTWT

QWKy

exTWT
QWKy + ψ

,

and taking

ψ1(Z
Tx, ZT

y) = ψ2(Z
Tx, ZT

y, ZT
y),

ρ1(Z
Tx, ψ) = ρ2(Z

Tx, ZTx, ψ).

5 Practical considerations

In previous sections, we revealed the natural forms of seq2seq functions that satisfy spe-
cific symmetries that are reasonable for many practical problems. Therefore, the structures
identified can be considered when designing neural network models to learn these prob-
lems as approaches to improve learning efficiency. The self-attention, although designed

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 204

without utilizing these connections between symmetries and structures, has structures
that coincide with the forms we identified. This may partially explain the success of self-
attention-based models.

Usually, the models used in practice have to be more complicated than that given by
the theory to address practical issues not captured in the simplified setting of the theory.
For CNNs, for example, convolution layers are stacked to extract features hierarchically,
and normalization layers are added to help the training. In the following, we discuss
several considerations when the theories built in the previous sections are used in practical
applications.

The evolution of embeddings

In our analysis for orthogonal equivariant functions, we assume the input and output are
in the same embedding. In practice, this might not be true. For example, for a translation
problem, the input and output sequences are in two languages, so they may not share one
embedding. In this case, we need to implement a mechanism to change the embedding of
the output sequence. The simplest way is to apply an elementwise linear transformation
to the output, i.e., for a function f with form f (X, Z) = Xg(ZTX), we can build a new
function f̃ by multiplying a matrix on the left of the output of f

f̃ (X, Z, W) = WXg(ZT X). (5.1)

A more flexible way is to apply a general elementwise nonlinear transformation to the out-
put, which can be achieved by a two-layer neural network, as used in many self-attention-
based models

f̃ (X, Z, U, V) = Vσ
(

UXg(ZTX)
)

, (5.2)

where U, V are parameter matrices, and σ is an elementwise nonlinear activation function.

Higher capacity

In applying neural networks, a higher model capacity is often desired. Giving the model
more flexibility compared to the theoretical formulation can help improve the model’s
performance, as long as the flexibility does not impair the training efficiency. Based on the
structures in Eqs. (5.1) or (5.2), more flexibility can be added to the model by considering
a multihead version of such functions. For example, a multihead version for (5.1) with m
heads can be

f̃m(X, Z, W) =
m

∑
i=1

WiXgi

(

ZT
i X
)

, (5.3)

where Z1, · · · , Zm and W1, · · · , Wm are different matrices, and Z = [Z1, · · · , Zm], W =
[W1, · · · , Wm], and g1, · · · , gm are different functions. This structure is similar to the mul-
tihead self-attention.

Compositions and hierarchical feature extraction

A very successful way to increase the model capacity and the learning performance is to
stack several modules compositionally to form a deep model. A deep model with many

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 205

layers can hierarchically extract the information from its input. This is the intuitive reason
behind the success of deep neural networks. For sequence-to-sequence applications, we
can also stack structures like (5.3) into a deep model. For example, a model with L layers
can be

h(0) = X, h(l) =
m

∑
i=1

W
(l)
i h(l−1)g

(

(

Z
(l)
i

)T
h(l−1)

)

, 1 ≤ l ≤ L, f (X, Z, W) = h(L),

where Z and W include all Z
(l)
i and W

(l)
i parameters, respectively. This structure looks

similar to the successful large language models used in practice. One difference is that
a residual link is added on each layer of those models to help the training. Another differ-
ence is that elementwise fully connected layers are added after some self-attentions, which
can be understood as stacking structures in Eq. (5.2).

6 Summary

In this paper, we study the representations of sequence-to-sequence functions with certain
symmetries and show that such functions have forms similar to self-attention. Hence, self-
attention seems to be the natural structure for learning many seq2seq problems. Moreover,
except for the inner product-based attention mechanism widely used nowadays, our study
reveals more possibilities that may be picked in the design of attention mechanisms, such
as higher-order matrix products or the RBF kernels. These forms arise from the discussion
on the finite information principle. As a limitation, our discussion on the forms of g in
Section 3.3 started from a simple general form (3.2). More general discussions and precise
characterizations of the finite information principle are left as important future work.

