
Journal of Machine Learning ISSN: 2790-2048(e), 2790-203X(p)

Efficient Anti-Symmetrization of a Neural Network
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Abstract. Explicit antisymmetrization of a neural network is a potential candidate for a universal function
approximator for generic antisymmetric functions, which are ubiquitous in quantum physics. However, this
procedure is a priori factorially costly to implement, making it impractical for large numbers of particles. The
strategy also suffers from a sign problem. Namely, due to near-exact cancellation of positive and negative
contributions, the magnitude of the antisymmetrized function may be significantly smaller than before anti-
symmetrization. We show that the anti-symmetric projection of a two-layer neural network can be evaluated
efficiently, opening the door to using a generic antisymmetric layer as a building block in anti-symmetric
neural network Ansatzes. This approximation is effective when the sign problem is controlled, and we show
that this property depends crucially the choice of activation function under standard Xavier/He initialization
methods. As a consequence, using a smooth activation function requires re-scaling of the neural network
weights compared to standard initializations.
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1 Introduction

Simulation of quantum chemistry from first principles depends on the accurate modeling
of fermionic system comprised of the electrons. The Pauli exclusion principle dictates that
fermionic wavefunctions must be antisymmetric with respect to particle exchange. This
antisymmetry poses challenges; for instance, as the number of fermions increases, the ef-
fective parameterization of such wavefunctions becomes exceedingly complex for many
systems. The antisymmetry condition also results in near-exact cancellation between pos-
itive and negative contributions when computing observables. This leads to the so-called
fermionic sign problem (FSP), which was originally discovered in quantum Monte Carlo
(QMC) simulations [2, 6, 12].

Over the last decade, the scientific community has witnessed a surge in the develop-
ment of methods employing neural networks (NNs) as universal function approximators.
This surge is due to advancements in software tools, hardware capabilities, and algorith-
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mic improvements. These developments have had a significant impact on the modeling
of fermionic systems [3–5, 8, 9, 13].

However, constructing a universal NN representation for antisymmetric functions that
does not suffer from the curse of dimensionality is still an open question. In the absence
of symmetry constraints, even a simple structure such as a two-layer NN can act as a uni-
versal function approximator. In theory, one could explicitly antisymmetrize such a two-
layer NN to parameterize universal antisymmetric functions. Such an explicitly antisym-
metrized NN structure has been recently studied in QMC calculations, which can yield
effectively the exact ground state energy for small atoms and molecules [5]. However, the
computational cost of this antisymmetrization procedure appears a priori to grow factori-
ally with the system size.

In this paper, we give a procedure to efficiently evaluate the explicit anti-symmetriza-
tion of a two-layer neural network using a quadrature procedure. This is surprising due
to the factorially many terms in the definition of the anti-symmetrization. For this state-
ment to be meaningful we require that the sign problem is controlled, meaning that the
anti-symmetrization does not make the original function vanish due to cancellations. We
demonstrate that with the standard Xavier/He initialization, the sign problem is con-
trolled when the activation function in the neural network is rough. Examples of a rough
(respectively smooth) activation function in the ReLU (respectively sigmoid). Alterna-
tively, this statement implies that to avoid the sign problem with the sigmoid activation,
the weights in the first layer need to be asymptotically larger than the standard Xavier/He
initializations.

Among all activation functions, the exponential activation function (real or complex)
plays a special role in our analysis. This is because antisymmetrizing a two-layer NN
with an exponential activation function gives rise to a determinant (called a Slater deter-
minant), which can be evaluated in polynomial time. By exploring the Fourier represen-
tation of a (rough) activation function, we can approximately express the explicitly anti-
symmetrized two-layer NN as a linear combination of polynomially (with respect to the
system size and inverse precision) many Slater determinants. This overcomes the factorial
scaling barrier, and gives rise to a polynomial-time algorithm for approximate evaluation
of antisymmetrized two-layer neural networks (Theorem 3.3).

1.1 Related work

The representation of anti-symmetric functions is extensively studied in physics, where
a widely used class of Ansatzes for anti-symmetric functions takes the form of a sum of
Slater determinants. Slater determinants can span a dense subset of the anti-symmetric
space but the representation is very inefficient. Indeed, even in the case of a finite single-

particle state space |Ω| = O(n) we would require (|Ω|
n ) Slater determinants to span the

anti-symmetric space. [17] finds certain anti-symmetric functions that cannot be efficiently
approximated using a simple sum of Slater determinants, but can be effectively expressed
using a more complex Ansatz called the Slater-Jastrow form.

In the machine learning literature there is a rich body of works related to permutation-
invariant data, i.e. when the input data is a set [11, 14–16]. But the literature on anti-
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symmetrized neural networks is sparse. [1] gave approximation bounds for the class of
anti-symmetric functions in the Barron space, which can be viewed as the set of functions
that can be expressed as infinite two-layer neural networks.

2 Problem setting

The wave function ψ(x1, . . . , xn) of a system of n indistinguishable particles in a d-dimen-
sional space, d = 1, 2, 3, satisfies permutation symmetry of |ψ| under interchange of the n

inputs xi ∈ Rd. Fermions are indistinguishable particles which satisfy the Pauli exclusion
principle and correspond to an antisymmetric wave function ψ. For a permutation π ∈ Sn

with sign (−1)π , we have π(ψ) = (−1)πψ, where we have defined π(ψ) : Rnd 7→ C by

π(ψ)(x) := ψ
(

xπ(1), . . . , xπ(n)

)
for x ∈ R

nd.

For any f : Rnd → C we can define its explicit antisymmetrization

A f =
1√
n!

∑
π∈Sn

(−1)ππ( f ). (2.1)

As will be shown later, the prefactor 1/
√

n! is the natural scaling in the antisymmetrization
process.

A function defined on R
d is called a single-particle function. Let ρ be a fast-decaying

probability density on Rd and let ρn = ρ⊗n be a product of single-particle densities. For
simplicity of analytic computation, we may take ρ to be the density of the standard Gaus-
sian N (0, Id) (called a Gaussian envelope). We represent an n-particle fermionic wave
function as

ψ =
√

ρn ⊙A f = A(
√

ρn ⊙ f ), (2.2)

where ⊙ denotes multiplication of function values. The wave function should be normal-

ized as ‖ψ‖2 = 1, where ‖ · ‖ is the L2-norm on Rnd. Eq. (2.2) implies ‖ψ‖ = ‖A f‖ρ where
‖ · ‖ρ is the norm induced by the inner product

〈 f | g〉ρ =
∫

f̄ (x)g(x)dρn(x).

If f= f1 ⊗ · · · ⊗ fn is a product of single-particle functions, then so is φ = φ1 ⊗ · · · ⊗ φn,
where φi =

√
ρ ⊙ fi. In this case ψ(x) = (Aφ)(x) is a determinant (called the Slater

determinant) denoted by φ1 ∧ · · · ∧ φn and defined by

(φ1 ∧ · · · ∧ φn)(x1, . . . , xn) =
1√
n!

det
[(

φi(xj)
)

ij

]
.

The normalization in Eq. (2.1) is such that if φi are orthonormal functions on L2(Rd) then
ψ is normalized by Pythagoras’ theorem, ‖ψ‖ = ‖A f‖ρ = 1.

By letting f range over a universal class of functions on Rnd we obtain a universal class
of antisymmetric functions ψ =

√
ρn ⊙A f which are not in general normalized. However,

this approach has two important drawbacks a priori:
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1. The procedure of normalizing ψ becomes numerically unstable if cancellations in
(2.1) cause the magnitudes of A f to be too small compared to f . This can be viewed
as a manifestation of the fermionic sign problem in this setting.

2. The sum (2.1) has n! terms, making it in general intractable to evaluate the sum for
all but small values of n.

We consider the case when f is given by a two-layer NN

fW,a,b(x) =
m

∑
k=1

akτ
(
w(k) · x + bk

)
, (2.3)

where τ : R → R is some activation function, w(k) ∈ Rnd, and bk, ak ∈ R for each
k = 1, . . . , m.

To illustrate the sign problem, Fig. 2.1 shows the magnitude ‖A f‖2
ρ for four activa-

tion functions exp, tanh, ReLU (τReLU(y) = max{0, y}), and the Heaviside step function
(τHS(y) = 1y>0). As the system size n increases, the norm decreases with respect to n for
all activation functions. However, the decay rate depends on the smoothness of the acti-
vation function. The deterioration of the sign problem is much more severe for smooth
activation functions (exp, tanh) than for rough activation functions (ReLU, Heaviside).
We aim to quantify this effect and investigate more precisely how the magnitude of Aτw

depends on τ.

Figure 2.1: Log-plot of E[‖A f ‖2
ρ] as a function of n for different activation functions τ: exp (magenta), tanh

(red), ReLU (blue), and Heaviside step function (green). The weights are sampled from the Xavier initialization
(Definition 3.4) with d = 3, m = nd. Shaded areas represent 90% confidence regions. Values for n ≤ 12 are
computed by direct antisymmetrization, and dotted lines on the right are computed from (5.6).

3 Main results

We state our results in terms of the Fourier transform τ̂ of the activation function. A typical
activation function does not have finite integral over R, so its Fourier transform is not
defined as a convergent integral but rather in the sense of tempered distributions [10].
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We will not need the precise definition of τ̂ but only that it satisfies the Fourier inversion
formula in the sense that for 0 < ǫ < 1,

τ(y) =
1√
2π

∫

|θ|>ǫ
τ̂(θ)eiθydθ + p(y) + Cǫ +Oǫ→0

(
ǫg(y)

)
, (3.1)

where p is a polynomial of bounded degree and g is bounded by a polynomial. In par-
ticular we will be able to take p, Cǫ ≡ 0, g(y) = |y| for τ = tanh and p(y) = y/2,
Cǫ = 1/(πǫ), g(y) = y2 for τ = ReLU. The integral in (3.1) converges for these activation
functions since

∫
|θ|>ǫ |τ̂(θ)|dθ < ∞:

Table 3.1: Fourier transforms of different activation functions.

τ(y) τ̂(θ) Fourier tail decay K

ReLU(y) −1√
2π·θ2

+
√

π/2iδ′(θ) 3 (rough)

tanh(y) −i
√

π/2
sinh(πθ/2)

∞ (smooth)

Consider the decomposition the an activation function into low- and high-frequency
parts as follows.

Definition 3.1. For τ : R → C define its high-pass τHP(t) at threshold t > 0 by

τHP(t)(y) =
1√
2π

∫

|θ|>t
τ̂(θ)eiθydθ. (3.2)

Define its low-pass as the remainder τLP(t) = τ − τHP(t).

Eq. (3.1) says that τLP(ǫ) = p + Cǫ +O(ǫg) as ǫ → 0.

Definition 3.2. For an activation function τ define its frequency tail Tτ̂ : (0, ∞) → [0, ∞) by

Tτ̂(t) =
∫

|θ|≥t
|τ̂(θ)|2dθ. (3.3)

We define the tail decay K ≥ 0 of τ̂ as the largest K such that Tτ̂(t) = O(t−K) as t → ∞. More
precisely,

K = lim sup
t→∞

− logTτ̂(t)

log t
.

Definition 3.3 (Smooth and Rough Activation Functions).

1. A function τ : R → C is smooth if its Fourier transform τ̂ has tail decay ∞, i.e. if Tτ̂(t) =

t−ω(1) decays faster than polynomially as t → ∞. In particular, any activation function with

τ̂(θ) = θ−ω(1) is smooth.

2. τ is rough if there exists k > 1 and non-zero constants z+, z− ∈ C such that τ̂(θ) =
z+Θ(|θ|−k)1 as θ → ∞ and τ̂(θ) = z−Θ(|θ|−k) as θ → −∞. In this case, τ has Fourier
tail decay K = 2k − 1.

1Here Θ(bt) is to be understood as non-negative by definition. More generally we use the standard O(·)-notation: Write
at = O(bt) and bt = Ω(|at|) if |at| ≤ Cbt for all t and some constant C > 0. Write b̃t = Θ(bt) if b̃t = O(bt) and b̃t = Ω(bt).

Write at = Õ(bt) if at = O(bt| log bt|O(1)). Write at = o(bt) and bt = ω(|at|) if |at| = ǫtbt for some ǫt that converges to 0.
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Our results below for rough activation functions hold for a more general definition
of roughness which allows the Fourier transform to have varying phase. We give this
definition of generalized rough activation functions in Appendix C.

We consider the two-layer network (2.3) with randomly initialized weights using two
standard initialization strategies. It is typical to initialize the biases to zero.

Definition 3.4. We say that

fW,a(x) =
m

∑
k=1

akτ
(
w(k) · x

)

is chosen with the Xavier initialization or He initialization if the mnd + m weights W = (w
(k)
ij ),

a = (ai) are chosen independently from ak ∼ N (0, c̃/m) for each k = 1, . . . , m, and w
(k)
ij ∼

N (0, c̃/(nd)) for k = 1, . . . , m, i = 1, . . . , n, and j = 1, . . . , d. Here c̃ = 1 corresponds to the
Xavier initialization and c̃ = 2 to the He initialization.

Theorem 3.1 (Upper bound, sign problem deteriorates super-polynomially for smooth

activation functions). Let fW,a : R
nd → C be given by a two-layer neural network (2.3) with

activation function τ and let ρ = N (0, Ind) be the Gaussian envelope function. If τ is smooth and
fW,a is sampled from the Xavier or He initializations, then with probability 1 − o(1) over W,

Ea|W
[
‖A fW,a‖2

N
]
= n−ω(1).

Given an activation function τ : R → C and weight vector w ∈ Rnd define τw : Rnd→C

by τw(x) = τ(w · x). Let ℓw = τ
LP(t)
w be the low-passed part of the activation function. The

upper bound of ‖A f‖2
N relies on the fact that the norm of the antisymmetrized function

‖Aℓw‖2
N decreases exponentially with respect to n when t = O(

√
n/ log n) (Lemma 6.4).

The high-passed part can be directly controlled by the tail decay of the activation function.

Theorem 3.2 (Lower bound, sign problem deteriorates at most polynomially for rough ac-

tivation functions). Let fW,a : R
nd → C be given by a two-layer neural network (2.3) with acti-

vation function τ and weights sampled from the Xavier or He initialization, and let ρ = N (0, Ind)
be the Gaussian envelope. If τ is rough or generalized rough with tail decay K, then with probability
1 − o(1) over W,

Ea|W
[
‖A fW,a‖2

N
]
= Ω̃

(
n−(1+ 2

d )K
)
,

where Ω̃ denotes a lower bound up to log-factors. In particular the magnitude of the antisym-
metrized NN decays no faster than polynomially in n.

To prove Theorem 3.2 we show that for the high-passed part h = τHP(T) at sufficiently
large threshold, the norm of the antisymmetized function ‖Ahw‖2

N can be approximated

by the norm ‖hw‖2
N before antisymmetrization (Lemma 6.1). The lower bound with poly-

nomial scaling in n can also be viewed as evidence that the prefactor 1/
√

n! in Eq. (2.1) is
the appropriate scaling.

We then show that when f is given by a two-layer NN with a rough activation function,
A f can be computed efficiently to any inverse-polynomial precision relative to√

E[‖A f‖2
N ]:
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Theorem 3.3 (Deterministic polynomial time algorithm for approximate evaluation of ex-

plicitly antisymmetrized two-layer neural network). Let fW,a : Rnd → C be given by a two-
layer neural network as in Theorem 3.2 with a rough or generalized rough activation function, and

let ǫ = n−O(1). There exists a deterministic polynomial-time algorithm (W, a, b, x) 7→ SW,a,b(x)
whose output is exactly antisymmetric in x and such that with probability 1 − o(1) over W,

Ea|W
[
‖SW,a,0 −A fW,a‖2

N
]
≤ ǫ Ea|W

[
‖A fW,a‖2

N
]
.

We consider the examples of activation functions in Table 3.1. tanh is smooth, so
‖A f‖2

N decays super-polynomially with n with the tanh or sigmoid activation function.

The ReLU activation is rough with tail decay 3. By Theorem 3.2, ‖A f‖2
N is of order

Ω̃(n−(3+6/d)) with the ReLU activation function. By Theorem 3.3, there exists an effi-
cient algorithm to compute the output of f with inverse polynomial relative error when
the activation function is chosen to be ReLU.

The approximation algorithm in Theorem 3.3 involves the approximate evaluation of
an integral over frequencies θ.

Remark 3.1. In the setting of the standard Xavier/He initializations, Theorems 3.1-3.3
show that a rough activation function is required to avoid the sign problem. On the other
hand it is still desirable to use smooth activation functions to obtain a smooth wavefunc-
tion. In the context of a smooth activation function, our results show that an initialization
should be used in which the weights in the first layer are larger than those on the typical
Xavier/He initializations. This re-scaling of the first layer need only be by an algebraic2

factor r = nO(1). In this setting the approximation algorithm of Theorem 3.3 is unchanged
except that the infra-red truncation t of the integral is replaced by t/r.

Using the smooth activation function tanh as an example, the modification in Re-
mark 3.1 is equivalent to replacing tanh with y 7→ tanh(ry) where r grows with n.

4 Reduction and generic weights

We now present an outline of the proofs of the main theorems. Additional details follow in
Section 9.1 and Appendix A. We first reduce estimates of the magnitude of A f to estimates
on the magnitude of Aτw.

Lemma 4.1. For fW,a(x) given by the network (2.3) with the He initialization (Definition 3.4),

E
[
‖A fW,a‖2

ρ |W
]
=

c̃

m

m

∑
k=1

‖Aτw(k)‖2
ρ.