Appendix A. Proof of Proposition 3.1

Proof. Consider X = [x1, x2, · · · , xn] ∈ R
d×n ⊂ X . We first show that the columns of f (X)

lie in the span of x1, · · · , xn. Without loss of generality, we assume f (X) has only one

column, i.e. f (X) ∈ R
d. Let V = span(x1, · · · , xn). Then, there exist v ∈ V and u ∈ V⊥

such that f (X) = v + u. Let Qu be the Householder transformation

Qu = I − 2

‖u‖2
uu

T.

Then, Qu is an orthogonal matrix. By its definition, we have Quu = −u, and Quw = w

for any w ⊥ u, which implies Quv = v and Quxi = xi for all i = 1, 2, . . . , n. Since f is
orthogonal equivariant, we have

f (QuX) = Qu f (X) = Qu(v + u) = v − u.

On the other hand, since QuX = X, we must have

f (QuX) = f (X) = v + u.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 206

Therefore, we have u = 0, and f (X) = v ∈ V.
Next, we show that the coefficient of the linear combinations can be taken as orthogonal

invariant functions. By the analysis above, there exists a function g of input X such that

f (X) = Xg(X).

The size of g’s output depends on X and f (X). Because f is orthogonal equivariant, for

any orthogonal matrix Q ∈ R
d×d we have

QXg(QX) = f (QX) = Q f (X) = QXg(X),

which means Xg(QX) = Xg(X). We can now choose g to satisfy g(QX) = g(X) for any
orthogonal Q.

Finally, we invoke the first fundamental theorem of invariant theory for the orthogonal
group [35, 54], which states that g only depends on X via XTX. This completes the proof.

Another way to show that g can depend only on XTX is to show that any X, Y ∈ R
d×n

satisfying XTX = YTY can be transformed to each other by orthogonal transformations.

That is to say, there exists an orthogonal matrix Q ∈ R
d×d that satisfies X = QY. Therefore,

the value of g is fixed as long as its input X has fixed XTX.

Appendix B. Proof of Proposition 4.1

Proof. With an abuse of notations, we use g(X, Z) to denote the output of g given inputs X
and Z, despite that g only depends on ZTX. By Definition 4.1, for any permutation matrix
P ∈ R

n×n, we have

f (XP, Z) = XPg(XP, Z) = Xg(X, Z)P = f (X, Z)P. (B.1)

It is possible to take a g̃(X, Z) = g̃(ZTX) such that Pg̃(XP, Z) = g̃(X, Z)P holds for any X
and P, and

Xg̃(X, Z) = Xg(X, Z) = f (X, Z).

By definition, g̃ satisfies g̃(XP, Z) = PT g̃(X, Z)P, i.e. applying any permutation on X
leads to the same permutation on the rows and column of g̃(X, Z). Recall that the (i, j)-th
entry of g̃ is given by the function g̃ij. Denote the output of g̃ij given input X and Z by

g̃ij(x1, · · · , xn, Z). We then study the forms of g̃ij using g̃(XP, Z) = PT g̃(X, Z)P.

First, consider a permutation P1i that swaps x1 and xi. By Eq. (B.1), we have g̃(XP1i, Z)11

= g̃(X, Z)ii, which means

g̃ii(x1, · · · , xi, · · · , xn, Z) = g̃11(xi, · · · , x1, · · · , xn, Z).

Hence, all g̃ii can be generated by g̃11 with a swap permutation of its inputs. For g̃11,
if we apply a permutation that is the identity on 1, the output of g̃11 does not change,
although the order of inputs is changed. This means g̃11 is permutation invariant with the
inputs x2, · · · , xn. By [57, Theorem 2], viewed as a function of x2, · · · , xn, g̃11 has the form

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 207

ρ(∑n
k=2 ψ(xk)) for some functions ρ and ψ. Considering the inputs x1 and Z, the functions

ρ and ψ above depend on x1 and Z. Therefore, there exist functions ρ1 and ψ1 such that

g̃11(X, Z) = ρ1

(

x1, Z,
n

∑
k=2

ψ1(xk; x1, Z)

)

.