In particular,

E
[
‖A fW,a‖2

ρ

]
= c̃ E

[
‖Aτw‖2

ρ

]
, w ∼ N

(
0,

c̃

nd
Ind

)
(4.1)

does not depend on m.
2This is because the re-scaling factor can be chosen as the frequency threshold used to prove Theorem 3.2.
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Proof. Expand

‖A fW,a‖2
ρ =

m

∑
k,l=1

akal〈Aτw(k) | Aτw(l)〉ρ.

The ak ∼ N (0, c̃/m)’s are independent so E[akal ] = δkl c̃/m, and

E
[
‖A fW,a‖2

ρ |W
]
=

c̃

m

m

∑
k,l=1

δklE
[
〈Aτw(k) | Aτw(l)〉ρ

]
=

c̃

m

m

∑
k=1

‖Aτw(k)‖2
ρ. (4.2)

Taking the expectation over W yields

EW,a

[
‖A fW,a‖2

ρ

]
= c̃ E

[
‖Aτv‖2

ρ

]
.

The proof is complete.

The next definition characterizes the weights of the first layer with high probability
under the Xavier/He initializations.

Definition 4.1. Fix a constant C > 1. We say that w ∈ Rnd is typical if c̃/2 ≤ ‖w‖2 ≤ 2c̃ and

‖w‖∞ := max
ij

|wij| ≤ C

√
log(nd)

nd
.

In particular a typical w has ‖w‖ = Θ(1). We view d as a constant, so

‖w‖∞ = O
(√

log n

n

)

for typical w. For lower bounds we need an additional property of w = w(k) sampled from

the Xavier/He initializations, namely that the wi ∈ R
d are sufficiently separated. To see

why this is needed, take the example where wi = wj for some i 6= j which would imply
Aτw ≡ 0. We formalize the separation property using the following quantity:

Definition 4.2. For w ∈ Rnd write

δw =
1

2
min

1≤i<j≤n
‖wi ± wj‖,

where the minimum is over both choices of sign ±.

We then define weights with typical separation:

Definition 4.3. Fix a function δ(n) = o(n−(1/2+2/d)) as n → ∞ (for concreteness we let

δ(n) = n−(1/2+2/d)/
√

log n). We say that v has typical separation if δv ≥ δ(n). We say that

W ∈ Rm×nd is typical if each w(k) is typical and at least half the w(k) have typical separation.
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In Appendix A we show that He/Xavier initialized weights generically have typical
separation.

Lemma 4.2. Let d be constant, let m = O(nC′
) for some constant C′, and let f be sampled as in

Definition 3.4. Then W is typical with probability 1 − o(1) for some constant C in Definition 4.1
depending on C′. For such W,

c̃

2
inf

w∈S′
‖Aτw‖2

ρ ≤ Ea|W
[
‖A f‖2

ρ

]
≤ c̃ sup

w∈S

‖Aτw‖2
ρ, (4.3)

where S is the set of typical w ∈ Rnd and S′ ⊂ S is the set of typical w which have typical
separation.

5 Overlap kernel induced by Fourier decomposition

Consider the case when the activation function is a complex exponential function. Let

expression([x]) denote the function x 7→ expression(x). Then eiw·[x] = ⊗n
i=1eiwi·[x]i is

a product of single-particle functions, so antisymmetrizing it yields a Slater determinant

A
(
eiw·[x]) = A

(
⊗n

i=1 eiwi·[x]i) = ∧n
i=1eiwi·[x]i , (5.1)

where the RHS is defined as det((eiwi·[x]j)ij)/
√

n!. The overlap between two Slater deter-
minants is the determinant of the overlap matrix [7], meaning that

〈
Aeiv·[x] | Aeiw·[x]〉

ρ
=
〈
∧i eivi·[x] | ∧ eiwi·[x]〉

ρ
= det B(v,w), (5.2)

where B(v,w) ∈ Rn×n is given by B
(v,w)
ij = 〈eivi·[x] | eiwj·[x]〉ρ. We can evaluate this as

B
(v,w)
ij = EX∼ρ

[
e−i(vi−wj)·X] = Fρ(vi − wj). (5.3)

Here we have defined the un-normalized Fourier transform F (also denoted by Fd) on Rd

by

Fρ(v) =
∫

Rd
e−iv·xdρ(x).

In particular Fρ(0) = 1, and Fρ = (2π)d/2ρ̂.

By the Fourier inversion formula (3.1) we have the identity of functions on Rnd

τw(x) =
1√
2π

∫

|θ|>ǫ
τ̂(θ)eiθw·xdθ + p(w · x) + Cǫ +O

(
ǫg(w · x)

)
. (5.4)

We use the fact that low-degree polynomials vanish upon antisymmetrization:

Lemma 5.1 ([1, Lemma 7]). If f : Rnd → C is a polynomial of degree deg f ≤ n − 2, then
A f ≡ 0. In particular, Aτw ≡ 0 if τ is an activation function which is a polynomial of degree
deg τ ≤ n − 2.

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230703 | Generated on 2025-04-20 04:29:30



J. Mach. Learn., 2(3):211-240 220

We antisymmetrize (5.4) and apply Lemma 5.1 which yields that for n ≥ deg p + 2,

Aτw = lim
ǫ→0

AτHP(ǫ) = lim
ǫ→0

1√
2π

∫

|θ|>ǫ
τ̂(θ)A

(
eiθw·[x])dθ, (5.5)

where convergence is in the L2(Rnd; ρn)-norm.

Definition 5.1 (Overlap Kernel). Define Dρ : Rnd × Rnd → C by Dρ(v, w) = det B(v,w),

where B(v,w) ∈ Cn×n is given by (5.3). Given a vector of weights w ∈ Rnd define D
(w)
ρ : R2 → C

by D
(w)
ρ (θ, θ̃) = Dρ(θw, θ̃w).

Fig. 5.1 shows the overlap kernel D
(w)
ρ (θ, θ̃) averaged over Gaussian samples of w.

Note that D
(w)
ρ depends on the envelope function. Eq. (5.2) shows that

D
(w)
ρ (θ, θ̃) =

〈
Aeiθw·[x] | Aeiθ̃w·[x]〉

ρ
.

The expansion (5.5) then yields Lemma 5.2:

Lemma 5.2. If ∫∫

R2

∣∣τ̂(θ)τ̂(θ̃)D
(w)
ρ (θ, θ̃)

∣∣dθdθ̃ < ∞,

then

‖Aτw‖2
ρ =

1

2π

∫∫

R2
τ̂(θ)τ̂(θ̃)D

(w)
ρ (θ, θ̃)dθdθ̃. (5.6)

Figure 5.1: Heatmap of EwD
(w)
ρ (θ, θ̃), where w ∼ N (0, 2/(nd)Ind) for d = 3 and n = 2. Positive values are

blue and negative values red.

6 Properties of the overlap kernel

On the diagonal v = w we have 0 ≤ Dρ(w, w) ≤ 1. Indeed, B
(w,w)
ij is the Gram matrix of

vectors Aeiwi·[x] ∈ L2(Rd; ρ), so it satisfies

det
(

B(w,w)) ≤ ∏
i

B
(w,w)
ii =

(
Fdρ(0)

)n
= 1
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by Hadamard’s theorem for positive semidefinite matrices. Dρ(v, w) is a positive semidef-

inite kernel because it is a (infinite) Gram matrix of vectors Aeiw·[x] ∈ L2(Rnd; ρn). In
particular,

|Dρ(v, w)|2 ≤ Dρ(v, v)Dρ(w, w) ≤ 1

for all v, w ∈ Rnd. Specializing these observations to D
(w)
ρ yields 0 ≤ D

(w)
ρ (θ, θ) ≤ 1 on the

diagonal and |D(w)
ρ (θ, θ̃)|2 ≤ 1 everywhere.

To approximate the behavior of D
(w)
ρ at large θ and θ̃ we define a probability distribu-

tion ρw on R.

Definition 6.1. For any w ∈ R
nd, let ρw on R be the distribution of w · X where X ∼ ρn.

We expect Aeiθv·[x] to be roughly orthogonal to Aeiθ̃v·[x] when the frequencies θ and θ̃

are sufficiently different. We therefore expect D
(w)
ρ (θ, θ̃) = 〈Aeiθw·[x] | Aeiθ̃w·[x]〉ρ to vanish

away from the diagonal θ̃ = θ. Moreover, when θ is large we expect the n! terms in (2.1)
to be roughly orthogonal, so by Pythagoras’ theorem and considering the normalization

factor 1/
√

n! we expect

D
(w)
ρ (θ, θ) =

∥∥Aeiθw·[x]∥∥2

ρ
≈
∥∥eiθw·[x]∥∥2

ρ
= 1

for large θ. We formalize this idea by approximating D
(w)
ρ (θ, θ̃) with a convolution ker-

nel Fρv(θ − θ̃) when max{|θ|, |θ̃|} ≥ T for sufficiently large T > 0. We then apply the
convolution theorem to obtain

Lemma 6.1. Let h = τHP(T) be the high-passed activation function at threshold T > 1. Then

‖Ahw‖2
ρ = ‖hw‖2

ρ + ε(T) (6.1)

with the error term

|ε(T)| = O
(

n!δ−2
w

∫ ∞

δwT
ǫρ(t)tdt

)
, ǫρ(θ) = sup

{
|Fρ(y)| : y ∈ R

d, ‖y‖ ≥ θ
}

.

Lemma 6.1 states that at sufficiently large threshold T the magnitude of the antisym-
metrization of the high-passed activation function is approximately the magnitude before
antisymmetrization.

The δw in the error term was defined in Definition 4.2. The fast decay of ǫρ(θ) com-
pensates for the growth of the factor n! in (6.1), making the approximation meaningful at
polynomially large T.

6.1 Proof of Lemma 6.1

Lemma 6.2. Let δw = mini 6=j ‖wi ± wj‖/2 and let ρw be as in Definition 6.1. Then

∣∣D(w)
ρ (θ, θ̃)− Fρw(θ − θ̃)

∣∣ ≤ n! ǫρ(δwθmax), (6.2)
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where
θmax = max{|θ|, |θ̃|}, ǫρ(θ) = sup

{
|Fdρ(y)| : y ∈ R

d, ‖y‖ ≥ θ
}

.

Fρw can be expressed in terms of the nd-dimensional Fourier transform as Fρw(θ) = Fndρn(θw).

Proof. By definition we have

D
(w)
ρ (θ, θ̃) = det

(
Fdρ(θwi − θ̃wj)ij

)
= ∑

π∈Sn

(−1)πFndρn

(
θw − θ̃π(w)

)
.

The π = 1 term equals
Fndρn

(
(θ − θ̃)w

)
= Fρw(θ − θ̃). (6.3)

To verify the identity (6.3) and the claim at the end of the lemma, write

Fndρn(θw) = EX∼ρn

[
e−i(θw)·X] = EX∼ρn

[
e−iθ(w·X)] = Ey∼ρw

[
e−iθy

]
= Fρw(θ).

The difference on the LHS of (6.2) is exactly

ε = ∑
π 6=1

(−1)πFndρn

(
θw − θ̃π(w)

)
.

Apply the triangle inequality and use the fact that ‖ǫρ‖∞ = ‖Fndρn‖∞ ≤ 1 because ρ is
a probability distribution to obtain

|ε| ≤ n! max
π 6=1

∣∣Fndρn

(
θw − θ̃π(w)

)∣∣

≤ n! max
π 6=1

n

∏
i=1

ǫρ

(
‖θwi − θ̃π(w)i‖

)

≤ n! max
π 6=1

min
i

ǫρ

(
‖θwi − θ̃π(w)i‖

)
≤ n! ǫρ

(
|θ|δ̃(w)

)
, (6.4)

where
δ̃(v) = min

θ̃
min
π 6=1

max
i

‖vi − θ̃π(v)i‖. (6.5)

We show that δ̃w ≥ δw in Lemma 6.3. The result follows from symmetry in θ and θ̃.

Lemma 6.3. Let δ̃w := minθ̃∈R
minπ 6=1 maxi ‖wi − θ̃π(w)i‖. Then δ̃w ≥ δw.

Proof. Let θ̃ and σ = π−1 6= 1 be arbitrary. We need to show that ‖wi − θ̃wσ(i)‖ ≥ δw for
some i.

Since σ 6= 1 there exists i such that σ(i) 6= i, therefore ‖wi − swσ(i)‖ ≥ 2δw for s = ±1.

If ‖wi − θ̃wσ(i)‖ ≥ δw then we have found i and we are done. Otherwise, let s = sign θ̃.
Then,

2δw ≤
∥∥wi − swσ(i)

∥∥ ≤
∥∥wi − θ̃wσ(i)

∥∥+
∥∥θ̃wσ(i) − swσ(i)

∥∥

=
∥∥wi − θ̃wσ(i)

∥∥+ |θ̃ − s| ·
∥∥wσ(i)

∥∥ < δw + |θ̃ − s|max
j

‖wj‖. (6.6)

OPEN ACCESS

DOI https://doi.org/10.4208/jml.230703 | Generated on 2025-04-20 04:29:30



J. Mach. Learn., 2(3):211-240 223

Rearranging (6.6) we yields

|θ̃ − s|R > δw, R = max
j

‖w‖j. (6.7)

Pick j such that ‖wj‖ = R. If |θ̃| ≥ 1 then (6.7) says (|θ̃| − 1)R > δw. Let i = π(j) so that

σ(i) = j and ‖wσ(i)‖ = R. Then,

∥∥wi − θ̃wσ(i)

∥∥ ≥
∥∥θ̃wσ(i)

∥∥− ‖wi‖ = |θ̃|R − ‖wi‖ ≥ (|θ̃| − 1)R ≥ δw.

If instead |θ̃| < 1 then (6.7) says (1 − |θ̃|)R > δw. We then use
∥∥wj − θ̃wσ(j)

∥∥ ≥ ‖wj‖ −
∥∥θ̃wσ(j)

∥∥ = R −
∥∥θ̃wσ(j)

∥∥ ≥ (1 − |θ̃|)R ≥ δw.

The proof is complete.

Proof of Lemma 6.1. By (5.6) we have

‖Ahw‖2
ρ =

1

2π

∫∫

|θ|,|θ̃|≥T
D

(w)
ρ (θ, θ̃)τ̂(θ)τ̂(θ̃)dθdθ̃.

Apply Lemma 6.2 to approximate D
(w)
ρ (θ, θ̃) by Fρw(θ − θ̃). Recall that ĥ = τ̂ ⊙ 1R\[−T,T].

The resulting approximation is, by the convolution theorem and Plancherel’s identity,

1

2π

∫∫
Fρw(θ − θ̃)ĥ(θ)ĥ(θ̃)dθdθ̃

=
1

2π

∫
ĥ(θ)

(
Fρw ∗ ĥ

)
(θ)dθ

=
∫

|h(y)|2ρw(y)dy = EX∼ρn

[
|h(w · X)|2

]
= ‖hw‖2

ρ. (6.8)

τ̂ is bounded on R\[−T, T] by assumption. The error of the approximation is then boun-
ded by a constant times

∫∫

|θ|,|θ̃|≥T

∣∣D(w)
ρ (θ, θ̃)− Fρw(θ − θ̃)

∣∣dθdθ̃

≤ 8
∫ ∞

T

∫ θ

T
n!ǫρ

(
δwθ
)
dθ̃dθ ≤ 8n!

∫ ∞

T
ǫρ

(
δwθ
)

θdθ.

The error bound follows by substituting t = δwθ.

6.2 Upper bound for Gaussian envelopes

Lemma 6.1 explains the behavior of D
(w)
ρ (θ, θ̃) at large θ. We now establish that it vanishes

for small θ. When the envelope is the standard Gaussian ρ = N , the overlap kernel takes
the following form:

DN (v, w) = e−
‖v‖2+‖w‖2

2 det
(
(evi·wj)ij

)
. (6.9)

An upper bound on DN was obtained in [1, Proposition 11]:
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Proposition 6.1. Let ν = 2
√

d‖v‖∞‖w‖∞. Then, det((evi·wj)ij) ≤ (ν/2)pn for ν ≤ 1, where p
is any integer such that (

p + d − 1

d

)
≤ n

2
and p! ≥ 4n2.

The proof of Proposition 6.1 is recalled from [1] in Appendix B. It works by decompos-
ing (evi·wj)ij = ∑

∞
k=0 Qk and bounding the ranks and operator norms of the terms Qk. For

L = ∑
p−1
k=1 rank Qk, the L-th eigenvalue is then bounded as the tail sum ∑

∞
k=p ‖Qk‖. Taking

the product of the eigenvalues yields the bound on (6.9).
Combining Proposition 6.1 with the triangle inequality yields:

Lemma 6.4. Let ℓ = τLP(t) be the low-pass at threshold t = (2
√

d‖w‖∞)−1. If w is typical then

t = Ω(
√

n/ log n) and ‖Aℓw‖N = O(2−Ω(n1+1/d)).

7 Proof of Theorem 3.1

We specialize the quantities of Lemma 6.1 to the case of a Gaussian envelope. For the
Gaussian envelope ρ = N (0, Id) we have

Fdρ(v) = e−
‖v‖2

2 , Fρw(θ) = e−
‖w‖2θ2

2 , ǫρ(θ) = e−
θ2

2 .