By the relation between g̃11 and g̃ii, we have

g̃ii(X, Z) = ρ1

(

xi, Z, ∑
k 6=i

ψ1(xk; xi, Z)

)

for any i = 1, 2, . . . , n.
Next, we consider g̃ij with i 6= j. Without loss of generality, assume i < j. Let P1i,2j be

a permutation that swaps x1 with xi, and x2 with xj. By the permutation equivariance, we
have

g̃ij(x1, x2, · · · , xi, · · · , xj, · · · , xn, Z) = g̃12(xi, xj, · · · , x1, · · · , x2, · · · , xn, Z),

which means any g̃ij with i 6= j can be generated by g̃12. Focusing on g̃12, similar to
the arguments for g̃11, it is easy to show that g̃12 is permutation invariant with inputs
x3, · · · , xn. Therefore, there exist functions ρ2 and ψ2, such that

g̃12(X, Z) = ρ2

(

x1, x2, Z,
∞

∑
k=3

ψ2(xk; x1, x2, Z)

)

.

Hence,

g̃ij(X, Z) = ρ2

(

xi, xj, Z, ∑
k 6=i,j

ψ2(xk; xi, xj, Z)

)

.

The proof is complete.

References

[1] B. Anderson, T. S. Hy, and R. Kondor, Cormorant: Covariant molecular neural networks, Adv. Neural Inf.
Process. Syst., 32, 2019.

[2] D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly learning to align and trans-
late, arXiv:1409.0473, 2014.

[3] A. Bietti, L. Venturi, and J. Bruna, On the sample complexity of learning with geometric stability,
arXiv:2106.07148, 2021.

[4] L. Blier and Y. Ollivier, The description length of deep learning models, Adv. Neural Inf. Process. Syst., 31,
2018.

[5] R. Bommasani et al., On the opportunities and risks of foundation models, arXiv:2108.07258, 2021.
[6] T. Brown et al., Language models are few-shot learners, Adv. Neural Inf. Process. Syst., 33:1877–1901, 2020.
[7] Y. Chen, Q. Zeng, H. Ji, and Y. Yang, Skyformer: Remodel self-attention with Gaussian kernel and

Nyström method, arXiv:2111.00035, 2021.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 208

[8] B. Chidester, T. Zhou, M. N. Do, and J. Ma, Rotation equivariant and invariant neural networks for
microscopy image analysis, Bioinformatics, 35(14):i530–i537, 2019.

[9] D. Dai, Y. Sun, L. Dong, Y. Hao, S. Ma, Z. Sui, and F. Wei, Why can GPT learn in-context? Language
models implicitly perform gradient descent as meta-optimizers. In: Findings of the Association for Compu-
tational Linguistics: ACL 2023, ACL, 4005–4019, 2023.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep bidirectional transformers
for language understanding, arXiv:1810.04805, 2018.

[11] B. L. Edelman, S. Goel, S. Kakade, and C. Zhang, Inductive biases and variable creation in self-attention
mechanisms. In: Proceedings of the 39th International Conference on Machine Learning, PMLR, 5793–5831,
2022.

[12] B. Elesedy and S. Zaidi, Provably strict generalisation benefit for equivariant models. In: Proceedings of
the 38th International Conference on Machine Learning, PMLR, 2959–2969, 2021.

[13] F. Fuchs, D. Worrall, V. Fischer, and M. Welling, SE(3)-Transformers: 3D roto-translation equivariant
attention networks, Adv. Neural Inf. Process. Syst., 33:1970–1981, 2020.