The integral in the error term of Lemma 6.1 becomes
∫ ∞

δwT
e−

t2

2 tdt = e−
(δwT)2

2 ,

so we get the approximation

‖Ahw‖2
N = ‖hw‖2

N +O
(

δ−2
w e−

δ2
wT2

2 +n log n
)

. (7.1)

We have the two following expressions for D
(w)
N :

D
(w)
N (θ, θ̃) = det

[(
e−

1
2‖θwi−θ̃wj‖2)

ij

]
= e−

θ2+θ̃2

2 ‖w‖2
det

[(
eθθ̃wi·wj

)
ij

]
. (7.2)

It follows from (7.2) that D
(w)
N (θ, θ̃) can be determined from its values on the diagonal and

anti-diagonal θ̃ = ±θ. More precisely we have

D
(w)
N (θ, θ̃) = e−

‖w‖2

2 (|θ|−|θ̃|)2
D

(w)
N (θg.m.,±θg.m.), (7.3)

where the geometric mean θg.m. = |θθ̃|1/2
and ± is the sign of θθ̃. To show (7.3) apply the

rightmost expression of (7.2) on both sides and note that the determinants are equal. In

particular we have that D
(w)
N decays away from the diagonal and anti-diagonal

∣∣∣D(w)
N (θ, θ̃)

∣∣∣ ≤ e−
‖w‖2

2 (|θ|−|θ̃|)2
. (7.4)
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The bound (7.4) gives concentration around the diagonal everywhere and not only for
large θ, θ̃ as Lemma 6.2. Integrating (7.4) yields:

Lemma 7.1. Let h = τHP(t) be the high-passed activation function at t > 1. Then,

‖Ahw‖2
N ≤ 4√

2π‖w‖
Tτ̂(t).

So ‖Ahw‖2
N = O(t−K) for typical w.

Proof. Write the LHS as a double integral over |θ|, |θ̃| ≥ t as in (5.6). By (7.4),

1

2π

∫∫

θ̃>θ>t
D

(w)
N (θ, θ̃)|τ̂(θ)τ̂(θ̃)|dθdθ̃

=
1

2π

∫ ∞

0
e−

‖w‖2s2

2

∫ ∞

t
|τ̂(θ)τ̂(s + θ)|dθds

≤ 1

2π

∫ ∞

0
e−

‖w‖2s2

2 ds
∫ ∞

t
|τ̂(θ)|2dθ

=
1

2
√

2π‖w‖

∫ ∞

t
|τ̂(θ)|2dθ, (7.5)

where (7.5) follows from Cauchy-Schwartz. The same bound holds for each of 8 regions
in the θ, θ̃-plane.

For typical w choose threshold t = Ω(
√

n/ log n) as in Lemma 6.4 and decompose
Aτw = Aℓw +Ahw. Apply Lemmas 6.4 and 7.1 to obtain the following corollary, which
implies Theorem 3.1.

Corollary 7.1. If τ has frequency tail decay K < ∞ then ‖Aτw‖2
N = Õ(n−K/2) for typical w. If

τ is smooth (K = ∞), then ‖Aτw‖2
N = n−ω(1) for typical w.

8 Proof of Theorem 3.2

For the Gaussian envelope function we get a more explicit form of the error term in
Lemma 6.1. To prove the lower bound we pick an appropriate T based on this expres-

sion and decompose τ into ℓ = τLP(T) and h = τHP(T). We then expand ‖Aℓ+Ah‖2
N and

use that ‖Aℓ‖2
N ≥ 0 to get

‖Aτw‖2
N ≥ ‖Ahw‖2

N − 2|〈Aℓw | Ahw〉N |.

The result follows by bounding |〈Aℓw | Ahw〉N | and applying Lemma 6.1 to lower-bound
‖Ahw‖N .

Lemma 8.1. For activation functions satisfying Item 1 of Definition C.1 we have that

‖Aτw‖2
N ≥

∥∥h
(T)
w

∥∥2

N
−O(e−n log n) + o

(
Tτ̂(T)

)
(8.1)
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for

T =
2

δv

(√
n log n + log

1

δv

)

and typical w.

Proof. Let ℓ(T) = τLP(T) and h(T) = τHP(T). As discussed above we have the lower bound

‖Aτw‖2
N ≥

∥∥Ah
(T)
w

∥∥2

N − 2
∣∣〈Aℓ

(T)
w | Ah(T)〉

N
∣∣

≥
∥∥h

(T)
w

∥∥2

N − e−n log n − 2
∣∣〈Aℓ

(T)
w | Ah

(T)
w

〉
N
∣∣. (8.2)

We further divide the low-frequency part into |θ| in [0, 1], [1, T/2], and [T/2, T]. We write

α(t,T) = h(t) − h(T). Then,
∣∣∣
〈
Aℓ

(T)
w | Ah

(T)
w

〉
N

∣∣∣ ≤
∥∥Aℓ

(1)
w

∥∥
N
∥∥Ah

(T)
w

∥∥
N

+
∣∣∣
〈
Aα

(1,T/2)
w | Ah

(T)
w

〉
N +

〈
Aα

(T/2,T)
w | Ah

(T)
w

〉
N

∣∣∣. (8.3)

By applying the polarization identity to (5.6) we obtain the overlap between the antisym-

metrization with different activation functions, so by the bound (7.4) on D
(w)
N (θ, θ̃)

∣∣∣
〈
Aα

(T/2,T)
w | Ah

(T)
w

〉
N

∣∣∣ ≤
(

sup|θ|≥T/2 |τ̂(θ)|
)2

2π

∫

T/2<|θ|<T

∫

T<|θ̃|
e−

‖w‖2

2 (|θ̃|−|θ|)2
dθ̃dθ

≤
4
(

sup|θ|≥T/2 |τ̂(θ)|
)2

2π

∫

T/2<θ<T

∫ ∞

T−θ
e−

‖w‖2t2

2 dtdθ

=
4
(

sup|θ|≥T/2 |τ̂(θ)|
)2

2π

∫ ∞

0
min{t, T/2}e−

‖w‖2t2

2 dt

≤
4 sup|θ|≥T/2 |τ̂(θ)|2

2π

∫ ∞

0
te−

‖w‖2t2

2 dt

=
2 sup|θ|≥T/2 |τ̂(θ)|2

π‖w‖2
, (8.4)

where in (8.4) the factor 4 comes from the choice of signs of θ, θ̃, and we have substituted
t = θ̃ − θ. We apply Item 1 of Definition C.1 to obtain that

∣∣∣
〈
Aα

(T/2,T)
w | Ah

(T)
w

〉
N

∣∣∣ = o

(
Tτ̂(T)

‖w‖2

)
. (8.5)

For the first term on the RHS of (8.3) we have for T sufficiently large (so that |τ̂(θ)τ̂(θ̃)|
≤ 2π for |θ| > 1 and |θ̃| > T),

∣∣∣
〈
Aα

(1,T/2)
w | Ah

(T)
w

〉
N

∣∣∣ ≤
∫

1<|θ|<T/2

∫

T<|θ̃|
e−

‖w‖2

2 (|θ̃|−|θ|)2
dθ̃dθ
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≤ T

2

∫ ∞

T/2
e−

‖w‖2t2

2 dt ≤ 1

‖w‖2
e−

‖w‖2T2

8 . (8.6)

By (8.5) and (8.6),

∣∣∣
〈
α
(1,T/2)
w | h

(T)
w

〉
N +

〈
α
(T/2,T)
w | h

(T)
w

〉
N

∣∣∣ = O
(
e−Ω(T2)

)
+ o
(
Tτ̂(T)

)

for typical w. Finally, for typical w we have t > 1 in Lemma 6.4 and

∥∥h
(T)
w

∥∥
N = O(t−K) = O(1)

by Lemma 7.1, so

∥∥ℓ(1)w

∥∥
N
∥∥h

(T)
w

∥∥
N = O

(∥∥ℓ(t)w

∥∥
N
)
= 2−Ω(n

1+ 1
d ).

The claim follows by substituting back into (8.2) and (8.3).

Proof of Theorem 3.2. By Lemma 4.2 it suffices to show the claim for f = τw where w is
typical and has typical separation.

By the convolution theorem (6.8) and the expression Fρv(θ) = e−‖v‖2θ2/2 for the Gaus-
sian case we have

∥∥h
(T)
w

∥∥2

N =
1

2π

∫∫

|θ|,|θ̃|>T
e−

‖w‖2(θ−θ̃)2

2 τ̂(θ)τ̂(θ̃)dθdθ̃. (8.7)

We bound the contribution of the first quadrant to (8.7) from below. The same argument
holds for the third quadrant (θ, θ̃ < −T). Let σ = 1/‖w‖. Then

∫∫

θ,θ̃>T
e−

‖w‖2(θ−θ̃)2

2 τ̂(θ)τ̂(θ̃)dθdθ̃

= 2 Re
∫ ∞

T
τ̂(θ)

∫ ∞

θ
e−

‖w‖2(θ̃−θ)2

2 τ̂(θ̃)dθ̃dθ

= 2 Re
∫ ∞

T
τ̂(θ)

∫ ∞

θ
e
− (θ̃−θ)2

2σ2 τ̂(θ̃)dθ̃dθ

=
√

2πσ
∫ ∞

T
Re
(

τ̂(θ)E[τ̂(θ + |Y|)]
)

dθ, (8.8)

where Y ∼ N (0, σ2). To obtain a lower bound on the integrand we write

τ̂(θ) · E[τ̂(θ + |Y|)] = ‖τ̂(θ)‖2 · E[τ̂(θ + |Y|)]
τ̂(θ)

. (8.9)

So from Item 2 of Definition C.1 we then have a lower bound

Re
(

τ̂(θ) · E[τ̂(θ + |Y|)]
)
= ‖τ̂(θ)‖2 Re

(
E[τ̂(θ + |Y|)]

τ̂(θ)

)
= Ω

(
|τ̂(θ)|2

)
, (8.10)
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when 1/2 ≤ σ ≤ 2, i.e. when 1/4 ≤ ‖w‖2 ≤ 4. This holds because w is typical (and
because 1/2 ≤ c̃ ≤ 2). For typical w (8.7) and (8.10) then show that

∫∫

θ,θ̃>T
e−

‖w‖2(θ−θ̃)2

2 τ̂(θ)τ̂(θ̃)dθdθ̃ = Ω

( ∫ ∞

T
|τ̂(θ)|2dθ

)
= Ω

(
Tτ̂(T)

)
, (8.11)

and the same lower bound holds for the integral over θ, θ̃ < T. Finally we bound the
second quadrant θ < −T, θ̃ > t (the fourth quadrant θ > T, θ̃ < −T is analogous) by
writing

∣∣∣∣
∫∫

θ<−T,θ̃>T
e−

‖w‖2(θ−θ̃)2

2 τ̂(θ)τ̂(θ̃)dθdθ̃

∣∣∣∣

= o

( ∫∫

θ<−T,θ̃>T
e−

‖w‖2(θ̃−θ)2

2 dθdθ̃

)

= o

( ∫ ∞

2T
te−

‖w‖2t2

2 dt

)
= o

e−2‖w‖2T2

‖w‖2
= o

(
e−T2)

, (8.12)

where the last expression os for typical w. The identity (8.7), the lower bound for the
diagonal part (8.11), and the bound on the magnitude of the off-diagonal part (8.12) show
that ∥∥h

(T)
w

∥∥2

N = Ω
(
Tτ̂(T)

)
= Ω(T−K).

For typical w with typical separation we have that δw ≥ n−(1/2+2/d)/
√

log n and T ∼
2n1+2/d log n, so

‖h
(T)
w ‖2

N = Ω̃
(
n−(1+ 2

d )
)
.

The proof is complete.

9 Efficient algorithm

Recall (5.1) which gives the antisymmetrization with an exponential activation function as
a determinant

A
(
eiw·[x]) = 1√

n!
det

((
eiwi·[x]j)

ij

)
.

Let ℓ(t) = τLP(t) and h(T) = τHP(T) be the low-pass and high-pass of τ at thresholds t < T.
We approximate Aτw by removing the low-passed and high-passed components: Apply

(5.5) to τHP(t) − τHP(T) to obtain

Aτw(x) = αw +Aℓ
(t)
w +Ah

(T)
w ,

where

αw(x) =
1√

2πn!

∫

[−T,T]\[−t,t]
τ̂(θ)det

((
eiθwi·xj

)
ij

)
dθ. (9.1)

The integrand can be computed at a single θ in time O(n3). Apply Lemmas 6.4 and 7.1
(with a different choice of threshold for the high-pass) to bound the truncation error.
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Lemma 9.1 (Truncation Error Bound). Suppose τ̂ has tail decay K. Let

t = max

{
1

2
√

d‖w‖∞

, 1

}

and, given ǫ > 0, let T = ǫ−1/K. Then

‖Aτw − αw‖2
N = O

(
2−Ω(n

1+ 1
d ) + ǫ

)

for typical w.

We approximate αw(x) by a sum

Sw(x) =
1√

2πn!
∑

p=±1,...,±N

cp det
((

eiθpwi·xj
)

ij

)
,

where θ1, . . . , θN are a discretization of [t, T].

9.1 Discretization error bound

Let t = Ω(1) and let t = t0 < t1 < · · · < tN = T be evenly spaced and for each
p = 1, . . . , N write

I−p = [−tp,−tp−1], Ip = [tp−1, tp].

For p = ±1, . . . ,±N, let θp ∈ Ip and define

cp :=
∫

Ip

τ̂(θ)dθ.

For these evenly spaced θp and coefficients cp, define

∥∥∥∂θ D
(w)
N
∥∥∥

∞
:= sup

θ,θ̃

∣∣∣∣
∂

∂θ̃
D

(w)
N (θ, θ̃)

∣∣∣∣.

We then have

Lemma 9.2.

‖Sw − αw‖2
N ≤ 2

π

T

N

∥∥∥∂θ D
(w)
N
∥∥∥

∞

( ∫

t≤|θ|≤T
|τ̂(θ)|

)2

= O
(

T

N

∥∥∥∂θ D
(w)
N
∥∥∥

∞

)
.

Proof. Sw is exactly the antisymmetrization Asw where

s(t) =
1√
2π

N

∑
±q=1

cqeiθqt.
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Passing from the truncated activation to its discretization incurs the error

‖Sw − α̃w‖2
N = ‖A(s − τtrc)w‖2

N =
1

2π

∫∫

R2
D

(w)
N (θ, θ̃)dµ̄(θ)dµ(θ̃), (9.2)

where τtrc = τ − τLP(1) − τHP(T), and µ is the complex-valued measure

µ(θ) = ∑
q

cqδ(θ − θq)−
(
τ̂(θ)dθ

)
.

For each square Spq = Ip × Iq,
∫∫

Spq

D
(w)
N (θ, θ̃)dµ̄(θ)dµ(θ̃)

= cpcqD
(w)
N (θp, θq) +

∫∫

Spq

D
(w)
N (θ, θ̃)τ̂(θ)τ̂(θ̃)dθdθ̃

− cp

∫

Iq

D
(w)
N (θp, θ̃)τ̂(θ̃)dθ − cq

∫

Ip

D
(w)
N (θ, θq)τ̂(θ)dθ

=
∫∫

Spq

[
D

(w)
N (θp, θq) + D

(w)
N (θ, θ̃)− D

(w)
N (θp, θ̃)− D

(w)
N (θ, θq)

]
τ̂(θ)τ̂(θ̃)dθdθ̃

≤
∫∫

Spq

[
2 max D

(w)
N (Ip, Iq)− 2 min D

(w)
N (Ip, Iq)

]
|τ̂(θ)τ̂(θ̃)|dθdθ̃

= 2
(

diam D
(w)
N (Ip, Iq)

) ∫

Ip

|τ̂(θ)|dθ
∫

Iq

|τ̂(θ̃)|dθ̃, (9.3)

where diam(D
(w)
N (Ip, Iq)) is the diameter of the set

D(Ip, Iq) =
{

D
(w)
N (θ, θ̃) | (θ, θ̃) ∈ Ip × Iq

}
.

Let ∥∥∥∂D
(w)
N
∥∥∥

∞
= sup

θ,θ̃

max

{∣∣∣∣
∂

∂θ
D

(w)
N (θ, θ̃)

∣∣∣∣,
∣∣∣∣

∂

∂θ̃
D

(w)
N (θ, θ̃)

∣∣∣∣
}

,

and let t0 = 1, . . . , tN = T be evenly spaced so that |Ip| ≤ T/N. Then by (9.3),

∫∫

Spq

D
(w)
N (θ, θ̃)dµ(θ)dµ(θ̃) ≤ 4T

N

∥∥∥∂D
(w)
N
∥∥∥

∞

∫

Ip

|τ̂(θ)|dθ
∫

Iq

|τ̂(θ̃)|dθ̃. (9.4)

Summing over p, q and applying (9.2) we get

‖Sw − α̃w‖2
N ≤ 2

π

T

N

∥∥∥∂D
(w)
N
∥∥∥

∞

( ∫

t≤|θ|≤T
|τ̂(θ)|

)2

.

The proof is complete.

Lemma 9.3. Let B
(v,w)
ij = Fρ(vi − wj) as in Definition 5.1. Then, |(∂/∂Bij)det B| ≤ 1 at any

B = B(v,w).
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Proof.
∂

∂Bij
det B = (−1)i+jmB

i,j,

where mB
i,j is the i, j-th minor of B. But mB

ij = det B(ṽ,w̃) where ṽ = (vi′)i′ 6=i and w̃ =

(wj′)j′ 6=j, and

|det B(ṽ,w̃)| = |DN (ṽ, w̃)| ≤ 1

by the properties mentioned in Section 6.1.