[14] P. D. Grünwald, The Minimum Description Length Principle, MIT Press, 2007.
[15] N. Guttenberg, N. Virgo, O. Witkowski, H. Aoki, and R. Kanai, Permutation-equivariant neural net-

works applied to dynamics prediction, arXiv:1612.04530, 2016.
[16] M. Hahn, Theoretical limitations of self-attention in neural sequence models, Trans. Assoc. Comput. Lin-

guist., 8:156–171, 2020.
[17] J. Kim, W. Jung, H. Kim, and J. Lee, CyCNN: A rotation invariant CNN using polar mapping and cylin-

drical convolution layers, arXiv:2007.10588, 2020.
[18] A. Kratsios, B. Zamanlooy, T. Liu, and I. Dokmanić, Universal approximation under constraints is pos-

sible with transformers, arXiv:2110.03303, 2021.
[19] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, Backpropa-

gation applied to handwritten zip code recognition, Neural Comput., 1(4):541–551, 1989.
[20] Y. Li, J. Chang, C. Kong, and Z. Wang, Flow field reconstruction and prediction of the supersonic cas-

cade channel based on a symmetry neural network under complex and variable conditions, AIP Adv.,
10(6):065116, 2020.

[21] Z. Li, Y. Zhang, and S. Arora, Why are convolutional nets more sample-efficient than fully-connected
nets? arXiv:2010.08515, 2020.

[22] Z. Lin, M. Feng, C. N. dos Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio, A structured self-attentive
sentence embedding, arXiv:1703.03130, 2017.

[23] J. Ling, R. Jones, and J. Templeton, Machine learning strategies for systems with invariance properties,
J. Comput. Phys., 318:22–35, 2016.

[24] J. Ling, A. Kurzawski, and J. Templeton, Reynolds averaged turbulence modelling using deep neural
networks with embedded invariance, J. Fluid Mech., 807:155–166, 2016.

[25] D. Luo, G. Carleo, B. K. Clark, and J. Stokes, Gauge equivariant neural networks for quantum lattice
gauge theories, Phys. Rev. Lett., 127(27):276402, 2021.

[26] D. Luo, Z. Chen, K. Hu, Z. Zhao, V. M. Hur, and B. K. Clark, Gauge invariant autoregressive neural
networks for quantum lattice models, arXiv:2101.07243, 2021.

[27] S. Luo, S. Li, S. Zheng, T.-Y. Liu, L. Wang, and D. He, Your transformer may not be as powerful as you
expect, arXiv:2205.13401, 2022.

[28] M.-T. Luong, H. Pham, and C. D. Manning, Effective approaches to attention-based neural machine
translation, arXiv:1508.04025, 2015.

[29] M. Mattheakis, P. Protopapas, D. Sondak, M. Di Giovanni, and E. Kaxiras, Physical symmetries embed-
ded in neural networks, arXiv:1904.08991, 2019.

[30] S. Mei, T. Misiakiewicz, and A. Montanari, Learning with invariances in random features and kernel
models. In: Proceedings of 34th Conference on Learning Theory, PMLR, 3351–3418, 2021.

[31] Z. Niu, G. Zhong, and H. Yu, A review on the attention mechanism of deep learning, Neurocomputing,
452:48–62, 2021.

[32] A. P. Parikh, O. Täckström, D. Das, and J. Uszkoreit, A decomposable attention model for natural lan-
guage inference, arXiv:1606.01933, 2016.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 209

[33] R. Paulus, C. Xiong, and R. Socher, A deep reinforced model for abstractive summarization, arXiv:1705.
04304, 2017.

[34] J. Pérez, J. Marinković, and P. Barceló, On the turing completeness of modern neural network architec-
tures, arXiv:1901.03429, 2019.

[35] C. Procesi, Lie Groups: An Approach through Invariants and Representations, Springer, 2007.
[36] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, Pointnet: Deep learning on point sets for 3D classification

and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE,
652–660, 2017.

[37] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, Pointnet++: Deep hierarchical feature learning on point sets in
a metric space, Adv. Neural Inf. Process. Syst., 30, 2017.

[38] C. Raffel et al., Exploring the limits of transfer learning with a unified text-to-text transformer, J. Mach.
Learn. Res., 21(140):1–67, 2020.