Corollary 9.1. ∣∣∣∣
∂

∂θ
D

(w)
N (θ, θ̃)

∣∣∣∣ ≤
n

3
2 ‖w‖√

e
.

Proof. By the chain rule,

∂

∂θ
D

(w)
N (θ, θ̃) = ∑

ij

∂Bij(θw, θ̃w)

∂θ

∂ det B

∂Bij
,

where ∣∣∣∣
∂Bij(θw, θ̃w)

∂θ

∣∣∣∣ =
∣∣wi · (∇Fdρ)(θwi − θ̃wj)

∣∣ ≤ ‖wi‖ · ‖∇Fdρ‖∞.

Lemma 9.3 and the triangle inequality then imply that
∣∣∣∣

∂

∂θ
D

(w)
N (θ, θ̃)

∣∣∣∣ ≤ n‖∇Fdρ‖∞ ∑
i

‖wi‖ ≤ n
3
2 ‖∇Fdρ‖∞‖w‖,

where the last inequality is by Cauchy-Schwarz. For ρ = N (0, Id) we have

FdN (w) = e−
‖w‖2

2 , ‖∇FdN‖∞ =
1√

e
.

The proof is complete.

In the presence of bias terms bk in (2.3) we can efficiently compute an approximation

Sw,b to the function Aτ(w(k) · [x] + bk) with the same error bound. Indeed, the bias term
results in a shift of the activation function which corresponds to multiplying the Fourier
transform by an oscillating phase. Since the upper bounds do not depend on the phase
of the Fourier transform, the same truncation error bound applies. Theorem 3.1 holds for
arbitrary bias terms for the same reason.

Proof of Theorem 3.3. Because τ is rough we have

E[‖A f‖N |W] = n−O(1)

with probability 1 − o(1). Given target relative error ǫ = n−O(1) it suffices to achieve
absolute error
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ǫ′ = ǫ · E[‖A f‖N |W] = n−O(1).

By Lemmas 9.1 and 9.2

‖Sw −Aτw‖2
N = O

(
ǫ′ + nO(1)

∥∥∂θ D
(w)
N
∥∥

∞

N

)
.

Corollary 9.1 shows that ‖∂θ D
(w)
N ‖∞ = nO(1), so

‖Sw −Aτw‖2
N = O

(
ǫ′ +

nO(1)

N

)
.

It then suffices to pick N = nO(1). Let

SW,a,b =
m

∑
k=1

akSw(k),bk

and apply Lemma 4.1 to the difference fW,a,b − SW,a,b to extend the termwise error bound

to the sum (2.3). The computational cost of evaluating Sw(x) is O(n3N).

9.2 Numerical demonstration of Theorem 3.3

We numerically demonstrate Theorem 3.3 by approximating the anti-symmetrization of
a single neuron with the ReLU activation function (Figs. 9.1 and 9.2). We compare the

Figure 9.1: Approximation error in Theorem 3.3 for a single ReLU neuron as a function of the ultraviolet trun-
cation T. Values plotted are T = 100, 200, 500, 1000, 2000, 5000. Here, n = 8 and d = 3. Here, the number of
quadrature points N = 104 and the infra-red cutoff t = 0.1 is kept constant.
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Figure 9.2: The approximation error of Theorem 3.3 as in Fig. 9.1, except the number of quadrature points N is
chosen to grow with the ultraviolet cutoff T (specifically, we take N = T).

approximation Sw given by Theorem 3.3 with the explicit anti-symmetrization Aτw. We
use 100 sample points x ∼ N (0, I) to estimate the norm of the anti-symmetrized function
and the distance between the true anti-symmetrization and its efficient approximation. In
our implementation we used Gauss-Legendre quadrature to estimate the integral in (9.1).

The cubic convergence with T observed in Figs. 9.1 and 9.2 is in accordance with
our theory, because the anti-symmetrization operator A is approximately an isometry for
highly oscillating functions, i.e. in the within the ultraviolet part. By Plancherel’s equality
we can approximate the squared error introduced by the tail truncation as the squared L2

norm of the truncated tail, which is of order
∫
|θ|>T |τ̂(θ)|2dθ ∝

∫
|θ|>T |θ|−4 ∝ T−3 when τ

is the ReLU activation.

10 Empirical generalization to multi-layer networks

It is natural to ask whether the advantage of rough activation functions against cancella-
tions remains as the depth of the neural network grows. We consider networks of depth
L = 3, 4, 5 and compare ‖A f‖2

N between two choices of activation functions: The smooth
tanh and the rough normalized double ReLU (DReLU) τκ(y) = κ max{−1, min{1, y}}
where κ ≈ 0.875 is chosen such that E[|τκ(Z)|2] = E[| tanh(Z)|2] for standard-Gaussian
Z ∼ N (0, 1). Fig. 10.1 shows a comparison between the DReLU and tanh activation func-
tions. We take d = 3, let all layers have width m = 3n, and instantiate NNs from the Xavier
initialization (independent Gaussian weights with variance 1/m where m is the number
of neurons in the preceding layer). Fig. 10.2 shows that the rough activation function
maintains its advantage for networks with more layers.
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Figure 10.1: Tanh and the normalized DReLU.

Figure 10.2: Log-scale comparison between E[‖A f ‖2
N ] for smooth and rough activation functions (tanh vs

normalized DReLU) for antisymmetrized neural networks of different depths. Shaded areas show 90% confidence
regions.

11 Conclusion

Using the Fourier representation of the activation function, we observe that a rough acti-
vation function is necessary to tame the near-exact cancellations when antisymmetrizing
two-layer NNs initialized with the standard initializations. Equivalently, an architecture
based on a smooth activation function would require an initialization of the weights in the
first layer distinct from the standard Xavier/He initializations to avoid the sign problem
in the antisymmetric setting. The Fourier perspective also provides a polynomial-time al-
gorithm for approximately evaluating explicitly antisymmetrized two-layer NNs. It may
be possible that explicitly antisymmetrized two-layer NNs provides a path towards uni-
versal approximation of a class of antisymmetric functions without suffering from curse
of dimensionality. Our work also raises intriguing open questions about how the cancel-
lations and efficient algorithms generalize to antisymmetrized multi-layer NNs as well as
to the training regime.

Appendix A. Lower-bounding the typical separation

Lemma A.1. For w ∼ N (0, (2/nd)Ind) sampled from the He initialization,

P(δw < δ) ≤ 2

(
n

2

)(
2ndδ2

c̃π

) d
2

|Bd|, (A.1)
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where |Bd| is the volume of the unit ball in Rd. For constant d this is O(n2+d/2δd).

Proof. If wi are sampled independently from a distribution W on Rd, then

P(δw < δ) ≤ ∑
i<j

P

(
1

2
‖wi − wj‖ < δ

)
+ P

(
1

2
‖wi + wj‖ < δ

)

≤ ∑
i<j

max
w′∈Rd

P(‖wi − wj‖ < 2δ |wj = w′)

+ max
w′∈Rd

P(‖wi + wj‖ < 2δ |wj = w′)

≤ 2

(
n

2

)
(2δ)d|Bd| ‖W‖∞, (A.2)

where ‖W‖∞ is the supremum of the density. For the He initialization wi∼N (0, 2Id/(nd))
we have

‖W‖∞ =

(
2π · c̃

nd

)− d
2

=

(
2c̃π

nd

)− d
2

.

The proof is complete.

For fixed d, v = w(k) satisfies that P(δv < δ) = O(n2+d/2δd). Then with probability
1 − o(1), v has typical separation as defined in Definition 4.3.

Proof of Lemma 4.2. Recall that by definition, W is typical if each w(k) is typical and at least

half the w(k) have typical separation. The distribution of (nd/c̃)‖w(k)‖2 ∼ χ2(nd) implies
that for each k = 1, . . . , m,

P

(
‖w(k)‖2

<
c̃

2

)
≤
(√

e

2

) nd
2

, P
(
‖w(k)‖2

> 2c̃
)
≤
(

2

e

) nd
2

since E[‖w(k)‖2] = c̃. By a union bound we have c̃/2 ≤ ‖w(k)‖2 ≤ 2c̃ for all k = 1, . . . , m

with probability 1 − 2m2−Ω(nd). Furthermore, w
(k)
ij ∼ N (0, c̃/(nd)) and a union bound

imply that

P
(
|w(k)

ij | ≥ t for some i, j, k
)
≤ 2mnde−

ndt2

2c̃ = O
(

e−
ndt2

2c̃ +(C′+1) log n+log d
)

.

Given any C′′ > 0 we may let

t = 2
√

C′ + C′′ + 1

√
log(nd)

nd

and obtain that ‖w(k)‖∞ ≤ t for all k with probability at least 1 − n−C′′
. This shows that

each w is typical with probability 1 − 1/n for appropriate C in Definition 4.1.

If P(δw(k) ≥ δ) → 1 for each fixed k then the probability that δ(w(k) ≥ δ) for at least half
the k = 1, . . . , m also converges to 1. Eq. (4.3) follows from Lemma 4.1.
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Appendix B. Bound on complex-exponential overlap kernel for the

Gaussian envelope

In this section, we recall the proof of the bound on a determinant of exponentials given
in [1].

Lemma B.1. Let v = (v1, . . . , vn)T ∈ Rn×d and w = (w1, . . . , wn)T ∈ Rn×d. Then

(evi·wj)ij =
∞

∑
k=0

Qk,

where

rank Qk ≤
(

k + d − 1

d − 1

)
, ‖Qk‖ ≤ n(‖v‖∞‖w‖∞d)k

k!
. (B.1)

Proof. Let (c1, . . . , cd) and (c̃1, . . . , c̃d) be the columns of v and w and let ⊙ denote elemen-
twise operations

(evi·wj)ij = e⊙ ∑
d
i=1 ci c̃

T
i = ⊙d

i=1e⊙ci c̃
T
i . (B.2)

We first consider each factor e⊙ci c̃
T
i separately. Elementwise multiplication of rank-one

matrices given as outer products corresponds to elementwise multiplication of the vectors,
abT ⊙ ãb̃T = (a ⊙ ã)(b ⊙ b̃)T. Therefore, applying the Taylor expansion entrywise,

e⊙cc̃T
=

∞

∑
k=0

(cc̃T)⊙k

k!
=

∞

∑
k=0

(c⊙k)(c̃⊙k)T

k!
, (B.3)

where c = ci, c̃ = c̃i are column vectors. Apply (B.3) to each factor of (B.2),

⊙d
i=1e⊙ci c̃

T
i =

∞

∑
k1,...,kd=0

(
⊙d

i=1 c
⊙ki
i

)(
⊙d

i=1 c̃
⊙ki
i

)T

∏
d
i=1 ki!

=
∞

∑
k=0

∞

∑
k1+···+kd=k

1

k!

(
k

k1, . . . , kd

)(
⊙d

i=1 c
⊙ki
i

)(
⊙d

i=1 c̃
⊙ki
i

)T
. (B.4)

Let Qk be the innermost sum of (B.4). We estimate the maximum over the entries

‖Qk‖max ≤ ‖v‖k
∞‖w‖k

∞

k!

∞

∑
k1+···+kd=k

(
k

k1, . . . , kd

)
=

‖v‖k
∞‖w‖k

∞dk

k!

and apply the inequality ‖Qk‖ ≤ n‖Qk‖max.

Lemma B.2. Let λ0 ≥ λ1 ≥ · · · be the absolute values of the eigenvalues of (evi·wj)ij and let

µ = ‖v‖∞‖w‖∞d. Then λ0 ≤ neµ, and for µ ≤ 1/2,

λL ≤ 2n

p!
µp, L =

(
p + d − 1

d

)
, (B.5)
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where the case p = 0 of (B.5) holds with the interpretation

L =

(
d − 1

d

)
= 0, λ0 ≤ ne

1
2 ≤ 2n.

Proof. From the identity
(

p + d − 1

d

)
= 1 + d +

(
d + 1

d − 1

)
+ · · ·+

(
p + d − 2

d − 1

)
,

there are

1 + d +

(
d + 1

d − 1

)
+ · · ·+

(
p + d − 2

d − 1

)
≥ rank Q0 + · · ·+ rank Qp−1

eigenvalues in front of λL where L = (p+d−1
d ), and we have used Lemma B.1. By the

min-max principle,

λL ≤
∥∥∥∥

∞

∑
k=p

Qk

∥∥∥∥ ≤ n
∞

∑
k=p

µk

k!
=

n

p!

∞

∑
k=p

µk =
n

p!

µp

1 − µ
≤ 2n

p!
µp.

The proof is complete.

Proof of Proposition 6.1. By Lemma B.2 and the assumptions on p we have

λ⌊ n
2 ⌋ ≤

2n

p!
µp ≤ µp

2n
,

and λ0 ≤ 2n where µ = d‖v‖∞‖w‖∞, so it follows that

∣∣∣det
((

evi·wj
)

ij

)∣∣∣ ≤ λ
n
2
0 λ

n
2
n
2
≤ (µp)

n
2 =

(ν

2

)pn
.

The proof is complete.

Apply the bound to DN (θw, θw) with p=Θ(n1/d) to get that for θ ≤ t:=(2
√

d‖w‖∞)−1,

D
(w)
N (θ, θ) =

(
θ

2t

)Ω(n
1+ 1

d )

. (B.6)

Eq. (5.5) implies the triangle inequality

‖Aτw‖ρ ≤ 1√
2π

∫ ∞

−∞
|τ̂(θ)|

√
D

(w)
N (θ, θ)dθ,

because

√
D

(w)
ρ (θ, θ) = ‖Aeiθw·[x]‖ρ by definition. Apply this triangle inequality to the

low-pass part and bound the integrand using (B.6) to cancel the pole of |τ̂| at 0. We then
obtain Lemma 6.4.
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Lemma 6.4. Let ℓ = τLP(t) be the low-pass at threshold t = (2
√

d‖w‖∞)−1. If w is typical then

t = Ω(
√

n/ log n) and ‖Aℓw‖N = O(2−Ω(n1+1/d)).

Proof. The lower bound on t follows directly from its definition and the definition of w
being typical.

Bound D
(w)
N as in (B.6) and write |τ̂(θ)| = O(|θ|−r + 1). The triangle inequality yields

∥∥τLP(t)
∥∥
N = O

(
2−

pn
2

∫ t

−t

( |θ|
t

) pn
2

(|θ|−r + 1)dθ

)
= O

(
2−

pn
2 t(t−r + 1)

)
,

where p = Ω(n1/d). Here we have cancelled the pole |θ|−r by writing

( |θ|
t

) pn
2

|θ|−r ≤
( |θ|

t

)r

|θ|−r = t−r ,

so that the integrand is bounded by t−r + 1.

Appendix C. Generalized definition of roughness

Definition C.1 (Generalized Rough Activation Functions). τ : R → C is generalized rough

if its Fourier transform τ̂ has tail decay K < ∞, i.e. if Tτ̂(t) = t−O(1), and if additionally,

1. |τ̂(θ)|2/Tτ̂(θ) → 0 as θ → ∞.

2. There exists γ > 0 such that for 1/2 ≤ σ ≤ 2 and all θ ∈ R\[−1, 1] where τ̂(θ) 6= 0,

Re

(
E[ τ̂(θ ± |Z|) ]

τ̂(θ)

)
≥ γ, (C.1)

where Z ∼ N (0, σ2). Here, “±” is taken the sign of θ, and Re is the real part of a complex
number.

The assumptions of Items 1 and 2 prevent activation functions with excessive negative
correlations between nearby frequencies. The constraint on the standard deviation 1/2 ≤
σ ≤ 2 is related to the Xavier/He initialization in Definition 3.4.

Appendix D. The Fourier inversion formula holds for ReLU

and tanh

We include the derivation (see [1]) to verify Eq. (3.1) which asserts that τLP(ǫ) = p + Cǫ +
O(ǫg) where p is a low-degree polynomial and g is bounded by a polynomial. Here we

have defined τLP(ǫ) = τ − τHP(ǫ).
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1. τ = ReLU: We first evaluate the high-pass part

τHP(ǫ)(y) =
|y|
2

− cos(ǫy)

πǫ
− y Si(ǫy)

π
,

where

Si(y) =
∫ y

0

sin s

s
ds.

Since ReLU(y) = |y|/2 + y/2,

τLP(ǫ)(y) =
y

2
+

cos(ǫy)

πǫ
+

y Si(ǫy)

π
. (D.1)

Write τLP(ǫ) = p + Cǫ + ε, where

p(y) =
y

2
, Cǫ =

1

πǫ
.

Then the remainder satisfies

|ε| ≤
∣∣∣∣
cos(ǫy)− 1

πǫ

∣∣∣∣+
∣∣∣∣
y Si(ǫy)

π

∣∣∣∣

≤ (ǫy)2

2πǫ
+

y · (ǫy)

π
= ǫg(y), g(y) :=

3

2π
y2. (D.2)

2. τ = tanh: We can write the low-pass part as an absolutely convergent integral as

τLP(ǫ)(y) =
1√
2π

∫ ǫ

−ǫ

−i
√

π/2

sinh(πθ/2)
(eiθy − 1)dθ.

Let p, Cǫ ≡ 0 and bound

∣∣τLP(ǫ)(y)
∣∣ ≤ 1√

2π

∫ ǫ

−ǫ

√
π/2

|πθ/2| |θy|dθ = ǫg(y), g(y) :=
2

π
|y|. (D.3)
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