[39] J. Rahme, S. Jelassi, J. Bruna, and S. M. Weinberg, A permutation-equivariant neural network archi-
tecture for auction design. In: Proceedings of the AAAI Conference on Artificial Intelligence, 35, 5664–5672,
2021.

[40] S. Ravanbakhsh, J. Schneider, and B. Poczos, Equivariance through parameter-sharing. In: Proceedings of
the 34th International Conference on Machine Learning, PMLR, 2892–2901, 2017.

[41] D. Rymarczyk, A. Borowa, J. Tabor, and B. Zieliński, Kernel self-attention for weakly-supervised image
classification using deep multiple instance learning. In: Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), 1720–1729, 2021.

[42] V. G. Satorras, E. Hoogeboom, and M. Welling, E(n) Equivariant Graph Neural Networks, In: Proceedings
of the 38th International Conference on Machine Learning, PMLR, 9323–9332, 2021.

[43] K. Schütt, O. Unke, and M. Gastegger, Equivariant message passing for the prediction of tensorial prop-
erties and molecular spectra. In: Proceedings of the 38th International Conference on Machine Learning,
PMLR, 9377–9388, 2021.

[44] P. Shaw, J. Uszkoreit, and A. Vaswani, Self-attention with relative position representations, arXiv:1803.
02155, 2018.

[45] M. Shuaibi, A. Kolluru, A. Das, A. Grover, A. Sriram, Z. Ulissi, and C. L. Zitnick, Rotation invariant
Graph Neural Networks using spin convolutions, arXiv:2106.09575, 2021.

[46] N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, and P. Riley, Tensor field networks: Rotation-
and translation-equivariant neural networks for 3D point clouds, arXiv:1802.08219, 2018.

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
Attention is all you need, Adv. Neural Inf. Process. Syst., 30, 2017.

[48] T. Vieijra, C. Casert, J. Nys, W. De Neve, J. Haegeman, J. Ryckebusch, and F. Verstraete, Restricted
Boltzmann machines for quantum states with non-Abelian or anyonic symmetries, Phys. Rev. Lett.,
124(9):097201, 2020.

[49] S. Villar, D. W. Hogg, K. Storey-Fisher, W. Yao, and B. Blum-Smith, Scalars are universal: Equivariant
machine learning, structured like classical physics, Adv. Neural Inf. Process. Syst., 34:28848–28863, 2021.

[50] E. Voita and I. Titov, Information-theoretic probing with minimum description length, arXiv:2003.12298,
2020.

[51] R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu, Towards physics-informed deep learning for
turbulent flow prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 1457–1466, 2020.

[52] R. Wang, R. Walters, and R. Yu, Incorporating symmetry into deep dynamics models for improved
generalization, arXiv:2002.03061, 2020.

[53] C. Wei, Y. Chen, and T. Ma, Statistically meaningful approximation: A case study on approximating
Turing machines with transformers, Adv. Neural Inf. Process. Syst., 35:12071–12083, 2022.

[54] H. Weyl, The Classical Groups: Their Invariants and Representations, Princeton University Press, 1946.
[55] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma, An explanation of in-context learning as implicit

Bayesian inference, arXiv:2111.02080, 2021.
[56] C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar, Are transformers universal approximators

of sequence-to-sequence functions? arXiv:1912.10077, 2019.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

J. Mach. Learn., 2(3):194-210 210

[57] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, Deep sets, Adv.
Neural Inf. Process. Syst., 30, 2017.

[58] L. Zhang, J. Han, H. Wang, R. Car, and W. E, Deep potential molecular dynamics: A scalable model with
the accuracy of quantum mechanics, Phys. Rev. Lett., 120(14):143001, 2018.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.221206 | Generated on 2024-12-19 03:19:39

	Introduction
	Background and related work
	Neural networks and symmetries
	Self-attention

	Orthogonal equivariance in the embedding space
	Simple orthogonal equivariant functions
	Orthogonal equivariance with knowledge
	Finite information and the representation of coefficients

	Permutation equivariance for sequence elements
	Practical considerations
	Summary
	. Proof of Proposition 3.1
	. Proof of Proposition 4.1

